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For wave equations with power nonlinearity we investigate the problem of the existence
or nonexistence of global solutions of the Cauchy characteristic problem in the light cone
of the future.

1. Statement of the problem

Consider a nonlinear wave equation of the type

Du'=@—Au:f(u)+F (1.1)
Toor ’ '
where f and F are the given real functions; note that f is a nonlinear and u is an unknown
real function, A = >, 9%/0x?.

For (1.1), we consider the Cauchy characteristic problem on finding in a truncated
light cone of the future Dy : |x| <t < T, x = (x1,...,%,), n > 1, T = const >0, a solution
u(x,t) of that equation by the boundary condition

uls, = g (1.2)

where g is the given real function on the characteristic conic surface Sy : t = |x|, t < T.
When considering the case T = +oc0 we assume that Do, : t > [x] and Se = 0D : £ = |x].

Note that the questions on the existence or nonexistence of a global solution of the
Cauchy problem for semilinear equations of type (1.1) with initial conditions u|;—¢ = 1o,
o0u/otls—g = u; have been considered in [1, 2, 6, 7, 8, 10, 13, 14, 15, 16, 17, 18, 22, 23, 26,
30, 31].

As for the characteristic problem in a linear case, that is, for problem (1.1)-(1.2) when
the right-hand side of (1.1) does not involve the nonlinear summand f(u), this prob-
lem is, as is known, formulated correctly, and the global solvability in the corresponding
spaces of functions takes place [3, 4, 5, 11, 25].

Below we will distinguish the particular cases of the nonlinear function f = f(u),
when problem (1.1)-(1.2) is globally solvable in one case and unsolvable in the other one.
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2. Global solvability of the problem

Consider the case for f(u) = —A|u|?u, where A # 0 and p > 0 are the given real numbers.
In this case (1.1) takes the form

u
Lu:= 52 —Au=-AMulfu+F, (2.1)

where for convenience we introduce the notation L = [. As is known, (2.1) appears in
the relativistic quantum mechanics [13, 24, 28, 29].

For the sake of simplicity of our exposition we will assume that the boundary condi-
tion (1.2) is homogeneous, that is,

ulg, =0. (2.2)

Let W}(Dr,Sr) = {u € W(Dr) : uls, = 0}, where WJ(Dr) is the known Sobolev
space.

Remark 2.1. The embedding operator I : W (Dr,Sr) — Ly(Dr) is the linear continuous
compact operator for 1 < g <2(n+1)/(n— 1) when n >1 [21, page 81]. At the same
time, Nemytski’s operator K : Ly(Dr) — Ly(Dr), acting by the formula Ku = —Alu|Pu,
is continuous and bounded if g > 2(p + 1) [19, page 349], [20, pages 66—67]. Thus if
p<2/(n—1),thatis,2(p+1) <2(n+1)/(n— 1), then there exists the number g such that
1<2(p+1) <g<2(n+1)/(n—1),and hence the operator

Ky =KI: Wzl (Dr,S7) — L, (D) (2.3)

is continuous and compact and, more so, from u € WJ(Dr,St) follows u € Ly1(Dr). As
is mentioned above, here, and in the sequel it will be assumed that p > 0.

Definition 2.2. Let F € Ly(Dr) and 0 < p < 2/(n — 1). The function u € W; (Dr,Sr) is said
to be a strong generalized solution of the nonhnear problem (2.1), (2 2) in the domain Dt

if there exists a sequence of functions u,, € C (Dr,St) = {u e CZ(DT) uls, = 0} such

that u,, — u in the space W2 (Dr,St) and [Luy, + Aty |Pu,,] — F in the space Ly(Dr).
Moreover, the convergence of the sequence {Alup,|Pu,,} to the function Alu|Pu in the

space L,(Dr), as u, — u in the space W%(DT,ST), follows from Remark 2.1, and since
|u|P*! € Ly(Dr), therefore on the strength of the boundedness of the domain Dy the
function u € Ly (Dr).

