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We deal with the blowup properties of the solution to the degenerate and singular par-
abolic system with nonlocal source and homogeneous Dirichlet boundary conditions.
The existence of a unique classical nonnegative solution is established and the sufficient
conditions for the solution that exists globally or blows up in finite time are obtained.
Furthermore, under certain conditions it is proved that the blowup set of the solution is
the whole domain.
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1. Introduction

In this paper, we consider the following degenerate and singular nonlinear reaction-
diffusion equations with nonlocal source:

a

xTuy— (X" uy) = J vPrdx,  (x,t) € (0,a) x (0,T),
0

a

xPy— (x"vy), = Jo uPrdx, (x,t) € (0,a) x (0,T), (1.1)

u(0,t) = u(a,t) = v(0,t) = v(a,t) =0, te€(0,7T),

u(x,0) = up(x), v(x,0) =v(x), x¢€]l0,al,

where ug(x),vo(x) € C**%(D) for some « € (0,1) are nonnegative nontrivial functions.
up(0) = up(a) = vo(0) = vo(a) = 0, up(x) = 0, vo(x) = 0, uy, vy satisfy the compatibility
condition, T >0,a >0, 1,1, € [0,1), g1l +71 #0, [q2| + 2 #0,and p; > 1, p > 1.

Let D = (0,a) and Q; = D X (0,¢], D and Q; are their closures, respectively. Since |q; | +
r # 0, 1g2] + 12 # 0, the coefficients of uy, Uy, Uy, and vy, vy, Vi may tend to 0 or o as x
tends to 0, we can regard the equations as degenerate and singular.
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2 Blowup for degenerate and singular parabolic system

Floater [9] and Chan and Liu [4] investigated the blowup properties of the following
degenerate parabolic problem:

xTuy — uye = uP,  (x,t) € (0,a) X (0,T),
u(0,t) = u(a,t) =0, te€(0,T), (1.2)

u(x,0) = up(x), x€[0,al,

where g >0 and p > 1. Under certain conditions on the initial datum u(x), Floater [9]
proved that the solution u(x,t) of (1.2) blows up at the boundary x = 0 for the case 1 <
p < g+ 1. This contrasts with one of the results in [10], which showed that for the case
q = 0, the blowup set of solution u(x,t) of (1.2) is a proper compact subset of D.

The motivation for studying problem (1.2) comes from Ockendon’s model (see [14])
for the flow in a channel of a fluid whose viscosity depends on temperature

XU = Uyy + €%, (1.3)

where u represents the temperature of the fluid. In [9] Floater approximated e* by u? and
considered (1.2). Budd et al. [2] generalized the results in [9] to the following degenerate
quasilinear parabolic equation:

xluy = (u") ., +uf, (1.4)

with homogeneous Dirichlet conditions in the critical exponent g = (p — 1)/m, where g >
0, m > 1, and p > 1. They pointed out that the general classification of blowup solution
for the degenerate equation (1.4) stays the same for the quasilinear equation (see [2, 17])

up = (u"),, +ub. (1.5)

For the case p > g+ 1, in [4] Chan and Liu continued to study problem (1.2). Under
certain conditions, they proved that x = 0 is not a blowup point and the blowup set is a
proper compact subset of D.

In [7], Chen and Xie discussed the following degenerate and singular semilinear para-
bolic equation:

U — (x%uy), = Jaf(u(x,t))dx, (x,t) € (0,a) x (0,T),
0
u(0,t) = u(a,t) =0, t<(0,T), (1.6)
u(x,0) = up(x), x€[0,al,

they established the local existence and uniqueness of a classical solution. Under appro-
priate hypotheses, they obtained some sufficient conditions for the global existence and
blowup of a positive solution.
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In [6], Chen et al. consider the following degenerate nonlinear reaction-diffusion
equation with nonlocal source:

K- (W), = [ wdv, (50 €0.0)%(0,T),
0

u(0,t) = u(a,t) =0, te€(0,T), (1.7)

u(x,0) = up(x), x€[0,al,

they established the local existence and uniqueness of a classical solution. Under appro-
priate hypotheses, they also got some sufficient conditions for the global existence and
blowup of a positive solution. Furthermore, under certain conditions, it is proved that
the blowup set of the solution is the whole domain.

In this paper, we generalize the results of [6] to parabolic system and investigate the
effect of the singularity, degeneracy, and nonlocal reaction on the behavior of the solution
of (1.1). The difficulties are the establishment of the corresponding comparison principle
and the construction of a supersolution of (1.1). It is different from [4, 9] that under
certain conditions the blowup set of the solution of (1.1) is the whole domain. But this is
consistent with the conclusions in [1, 18, 19].

This paper is organized as follows: in the next section, we show the existence of a
unique classical solution. In Section 3, we give some criteria for the solution (u(x,t),v(x,
1)) to exist globally or blow up in finite time and in the last section, we discuss the blowup
set.

2. Local existence

In order to prove the existence of a unique positive solution to (1.1), we start with the
following comparison principle.

