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We obtain multiple positive solutions of singular p-Laplacian problems using variational
methods. The techniques are applicable to other types of singular problems as well.

1. Introduction

We consider the singular quasilinear elliptic boundary value problem

—Apu=ax)uV+Af(x,u) inQ,
u>0 inQ, (1.1)
u=0 onodQ,

where Q is a bounded C? domainin R",n > 1, Apu = div(] Vu|P~2Vu) is the p-Laplacian,
1 < p < o0, a > 0isanontrivial measurable function, y > 0 is a constant, A > 0 is a param-
eter, and f is a Carathéodory function on Q X [0, o) satisfying

sup | f(x,t)| <0 VT >0. (1.2)
(x,1)eQx[0,T]

The semilinear case p = 2 with y <1 and f = 0 has been studied extensively in both
bounded and unbounded domains (see [5, 6, 7, 10, 11, 12, 14, 20] and their references).
In particular, Lair and Shaker [11] showed the existence of a unique (weak) solution when
Q is bounded and a € L*(Q). Their result was extended to the sublinear case f(t) = ¥,
0 < f3 <1 by Shi and Yao [15] and Wiegner [18]. In the superlinear case 1 < <2* — 1
and for small A, Coclite and Palmieri [4] obtained a solution when a = 1 and Sun et al.
[16] obtained two solutions using the Ekeland’s variational principle for more general a’s.
Zhang [19] extended their multiplicity result to more general superlinear terms f(¢) = 0
using critical point theory on closed convex sets. The ODE case n = 1 was studied by
Agarwal and O’Regan [1] using fixed point theory and by Agarwal et al. [2] using varia-
tional methods. The purpose of the present paper is to treat the general quasilinear case
p e (l,0),ye(0,00),and f is allowed to change sign. We use a simple cutoff argument
and only the basic critical point theory. Our results seem to be new even for p = 2.
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First we assume

(Hy) 3¢ > 0in C}(Q) and g > n such that ap™ € L1(Q).
This does not require y < 1 as usually assumed in the literature. For example, when Q is
the unit ball, a(x) = (1 — [x]?)?, 0 > 0, and y < 0 + 1/n, we can take ¢(x) = 1 — |x|? and
q < 1/(y — o) (resp., g with no additional restrictions) if y > o (resp., y < o).

Taeorem 1.1. If (H,) and (1.2) hold and f = 0, then Xy > 0 such that problem (1.1) has
a solution VYA € (0,1).

CoRrOLLARY 1.2. Problem (1.1) with f = 0 has a solution if (H,) holds.

Next we allow f to change sign, but strengthen (H;) to

(Hy) a € L*(Q) with ag :=infga>0and y < 1/n.
This implies that ap~ € L1(Q) for any ¢ whose interior normal derivative dg/dv >0 on
0Q and g < 1/y.

TaeorREM 1.3. If (Hy) and (1.2) hold, then Lo > 0 such that problem (1.1) has a solution
VA€ (0,A).

Finally we assume that f is C! in t, satisfies
| file,t)| < C(2+1) (1.3)
for some 2 < r < p*, and p-superlinear:
0<OF(x,t) <tf(x,t), tlarge (1.4)

for some 8 > p. Here p* = np/(n — p) (resp., o) if p <n (resp., p = n) is the critical
Sobolev exponent and C denotes a generic positive constant.

THEOREM 1.4. If p =2, (H;), (1.3), and (1.4) hold, and f = 0, then IAg > 0 such that
problem (1.1) has two solutions VA € (0,1).

TaEOREM 1.5. If p = 2 and (H,), (1.3), and (1.4) hold, then 3Ly > 0 such that problem
(1.1) has two solutions VA € (0,A).