Definition 2.3. Let0< p<2/(n—1), F € Lyjoc(Dw), and F € Ly(Dr) for any T > 0. It is
said that problem (2.1), (2.2) is globally solvable if for any T > 0 this problem has a strong

generalized solution in the domain Dy from the space W3 (Dr,St).
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LemMA 2.4. Let A >0,0< p<2/(n—1), and F € L,(Dr). Then for any strong generalized
solution u € W3 (Dr,St) of problem (2.1)-(2.2) in the domain Dr the estimate
lfull . < eTIIFllL,pr) (2.4)

5(Dr.ST)

is valid.

Proof. Let u € W3 (Dr,St) be the strong generalized solution of problem (2.1)-(2.2). By

Definition 2.2 and Remark 2.1 there exists a sequence of functions u,, € C*>(Dr,Sr) such
that

o =

W3 (Dr,S1)

>

’Liirgo||um —u

(2.5)
Lim [[Lutgn + At | "t = Fll 1, = 0.

The function u,, € C*(Dr,Sr) can be considered as the solution of the following prob-
lem:

Lty + A |t | Pty = Fony (2.6)
Umls, = 0. (2.7)

Here
Fpy = Lty + A |t | P 1t (2.8)

Multiplying both parts of (2.6) by du,,,/0t and integrating with respect to the domain
D,;,0< 1 < T, we obtain

1( 9 (0um\’
EJD,&(W) dedt
- Aumau—mdxdt
D, ot
LA R
p+2Jp, ot

(2.9)
|t | dx dt

ou,,
- J Gt

Let Q, := Dy n {t = 7} and denote by v = (v1,...,7,,%) the unit vector of the outer
normal to St \ {(0,...,0,0)}. Taking into account (2.7) and v|q, = (0,...,0, 1), integration
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by parts results easily in
9 (Oum\’ O\ O\ I\
Jo 3t o) awar= [, (55) was= |, (55) e [, (552) s

J 2\um|p+2dxdt=J |t | 7" Zvods—J |t | ? 2 dx,
D, ot oD.

T

0*u,, Ouy, ou,, aum ot \ 2
b a2 ot K= o ot 2J at<axi>d"dt

U Othm 1 Ot \
a JBDT ox; ot vids = 7LD, ( 0x; ) Yods

Othyy Othm Oty 1 Oty \°
~ Jop, ox; ot d"J (W) Od"J (ax,>dx
(2.10)

whence, by virtue of (2.9), it follows that

Oty = (Ot Oum \*  (um\*( ., 2
JDTFMWd"d“f 2vo[z(ax, o= %) + (%50 (%‘ZW ds

SN [ERE

m)Z dx+L Lt | P2 dx
ax,- p+2 Q. " ’

Since S; is the characteristic surface,

n
2 2
(Vo - Z ”j)
i1

Taking into account that the operator (v(9/0x;) — v;(9/0t)), i = 1,2,...,n, is the inter-
nal differential operator on S;, by means of (2.7) we have

(Mv _%v.)
ox; 0 ot

By (2.12) and (2.13), from (2.11) we get

Ot \*> = (Ot 2\ pi2 aum
(G B G oo i om0

In the notation w(d) = [o, [(0u,/0t)? + 3 (Oum/0x;)*|dx, taking into account that
AM(p+2) >0 and also the inequality 2F,,(0u,,/0t) < e(du,,/0t)? + (1/¢)F2, which is valid
for any ¢ = const > 0, (2.14) yields

=0. (2.12)
St

=0, i=12,...,n (2.13)

é
w(8)saJ w(o)do+ - ||F 2oy 0<8<T (2.15)
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From (2.15), if we take into account that the value IIleliz(Da) as the function of § is
nondecreasing, by Gronwall’s lemma [12, page 13] we find that

w(d) < ||F || ) €XP de. (2.16)
Because inf,.o(exp de/e) = ed, which is achieved for ¢ = 1/§, we obtain

w(8) < ed||Full},py, 0<8<T. (2.17)

From (2.17) in its turn it follows that

2 Uy, L Oum \ 2
";zl(DT,ST) - JDT [( ) Z ( ox; ) :|dxdt

||um

’ (2.18)
_ L w(8)d8 < eT||Full} .,

and hence

o < VeT||FullL,p,)- (2.19)