LEMMA 2.1. Let by(x,t) and by(x,t) be continuous nonnegative functions defined on [0,a] X
[0,7] for any r € (0, T), and let (u(x,t),v(x,1)) € (C(Q,) N C>1(Q,))? satisfy

xuy— (X" uy) = Ja bi(x, vix,t)dx, (x,t) € (0,a) X (0,r],
0

xPv, — (x"vy) > Ja by(x,t)u(x,t)dx, (x,t) € (0,a)x (0,r], 2.1)
0 .

u(0,t) =0, wu(a,t) =0, v(0,t)>=0, wv(a,t)=0, te(0,r],

u(x,0) =0, v(x,0)=0, x¢€][0,a].

Then, u(x,t) =0, v(x,t) = 0 on [0,a] X [0,T).

Proof. At first, similar to the proof of Lemma 2.1 in [20], by using [15, Lemma 2.2.1], we
can easily obtain the following conclusion.
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If W(x,t) and Z(x,t) € C(Q,) N C>(Q,) satisfy

KW, — (3" W) Jblxt) (wBdx, (6t) € (0,a) X (0,r],

X7, — (x"Z,) J bW sy, (o) €00 x O], ()
w(0,t) >0, W(a,t)>=0, Z(0,t)>0, Z(a,t)=0, te(0,r],
W(x,0) >0, Z(x,0)>0, xe&][0,al,
then, W(x,t) >0, Z(x,t) >0, (x,t) € (0,a) X (0,7].
Next let r; € (r1,1), 3 € (r2,1) be positive constants and
W(x,t) = u(x,t) + (1 +x177) e, Z(x,t) = v(x,t) + (1 +x72772) e, (2.3)

where 7 > 0 is sufficiently small and ¢ is a positive constant to be determined. Then
W(x,t) >0, Z(x,t) >0 on the parabolic boundary of Q,, and in (0,a) x (0, 7], we have

KW, — (XTW,) J by (6, 1) 2 (x, H)dx
0

(ri—r) (1 —ri)ne”
x2- r

> x0 7 (1+x"17") e + J by (x, ) (1+x"27") e dx

4 _ 1 _ 4
> et [qu‘ + —(rl rlz)f(, 1)
XN (x,t)€[0,a]%[0,7]

—a(1+a?™™) max  bi(x, t)] ) (2.4)
xPZ— (x"Zy), — J by (x,t) W(x,t)dx
0

> et [quz + w —a(l+a™"m) max bz(x,t)].

xZ*TE (x,t)€[0,a]x[0,r]

We will prove that the above inequalities are nonnegative in three cases.

Case 1. When

1 !

max bi(f) < M,
(x,1)€[0,a]x[0,r] a*> " (1+an)

(2.5)

! _ 1 _ 4

max by(x,t) < m
(x,)[0,a]x[0,r] ad>n(1+ann)

It is obvious that

XMW, — (x"Wy) J bi(x,t)Z(x,t)dx = 0,

. (2.6)
xPZ— (x"Zy), — I by (x, ) W(x,t)dx = 0.

0
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(ri—r)(1-r
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)
max by (x,t) > - ; ,
(1) €[0,a]x[0,r] 1t68) a> i (1+ann)
(2.7)
(15 =) (1-13)
max by(x,t) > ~2—r 22
(x,1)€[0,a]x[0,r] 2(%,1) as—n (1 +an-m)
Let xy and yy be the root of the algebraic equations
: r—r)(1-r
a(l+a>™) max bi(xt)= w,
(x.t)€[0,a]x[0,r] X271
(2.8)
- (n—r)(1-r)
a(l+an™" max  by(x,t) = —F——=,
( ) (x,)€[0,a]x[0,r] 2(%8) 2-1
and C,, C; > 0 be sufficient large such that
( a 1+ar2 “
( ma by (x, t)) forgq; = 0,
x,t)€0, a]><[0 r]
C1 > A
a( 1+ar2 )
( ma by (x, t)) for q; <0,
(x,t)€]0, a]><[0 ]
(2.9)
( a( 1+a’1 )
( max by (x, t)) forg, = 0,
(x,t)€[0,a]x[0,r]
Cz > A
a(l+a™m)
( max by (x, t)) for g, < 0.
x,t)€[0,a]x[0,r]
Set ¢ = max{C;,C,}, then we have
AW, — (3 W) J by (x,£)Z(x, £)dx
(ri—r)(1-r) ,
e”[—/—a 1+a2 " max b x,t] for x < xy,
n X211 ( ) (x,1)€[0,a]x[0,r] 1(61) 0
net [qul —a(l+ a’é_rz) max b (x, t)] for x > xo,
(x,t)€[0,a]x[0,r]
>0,
xPZ— (x"Zy), J by (x,t) W (x,t)dx
(r,=r)(1-r) .
e“[—,—a 1+agn max b x,t] for x < ¥y,
( x2 1 ( ) (xt)€0,a]x[0,r] 2(61) o
>
ne ’[qu2 —a(l+a™") max  b(x, t)] for x > yo,
(x,t)€[0,a]x[0,r]
> 0.