2. Preliminaries on the p-Laplacian

Consider the problem

-Au=g(x) inQ,

u=0 onoQ. (2.1)

ProrosiTioN 2.1. If g € L1(Q) for some q > n, then (2.1) has a unique weak solution u €
Cy(Q). If, in addition, g > 0 is nontrivial, then

u>0 inQ, ou/dv >0 on o (2.2)
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Proof. The existence of a unique solution u € W& ?(Q) is well-known. The problem

—-Av=g(x) inQ,
(2.3)
v=0 ondQ
has a unique solution v € W?1(Q) = C*%(Q)), a = 1 — n/q. Then u satisfies
div (|VulP2Vu—-G(x)) =0 inQ,
(2.4)

u=0 onoQ,

where G = Vv € C*(Q), and u is bounded by Guedda and Véron [8] since g > n/p if
p < n,s0u € C}(Q) by Lieberman [13]. The rest now follows from Vazquez [17]. O

3. Proofs of Theorems 1.1 and 1.3
Proof of Theorem 1.1. Since a € L1(Q)) by (H;), the problem

—Apv=a(x) inQ,

y=0 onoQ) (3.1)

has a unique positive solution v € C}(Q) with dv/dv > 0 on Q) by Proposition 2.1. Then
info(v/¢) > 0and hence av™" € L1(Q). Fix 0 < ¢ < 1 so small that u := ¢"/(P~Vy < 1. Then

—Apu—alx)u’ = Af(xu) < —(1-¢alx) <0, (3.2)

so u is a subsolution of (1.1).
Since au™? € L1(Q)), the problem

—Apu=a(x)u(x)"’+1 inQ,

u=0 onoQ (3:3)
has a unique solution # € C}(Q) by Proposition 2.1, and % > u since
—Apu=a(x) = ea(x) = —Apu. (3.4)
Then
“Apu—ax)u? —Af(x,u)=1-1  sup  f(xt), (3.5)

xeQ,t<maxqgu

so JAg > 0 such that # is a supersolution of (1.1) VA € (0,4¢) by (1.2).
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Let
a(x)u(x) 77 +Af (x,u(x)), t>u(x)
Qualxt) =1a(x)t7V +Af(x,1), u(x) <t<ux)
a(x)u(x) 77 +Af (x,u(x)), t<ux),
t (3.6)
Gra(x,t) = L Qa(x,s)ds,
Oya(ut) = JQ IVul? - pGralxu), 1€ WEP(Q).
Since
0<gulxt) <ax)ulx)V+A  sup  f(x1), V(xt)eQxR, (3.7)

xeQ,t<maxqgu

and au™? € L1(Q)), Oy 5 is bounded from below and has a global minimizer uy, which
then is a solution of (1.1) in the order interval [u,u]. O

Proof of Theorem 1.3. The problem

—Apy=ay inQ,

y=0 onoQ) (3.8)

has a unique positive solution v € C}(Q) with 9v/dv > 0 on 9Q. Fix 0 < € < 1 so small that
u:=¢eVP=Dy < 1. Then

—Apu—a(xX)u? = Af(xu) < —(1—€ag+A  sup | f(x1)], (3.9)

xeQ,t<maxq u

so IAy > 0 such that u is a subsolution of (1.1) VA € (0,1¢). The rest of the proof now
proceeds as above. O

4. Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4. Define a Carathéodory function on Q X R by

_ Jal)t +Af(x,t), t>u(x)
pen = {a(X)z(x)V +Af (xu(x)), t<u(x) “n
and consider the problem
—Apyu=g(xu) inQ, (42)

u=0 onodQ.

Every solution of (4.2) is > u and hence also a solution of (1.1). By (1.3),

0<@(nt) <alux)7+AC((t) ' +1), V(xH)eQxR (4.3)
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so solutions of (4.2) are the critical points of the C' functional

O, (1) = L} IVul? = pGa(x,u), ue WP(Q), (4.4)

t
where Gy (x,t) = J .(x,s)ds.
0

Since 1 solves

—Apu=ga(xu(x)) inQ,

u=0 onoQ (4.5)

and g1a(+,uo(+)) € L1(Q) by (3.7), ug € C(Q) by Proposition 2.1. Note that, with a pos-
sibly smaller Ay, 2% is also a supersolution of (1.1) VA € (0,4¢). We assume that u is the
global minimizer of the corresponding functional @, »; also, for otherwise we are done.
Since

Up<u<2u inQ, Jup/0v < ou/dv < 0(2u)/dv  on 0Q, (4.6)

@),z = @) in a C}(Q)-neighborhood of ug, so uy is a local minimizer of @, lci@)» and
hence also of ®, by Brezis and Nirenberg [3] for p = 2 and by Guo and Zhang [9] for
p > 2. The mountain pass lemma now gives a second critical point as (1.4) implies that
@, satisfies the (PS) condition and @) (fu) — —oo as t — 0. O

Proof of Theorem 1.5 is similar and therefore omitted.
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