1t W (Dr.Sr)

Here we have used the fact that in the space W3 (Dr,St) the norm
n 1/2
ullwi o,y = {JDT[ 2 ( ) ;(axl) }dxdt} (2.20)

is equivalent to the norm

=g, () S Joeaf

since from the equalities uls, = 0 and u(x,t) = ffx‘ (Qu(x,1)/0t)dr, (x,t) € Dr, which are

valid for any function u € C?*(Dr,Sr), in a standard way we obtain the following inequal-
ity [21, page 63]:

2
J uz(x,t)dxdtstj (a—”) dxdt. (2.22)
Dr Dr ot

By virtue of (2.5) and (2.8), passing to inequality (2.19) to the limit as m — oo, we
obtain (2.4). Thus the lemma is proved. O

Remark 2.5. Before passing to the question on the solvability of the nonlinear problem
(2.1), (2.2), we consider this question for a linear case in the form we need, when in (2.1)
the parameter A = 0, that is, for the problem

Lu(x,t) = F(x,t), (x,t) € Dr,

u(x,t) =0, (x,t) € Sr. (2.23)
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In this case for F € Ly(Dr), we analogously introduce the notion of a strong gener-
alized solution u of problem (2.23) for which there exists the sequence of functions

Uy, € C2(Dr,St), such that lim,— o ||ty — u] © =0, limp—o | Ly, — Fll1,0y) = 0.
W3 (Dr,Sr)

It should be here noted that as we can see from the proof of Lemma 2.4, the a priori
estimate (2.4) is likewise valid for the strong generalized solution of problem (2.23).

Since the space Cg’(Dr) of finite infinitely differentiable functions in Dy is dense in
L,(Dr), for the given F € L,(Dr) there exists the sequence of functions F,, € Cg’(Dr)
such that lim,,—« |y — Fllz,(p,;) = 0. For the fixed m, if we continue the function F,,
by zero outside the domain Dr and retain the same notation, we will find that F,, €
C>(R*1) for which suppF,, C D, where R**! = R*! N {¢ > 0}. Denote by u,, a solu-
tion of the Cauchy problem Lu,, = F,,, tl¢=o = 0, 0u,,/0t];—¢ = 0, which, as is known,
exists, is unique, and belongs to the space C* (R%*!) [9, page 192]. As far as supp F,, C Do,
Umli=0 = 0, Ouy,/0t|i—o = 0, taking into account the geometry of the domain of depen-
dence of a solution of the wave equation, we obtain supp F,, C Do [9, page 191]. Retain-
ing for the narrowing of the function u,, to the domain Dy the same notation, we can

easily see that u,, € éz (Dr,St), and by virtue of (2.4) we have

et — uig| - o S VeT||Fo — Fill, p,)- (2.24)

W3 (Dr
Since the sequence {F,} is fundamental in L,(Dr), the sequence {u, }, owing to (2.24),
is likewise fundamental in the complete space V\;zl(DT,ST). Therefore there exists the
function u € Wzl (D7,St) such that lim,, .« || 4, — u]| MZI(DT,ST) =0, and since Lu,, = F,, —
F in the space L,(Dr), this function will, by Remark 2.5, be the strong generalized so-

lution of problem (2.23). The uniqueness of that solution from the space W, (Dr,St)
follows from the a priori estimate (2.4). Consequently, for the solution u of problem

(2.23) we can write u = L~'F, where L~! : L,(Dr) — W3 (Dr,Sr) is the linear continuous
operator whose norm, by virtue of (2.4), admits the estimate

[|L7Y] o < /eT. (2.25)
Ly(Dr)— W3 (Dr,St)

Remark 2.6. Taking into account (2.25) for F € L,(Dr), 0 < p <2/(n—1) and also

Remark 2.1, it is not difficult to see that the function u € Wzl (Dr,Sr) is the strong gen-
eralized solution of problem (2.1)-(2.2) if and only if u is the solution of the functional
equation

u=L"'(-MulPu+F) (2.26)

in the space W} (Dr,St).