(2.10)
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Case 3. When
(ri—-mn)(1-r)
bi(x,t —,
(x,t)EI[IOI,Zg{X[O ] 100) = a’~n (1 +anr)
(2.11)
r,—1)(1 -1,
max bZ( ,t)>(2 2)( 2)’
(x,1)€[0,a]x[0r] a3~ (1+ari—n)
or
max by(xi) < M,
(x,t)€[0,a]x[0,r] a> 2 (1+an—n)
(2.12)
’ 1 _ 14
max by (x,t) > w
(x,H)€[0,a]x[0,r] a¥ 1 (1+ann)’
Combining Cases 1 with 2, it is easy to prove
XTI Wi — (X" W) J bi(x,t)Z(x,t)dx = 0,
(2.13)

7, — (7). — j by (x, ) W (x, £)dx > O,
0

so we omit the proof here.

From the above three cases, we know that W(x,t) >0, Z(x,t) >0 on [0,a] X [0,7].
Letting 7 — 0%, we have u(x,t) = 0, v(x,t) = 0 on [0,a] X [0,r]. By the arbitrariness of
r € (0, T), we complete the proof of Lemma 2.1. O

Obviously, (4,v) = (0,0) is a subsolution of (1.1), we need to construct a supersolu-
tion.

LEMMA 2.2. There exists a positive constant ty (ty < T) such that the problem (1.1) has a
supersolution (hy (x,1),hy(x,1)) € (C(Qy) N C*1 ()%

Proof. Let
y(x) = (g>1—ﬁ (1 - g) N (1;)(141)/2(1 ) g)1/2’

o(x) = <§>1—’2 (1 - ;_C) N <§>(1—rz>/2<1 ) 2)1/2’

and let K be a positive constant such that Koy (x) = uy(x), Kop(x) = vo(x).

Denote the positive constant fol [s'1(1 —s) +s1712(1 —5)V2]P2ds by by, and
fol [s'72(1 — 5) + sU72)2(1 — 5)12]P1ds by byg. Let Kio € (0,(1 — r1)/(2 — 1)), Ky €
(0,(1 —r2)/(2 —r2)) be positive constants such that

(2.14)

Ky =< (2p1+1a3—r1 bloKé?l—l ) —2/(1—r1)’
(2.15)

Ky < (szﬂas_rzbzngrl)72/(142)-
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Let (K, (1), Ky(t)) be the positive solution of the following initial value problem:

b1oK3 ' (t)
a%*lKlqé [Klo(l —Kl())l n +K1/2(1 _KIO)

(141)/2] J q1 20,

Ki(t) =
bioK?' (1)
aql_l(l —Klo)ql [Kw(l —Klo)l n

K;(0) = Ko,

+K1/2(1 . Klo)(lfﬁ)ﬂ] >

baoK{" (1)
aquK% [Kzo(l *Kz())l r2+K1/2( Kzo)

(1—rz)/2] >
Ky(t) =
baK{* (t)
a1 (1= Kao) * [Kao (1= Koo)' + K2 (1= Koo)' )

K>(0) =

q> <0,

(2.16)

Since K, (t), K;(t) are increasing functions, we can choose t; > 0 such that K, (t) < 2K,
K,(t) < 2Ky forall t € [0,1p]. Set by (x,t) = K1 (1) y(x), ha(x,t) = Ky (t)p(x), then h; (x, 1) =
0, hy(x,t) = 0 on Q. We would like to show that (h;(x,t),h,(x,t)) is a supersolution of
(1.1) in Q,. To do this, let us construct two functions Jj, /> by

Ji =xThy — (x"hiy), — J W'dx, (x,t) € Qs

0

. (2.17)
Jo = %%y — (x7 ) —J Widx, (x,0) € Q.

0

Then,

Ty = %8y — (x"hy), — J h! dx
0

2
, 2— 1—r 1
= qukll//(x)+[ a2*:1 +<( 1 ) x(“_3)/2(a—x)1/2+ Ex(”_l)/z(a—x)_l/2

1 _ 1
+ Zx(lJrrl)/z(ﬂ — X) 3/2> X alfrl/Z :|K1(t) — abloKfl (t)

Ky (t)

> XK () y(x) +x 2 (g —x) 712 EYE —aby K3 (1),
' _ _ K (t
J» = x2 K5 (H)p(x) +x7 72 (g - x) szalzf(rz)/z — aby K (1).

(2.18)
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For (x,t) € (0,aK10) X (0,£p] U (a(1l — Kyp),a) X (0,%], by (2.15), we have

12 Ki(t)
2a 1-r1/2

Ji = x""V2 (g - x)” —aboK; ' (1)

I<l((§1_1)/2 P1
= | S Ki(t) —abyoK; ' ()
(2.19)
(1‘1—1)/2
K !
= |: 2122*1”1 :|K0 —ablo(ZK())p
> 0.
For (x,t) € (0,aK3) % (0,t] U (a(l — Ky9),a) X (0,ty], by (2.15), we have
K(’Z 1)/
= |: 22 :|K0 —abzo(ZKo)pz > 0. (220)
For (x,t) € [aKig,a(1 — Ki9)] X (0,] by (2.16), we have
Ji = xTK{(t)y(x) —abioK; ' ()
1-r 1/2 (1-r1)/2
at KK (t )[Klo(l—Kw) +K;p" (1 =Ko ) ]—abloKz (1), q1 =0,
>
1 -7 - —r)/ 1
aql (1 — Klo)q Kl(t) [KIO (1 — Klo)l r +K1/2( Klo)(l n) 2] — ab10K2 (t), ql <O,
>0,
(2.21)
For (x,t) € [aKyo,a(1 — Ky9)] X (0,10] by (2.16), we have
J2 = x2K;(t)@(x) — abyKi” (1)
a® K5 K (1) Kao (1 Kao)' ™" + K32 (1= Koo)' | = abao K[ (1), 320,
>
a® (1-Ky) P K3 (t) [Kzo(l —Ky)' " + Ky (1 *Kzo)(l_m/z] —abyKP (1), ¢2<0,
> 0.

(2.22)

Thus, J1(x,1) =0, J2(x,t) = 01in Qy,. It follows from h,(0,t) = h;(a,t) = h2(0,t) = hy(a,t) =0
and h; (x,0) = Koy (x) = uo(x), ha(x,0) = Kog(x) = vo(x) that (h;(x,1),ha(x,t)) is a super-
solution of (1.1) in €y,. The proof of Lemma 2.2 is complete. O

To show the existence of the classical solution (u(x,t),v(x,t)) of (1.1), let us intro-
duce a cutoff function p(x). By Dunford and Schwartz [8, page 1640], there exists a
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nondecreasing p(x) € C*(R) such that p(x) =0 if x <0 and p(x) =1 if x > 1. Let 0 <
d<min{(1 —r)/(2-r)a,(1 —1r)/(2—r2)a},

0, x <9,
ps(x) = p(%—l), d<x<26, (2.23)
1, x> 26,

and uos(x) = ps(x)ug(x), vos (x) = ps(x)vo(x). We note that

-

0, x <0,
%:<_§p'(§_1)uo(x), d<x<26,
0, x> 26,
. (2.24)
(0, x <9,
av%%(x) _ _%p,@ _ 1)V0(x), d<x<26,
\O’ x = 20.

Since p is nondecreasing, we have duys(x)/08 < 0, dvys(x)/08 < 0. From 0 < p(x) < 1, we
have uo(x) = uos(x), vo(x) = vos(x) and lims .o o5 (x) = 14o(x), lims .o vos (x) = vo(x).

Let D5 = (8,a), let ws = D5 X (0,19], let D5 and Ws be their respective closures, and let
Ss = {8,a} x (0,t]. We consider the following regularized problem:

a
xPug — (X" usy), = L vi'dx,  (x,t) € ws,

a
xPvs — (x"vsx), = L ugzdx, (x,t) € wg, (2.25)

us(6,t) = us(a,t) = vs(8,t) = vs(a,t) =0, te€ (0,t],
us(x,0) = ups(x), vs(x,0) = vps(x), x € Ds.

By using Schauder’s fixed point theorem, we have the following.

TaeoreM 2.3. The problem (2.25) admits a unique nonnegative solution (us,vs) €
(CErol+a/2(355))2 Moreover, 0 < us < h1(x,1), 0 < vs < ha(x, 1), (x,t) € Ws, where hy(x,1),
hy(x,t) are given by Lemma 2.2.

Proof. By the proof of Lemma 2.1, we know that there exists at most one nonnegative
solution (us,vs). To prove existence, we use Schauder’s fixed point theorem.
Let

X; = {v1 € C*2(Wg) : 0 < vi(x,t) < hy(x,1), (x,) € Ws},
(2.26)
Xo = {u; € C*2(ws) : 0 < uy(x,t) < hi(x,1), (x,t) € Ws}.
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Obviously, X;, X, are closed convex subsets of Banach space C*2(wj). In order to get
the conclusion, we have to define another set: X = X; X X,. Obviously (C**?(w;))? is a
Banach space with the norm

— 2
|| (vl’ul)”xx,oc/Z = ||V1||zx,oc/2 + ||u1||a,o¢/2’ for any (Vl,ul) € (Ca,ot/Z(W(S)) > (2-27)

and X is a closed convex subset of Banach space (C*¥?(wj))?. For any v; € X1, u; € Xa,
let us consider the following linearized uniformly parabolic problem:

a
XU Wy — (x" Wey), = J vWdx, (x,1) € ws,
8

a
xPZst — (szzéx)x - Jg ufzdx’ (x,t) € ws, (2.28)

Ws(8,t) = Ws(a,t) = Zs(8,t) = Zs(a,t) =0, t€ (0,t],

WtS(-x)O) = MO(S(X), Z(;(X,O) = V05(x)1 X e [8"1]-

It is easy to see that (W(x,t),Z(x,t)) = (0,0) and (W (x,t),Z(x,t)) = (hi(x,t),ha(x,t))
are subsolution and supersolution of problem (2.28). We also note that x=91771, x=91~1+r,
X7, xR, xRl x@ € C%2(w,), and x 79 [f Widx, x @ Is uldx e
CY2(Ws), ups(x), vos(x) € C2*%(Dy). It follows from Theorem 4.2.2 of Laddle et al. [11,
page 143] that the problem (2.28) has a unique solution (Ws(x,t;v1,u1), Zs(x, t;v1,u1)) €
(CErol+a/2(35:))2 which satisfies 0 < W (x, v, u1) < b (x,1), 0 < Zs(x, t5v1,u1) < ha(x,1).
Thus, we can define a mapping Y from X into (C***!*%2 ()2, such that

Y(Vl (-x)t):ul(-x)t)) = (W5 (xa t;vlrul))Z5 (xa t;vlaul))r (229)

where (Ws(x,t;v1,u1),Zs(x,t;v1,u1)) denotes the unique solution of (2.28) correspond-
ing to (vi(x,t),u;1(x,t)) € X. To use Schauder’s fixed point theorem, we need to verify the
fact that Y maps X into itself is continuous and compact.

In fact, YX C X and the embedding operator form Banach space (C****%2(w))? to
the Banach space (C*%2(wj))? is compact. Therefore Y is compact. To show Y is contin-
uous in X, let us consider a sequence {v,(x,t)} which converges to v;(x,t) uniformly in
the norm || - || qa/2- We know that v, (x,t) € X;. Analogously, in X, we consider a sequence
{u1n(x, 1)} which converges to u(x,t) uniformly in the norm || - |42 and u; (x,t) € X,.
So we get a sequence {(vi,(x,t),u1,(x,t))} C X, which converges to (vi(x,),u;(x,t)) uni-
formly in the norm [|(+, )|l g2 and (vi(x,t),u1(x,t)) € X. Let (Wsn(x,t),Zsn(x,t)) and
(Ws(x,1),Zs(x,t)) be the solution of problem (2.28) corresponding to (v1,(x, 1), u1,(x,t))
and (v(x,t),u;(x,1)), respectively. Without loss of generality, let us assume that

||v1y,(x,t‘)||m/2 < ||1/1(x,l‘)||m’m/2 +1, foranyn>1,
(2.30)
10 ()] g0 < |1 (6, 8)|| 0y +1,  foranyn = 1.
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Let W(x,t) = Wsu(x,t) — Ws(x,t), Z(x,t) = Zsn(x,t) — Zs(x,t). Then we have
a
XMWy — (x"W,), = J (W= dx,  (x,1) € ws,
B

a
quZt — (xrzzx)x = J;; (u‘f’z,l — u‘fz)dx, (x,t) € ws, (2 31)

W(8,t) = W(a,t) = Z(8,t) = Z(a,t) =0, te€ (0,t],
W(x,0) =0, Z(x,0)=0, x€& Ds.

From Theorem 4.5.2 of Ladyzenskaja et al. [12, page 320], there exist positive constants
C, (independent of vy, and v;), C; (independent of u;, and u;) such that

|, = viax

IWll2iaitan2 < C
a,0/2

< Crapi || + 701w =) M awralVin = Villws

(2.32)
1—1
SClap1[3(||vl||a,tx/2+l)]}7 ||V1n_v1||a,¢x/2’
1Z12+a 1102 < Crapa[3(JJur ] o0 + 1)]p271||”1n = 1]y 02>
where 7 € (0,1). So,
||(W’Z)||2+a,1+oc/2 = W||2+a,l+(x/2 + ||Z||2+a,l+(x/2
-1
< Ciapi [3([[vi] 0 + DI v, - Vil a2
(2.33)

+ C2ap2 [3(||u1||a,a/2 + 1)]‘0271””1” - u1||(x,(x/2

< Cl|(vin = vi, 110 — u1)||¢x,¢x/2'
This shows that the mapping Y is continuous. By Schauder’s fixed point theorem, we
complete the proof of Theorem 2.3. O

Now we can prove the following local existence result.

THEOREM 2.4. There exists some to (< T) such that problem (1.1) has a unique nonnegative
solution (u(x,t),v(x,t)) € (C(Qy) N C>1(Qy,))%

Proof. By Theorem 2.3, the problem (2.25) has a unique nonnegative solution (us,vs) €
(CErool+a/2(355))2 Tt follows from Lemma 2.1 that (us1,vs1) < (tg2,vs2) if 81 > 82. There-
fore, limg_o(us(x,1),vs(x,t)) exists for all (x,t) € (0,a] X [0,tp]. Let (u(x,t),v(x,t)) =
limg_o(us(x,t),vs(x,1)), (x,t) € (0,a] X [0, t] and define (u(0,t),v(0,t)) =(0,0), t € [0, t0].
We would like to show that (u(x,t),v(x,t)) is a classical solution of (1.1) in Q. For any
(x1,t1) € Qy,, there exist three domains Q" = (a},a3) X (£5,15], Q" = (ai’,ay) x (t),8],
and Q""" = (a}",ay") x (t;",ty"] such that (x1,t;) € Q' € Q" € Q""" C (0,a) x (0, ] with

O<a"<af <a)<x;<a,<ay <ay’ <a,0<t) <t <t)<ti<ty<ty <t <t.Since
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(us(x,1),vs(x,1)) < (h1(x,1),ha(x,t)) in Q""" and hy(x,t), hy(x,t) are finite on 6”/, for any
constant (7 > 1 and some positive constants K3, Ky, we have

) uslliagr = mllagrn <K velliagry = Ialliigr) < K,
. -0 P
(11) ||x Jﬁ Vs dX”Lq Q") < al J h dx i) <Ky, (234)
a B a
oo | <) || [ wrad| <k,
s Li(Q) 0 Li(Q")

whereaf =a]" ifq1 20,af =a3’ ifq, <0,and a3 =a]" ifq, = 0,a5 =a)" if g, <0.

By the local L? estimate of Ladyzenskaja et al. [12, pages 341-342, 352], (us,vs) €
(Wg’] (Q"))%. By the embedding theorem in [12, pages 61 and 80], Wg’l (Q")=H*»¥2(Q")
if we choose § > 2/(1 — a). Then, ||us || gae2(q7) < Ks and ||vs|l geaz(q) < Ks for some pos-
itive constant Ks, and we have

-q1 a Pld
oo

Ha,a/z(er)
= Jahgldx +  sup [Ji v dx| - x5 |
g o (nHeQ” (X,HeQ” |x — x|«
pi-1
+ sup X0 | - | f§ p1 (s e, D)+ T (o, ) — vo (e, ) (vs(x, D) — vs (x, D) dx|
(*1HeQ” (%HeQ” |t — Flos2
q ? b o
0 : 1 .
< (af) . hy'dx N + . W dx E ||x ql”Ha(a;' )

Hea2 (Qu) < Ké,

+ar) ||| i ax
0

o [y ‘
e ot

for some positive constant K¢, which is independent of §, where 7 € (0, 1). By LadyZenskaja
etal. [12, Theorem 4.10.1, pages 351-352], we have

[lvel
o)

< K,

Htx,a/Z(Q”) (2 35)

||u8||H2+m,l+a/2(Qr) =< K7) ||V5||H2+m,l+a/2(Q') = K7) (236)

for some positive constant K7 independent of 8. This implies that us, us;, Usy, Usxx and
V5, Vst Vx> Voxx are equicontinuous in Q’. By the Ascoli-Arzela theorem, we know that

||u||Hz+a’,1+a’/2(Qr) < Kg, ||V||H2+a’,]+(x'/2(Q’) < Kg, (237)

for some «' € (0,«) and some positive constant Kg independent of 8, and that the
derivatives of u and v are uniform limits of the corresponding partial derivatives of us
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and vs, respectively. Hence (u(x,t),v(x,t)) satisfies (1.1), and lim;_q(u(x,t),v(x,t)) =
limy_olimg_o(us(x, 1), vs(x,t)) =limg_o(tos (x, 1), vos (x, 1)) = (uo(x),vo(x)). It follows from
0 < u(x,t) < hi(x,t), 0 <v(x,t) < hy(x,t) and h;(x,t) — 0, hy(x,t) = 0asx —0orx —a
that lim,_o(u(x, 1), v(x, 1)) =limy_,W(x, t),v(x,1)) = (0,0), thus (u,v) € C(Qy,) N C>1(Qy,)
is the solution of (1.1) in Q;,. We complete the proof of Theorem 2.4. O

By using Lemma 2.1, there exists at most one nonnegative solution of (1.1). Similar to
the proof of [9, Theorem 2.5], we obtain the following constitutional result.

THEOREM 2.5. Let T be the supremum over t, for which there is a unique nonnegative so-
lution (u(x,t),v(x,t)) € (C(Qy) N C>1(Qy,))? of (1.1). Then (1.1) has a unique nonnega-
tive solution (u(x,t),v(x,t)) € (C([0,a] X [0,T)) N C>'((0,a) x (0,T)))% If T < +oo, then
limsup,_  maxyeqo,q) (lu(x, )| + |v(x,£)]) = +oo.

3. Blowup of solution

In this section, we give some global existence and blowup result of the solution of (1.1).
3.1. Existence and nonexistence of the global solution. In this subsection, we would

assume gy >r1—1,qp >, — 1.
First, the solution of the following elliptic boundary value problem:

~(x"y'(0)) =1,  x€(0,a) y(0) =y(a) =0, (3.1)

is given by y(x) = (a*> /(2 - 1)) (x/a)' " (1 — x/a).
Analogously, the solution of the following elliptic boundary value problem:

—(x2¢'(x)) =1, xe€(0,a); ¢(0) = ¢(a) =0, (3.2)

is given by ¢(x) = (a> /(2 — 1)) (x/a)' "2 (1 — x/a).
By direction computation, we have

Ja V/Pzdx — a(27r1)p2+1B(p2(1 - ;12) - l’pz * 1) >

0 (2-n) (3.3)

Jugof’ldx: a(z—rz)pIHB(pl(l—221)+1,p1+1)’ .

0 (2 - 1’2)

where B(l,m) is a Beta function defined by B(l,m) = fol A1 =)t
Let
al [a?)P*1B(p1(1—1) +1,p1 +1)]

a) = P ’
(2-1) (3.4)

.- afz[a(Z*’I)PZHB(pz(l_7’1)+1’p2+1)] '
2=r)" ’

then we have the following global existence result.
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TaeorEM 3.1. Let (u(x,t),v(x,t)) be the solution of (1.1). If uy(x) < ayy(x), vo(x) < a¢(x),
then (u(x,t),v(x,t)) exists globally.

Proof. Letu =ayy(x), v = a,¢(x), then we have
x(x, 1) — (X" (x,1))
= -(x"ay (x) =

— agl |:a(2r2)p1+lB (pl(]' - rz) + ]"pl + 1):|
2-nr)"

:KWWWM:EWWﬁM,uﬁe&@x&D, (3.5)

xPV(x,1) — (2 Vi(x, 1)), = rﬂpz (x,t)dx, (x,t) € (0,a)x(0,T),
0
1(0,t) = ula,t) =v(0,t) =v(a,t) =0, te(0,7T),
U(x,0) = a1y(x) = up(x), v(x,0) = arp(x) = v(x), x¢€][0,a],

that is to say (s(x,1),v(x,t)) = (a1y¥(x),a2¢(x)) is a supersolution of (1.1). By Theorem
2.5, T = +oo, thatis, (u(x,1),v(x,t)) exists globally. The proof of Theorem 3.1 is complete.

([l
Next we consider the following eigenvalue problem:
—(x"p1(x) = hixTgi(x), x€(0,a),
(3.6)
¢1(0) = ¢1(a) = 0.
By transformation ¢; (x) = x(!="/2y; (x), the above differential equation becomes
2.7 ’ (1—7"1)2 +2—r
x“y1 () + xy) (x) — 2 y1(x) + A xT y1(x) =0, x€(0,a). (3.7)
Again, by transformation x = z%(@*2=")  the problem (3.6) becomes
. , 4322 1-7)°
Z%d@+wdd+[ e ( 1)2}Md=m z€ (0,b1),
(q+2-r)" (q2+2-n) (3.8)

¥1(0) = y1(b1) =0,

where by = a02="/2 Equation (3.8) is a Bessel equation. Its general solution is given by

e 3.9
ql+2—7’1 ql+2—1’1 ( )

y1(2) = Ala-ryiqir2—n) ( Z) +BJ_(1—r)/(qi+2-11) <
where A and B are arbitrary constants, J(1-r,)/(q,+2-r,) and J_(1-r,)/(q,+2-r,) denote Bessel
functions of the first kind of orders (1 —r1)/(q1 +2 —r1) and —(1 —r1)/(q1 +2 —11), re-
spectively. Let y; be the first root of Ji—r)/q,+2-r)(23/A1b1/(q1 +2 = 11)). By Mclachlan
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[13, pages 29 and 75], it is positive. It is obvious that y; is the first eigenvalue of problem
(3.6); also we can easily obtain the corresponding eigenfunction

, 2./ ,
@1(x) = kyx!! “)/210r,)/(qwzrl)(tng(q‘” ”)/2>, (3.10)

which is positive for x € (0,a). Since q; >r; — 1, we can choose k; > 0 such that

max x7'¢;(x) = 1. (3.11)

x€[0,a]

Analogously, we consider the following eigenvalue problem:

— (x5 (x))" = Lax®gy(x), x € (0,a),
(3.12)
$2(0) = ¢2(a) = 0.

By using the same method as above, let 1, be the first root of J(1-r,)/(g,12-1,) (ZJ)szz/(qz +
2 —1)), where b, = a©2*27")2, By Mclachlan [13, pages 29 and 75], it is positive. It is
obvious that y, is the first eigenvalue of problem (3.12); also we can easily obtain the
corresponding eigenfunction

2
@2(x) = kax " 2T gaia-n) (—\/PTz x(q2+2’2)/2>, (3.13)
Q2+ 2—1r

which is positive for x € (0,a). Since g, >, — 1, we can choose k, > 0 such that

max x?@,(x) = 1. (3.14)

x€[0,a]

Since uy(x), vo(x) are both nonnegative nontrivial functions, there exists a constant § >
0, such that [y x7 @1 (x)uo(x)dx = &, fo x%2¢2(x)vo(x)dx > 8. Then, we have the following
theorem.

THEOREM 3.2. Let (u(x,t),v(x,t)) be the solution of the problem (1.1), then the solution of
(1.1) blows up in finite time if

J: ¢1(x)dx <J: xqzq)z(x)dx) o (Jaxngoz(x)vo(x)dx) " > max {u1, 4o} Juqu @1 (x)uo(x)dx,

0 0

J: @2 (x)dx (J: x1 ¢y (x)dx) o (J: xT 1 (x)uo (%) dx) " > max {u1, 4o} Joa xP @y (x)vo(x)dx.
(3.15)

Proof. We set

U(t) = Lﬂ x1 @1 (x)ulx, t)dx, V(t) = J::ﬂwz (x)v(x,t)dx. (3.16)
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Multiplying (1.1) by ¢, (x) and integrating it over x from 0 to a, we have

I quutgoldx=J (x“ux)xgoldx+J gouixj vPidx. (3.17)
0 0 0 0

Integrating by part, using Jensen’s inequality, we have
a

U'(t) = J xTupprdx
0

> - JO xT @y (x)u(x, t)dx + L (pl(x)de x2 ¢y (x)vPrdx

=-mU((t)+ J: gol(x)dx< J:xq%pz(x)dx) o (Laxqz (pz(x)vdx> " (3.18)

= - U(t)+ J: o (x)dx( Laxq%pz(x)dx) o VPi(t),

a a 1-p2
V(1) =~ V(D) +L <p2(x)dx(L qu<p1(x)dx> UP(p).

If we set

Ci = J: ¢1(x)dx<J0axqz¢2(x)dx> lipl, C = J: goz(x)dx<J:xq‘(p1(x)dx) lipz,
(3.19)

then we have

U'(t)z - Ut)+C VP (1),

(3.20)
V'(t) = = V(£) + CUP(1).

If we set U = (C,C5")V1p-Dy, V = (C,CP*)V012-DV, 4y = max {1, 2}, then we have

U (1) = —uU(t) + VP (1),
N N N (3.21)
V() = —uV(t)+ UP(t).

Since (7(0) >0, XN/(O) >0 and LNJPZ(O)/y > \N/(O) > /4(71/91 (0), we get from [16, Corollary
1] that (U, 0) blows up in finite time. Therefore, the solution of (1.1) blows up in finite
time. The proof of Theorem 3.2 is complete. O

Remark 3.3. Since the system (1.1) is completely coupled, we know that if the solution
(u,v) blows up in finite time, then » and v blow up simultaneously.
3.2. Global blowup. In this subsection, we discuss the global blowup in two special cases.

Casel. q1 >0,r1 =00rq, >0,r, =0.
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Chan et al. [3, 5] proved that there exists Green’s function G(x, &, ¢ — 7) associated with
the operator L = x1:(9/0t) — 0*/0x* with the first boundary condition, and obtained the
following lemmas.

LemMa 3.4. (a) For t > 1, G(x,&,t — 1) is continuous for (x,t,&,7) € ([0,a] x (0,T]) x
((0,a] x [0,T)).

(b) For each fixed (§,7) € (0,a] X [0,T), Gi(x,&,t — 1) € C([0,a] X (7,T]).

(¢) In {(x,t,&,7) :x and & are in (0,a), T =t > 1 > 0}, G(x,&,t — 1) is positive.

LemMa 3.5. For fixed xy € (0,al, given any x € (0,a) and any finite time T, there exist
positive constants Cy (depending on x and T) and C, (depending on T') such that

Ja G(x,&,t)dE > Cy, rG(xo,f,t)df <G, for0<t<T. (3.22)
0 0

Now we give the global blowup result

THEOREM 3.6. Under the assumption of Case 1, if the solution of (1.1) blows up at the point
X0 € (0,a), then the blowup set of the solution of (1.1) is [0,a].

Proof. From the remark, we know that u and v blow up simultaneously if the solution
(u,v) blows up in finite time. Without loss of generality, we assume ¢q; >0, r; = 0, and
u(x,t) blows up in finite time 7. By Green’s second identity we have

u(x,b) = J: EV G, £, o (£)dE + L J: Glx & t— 1) J: VP (y,7)dy dE d (3.23)

for any (x,t) € (0,a) x (0,T). According to the conditions, u(x, t) blows up at x = xo, then
limsup,_ ; u(xo,t) = +oo. By (3.23) and Lemma 3.5, we have

) = [ E0GGa & u©de+ | [ ) [[v0 (e - Ddydedn

(3.24)
< Ga? m[gx]uo x)+C2J J vPU(y,t—T1)dydr.
xe a
Since limsup,_ ; u(xo,t) = +0o, we have
llmJ J vPU(y,t —1)dydt = +o0. (3.25)
On the other hand, for any x € (0,a), we have
u(x,t) ,J ENG(x, & ) up(&) d£+C1J J vPi(y,t—1)dydr
(3.26)

ZCIJ J v (y,t—1)dydr, t€(0,T).
0Jo

It follows from the above inequality and (3.25) that limsup, . u(x,t) = +o0
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For any X € {0,a}, we can choose a sequence {(x,,f,)} such that (x,,t,) = (X, T) (n -
+00) and limy,—. . t(xp,t,) = +00. Thus the blowup set is the whole domain [0,a], and we
complete the proof of Theorem 3.6. O

Case2. q1=0,0<r<lorg;=0,0<m<1.

We will prove that the blowup set is the whole domain under the following assump-
tion:

(H) there exists M (0 < M < +o0) such that (x" 1o (x))x < M or (xvoe(x))x < M in
(0,a).

THEOREM 3.7. Under the assumptions of (H) and Case 2, if the solution of (1.1) blows up
at the point xo € (0,a), then the blowup set of the solution of (1.1) is [0,a].

Proof. The proof is similar to the proof of [7, Theorem 4.3], so we omit it. The proof of
Theorem 3.7 is complete. O
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