We rewrite (2.26) in the form

u=Au:=L""(Kyu+F), (2.27)
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where the operator Ky : W3 (Dr,St) — Ly(Dr) from (2.3) is, by Remark 2.1, a continu-
ous and compact one. Consequently, by virtue of (2.25) the operator A : W3 (Dr,St) —

W3 (Dr,St) is likewise continuous and compact. At the same time, by Lemma 2.4, for any
parameter 7 € [0,1] and any solution of the equation with the parameter u = TAu the a

priori estimate ||u|l ° : < c||FllL,p,) with the positive constant ¢, independent of u,
W; (Dr1,St

7, and F, is valid.
Therefore by Leray-Schauder theorem [32, page 375], (2.27), and hence problem (2.1)-

(2.2), has at least one solution u € W3 (Dr, Sr).

Thus the following theorem is valid.
THEOREM 2.7. LetA >0,0< p<2/(n—1), F € Lyoc(Dw), and F € Ly(Dr) for any T > 0.
Then problem (2.1)-(2.2) is globally solvable, that is, for any T >0 this problem has the

strong generalized solution u € W21 (D1, St) in the domain Dr.

3. Nonexistence of the global solvability

Below we will restrict ourselves to the case when in (2.1) the parameter A < 0 and the
space dimension n = 2.

Definition 3.1. Let F € C(D,). The function u is said to be a strong generalized con-
tinuous solution of problem (2.23) if u € &(ET,ST) = {u € C(Dr) : uls, = 0} and there

exists a sequence of functions u,, € C*>(Dr,Sr) such that lim,, .« ||t — ull ¢, = 0 and
limm_oo ||Lum - F”C(BT) =0.

We introduce into the consideration the domain Dy = {(x,t) € R*: |x| <t <’ —
|x — x°|} which for (x%,1°) € Dy is bounded below by a light cone of the future Se, with
the vertex at the origin and above by the light cone of the past Sy o : t = t° — |x — x°| with
the vertex at the point (x°,£°).

LEMMA 3.2. Letn=2,F € (03(5T,ST). Then there exists the unique strong generalized con-
tinuous solution of problem (2.23) for which the integral representation

LJ F@,1)
27 D (0= 1)2 — x - €2

u(x,t) =

d¢dr, (x,t) € Dr, (3.1)

and the estimate

lulle,y < cllFlleo,) (3.2)
with the positive constant c, independent of F, are valid.

Proof. Without restriction of generality, we can assume that the function F € C (Dr,St) is
continuous in the domain D, such that F € C(Dw, S« ). Indeed, if (x,t) € D \ Dr, then
we can take F(x,t) = F((T/t)x,T).Let Dry : |x| + 8 <t < T, where 0 < § = const < (1/2)T.
Obviously, Drs C Dr. Since F € C(Dr) and Flg, = 0, for some strongly monotonically
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decreasing sequence of positive numbers {J} there exists the sequence of functions {Fy}
such that

FreC® (BT), supp Fx C ET,ak, k=1,2,...,
. (3.3)
1115?0 ||Ex = F||C(ET) =0.
Indeed, let ¢5 € C([0,+)) be the nondecreasing continuous function of one vari-
able such that ¢5(7) =0 for 0 < 7 < 28 and ¢s(7) = 1 for t > 34. Let Fs(x,t) = @s(t —
lx)F(x,1), (x,t) € Dr. Since F € C(Dr) and F|s, = 0, we can easily verify that

ﬁa S C(ET), Suppﬁa C ET,M, éim ||ﬁ5 — F”C(ﬁr) =0. (3.4)

Now we take advantage of the operation of averaging and let
Gs(x,t) = & J Bs(E,7) ( 85 )dfdf, e= (V2-1)8, (3.5)

where

e C>(R%), J dxdt=1, p=0,
p € Cy(R%) WP p (3.6)

suppp = {(x,1) eR*: x* + 1> < 1}.

From (3.4) and averaging properties [9, page 9] it follows that the sequence Fx = G, ,
k=1,2,..., satisfies (3.3). Continuing the function Fi by zero to the strip Ar:0<t< T
and retaining the same notation, we have Fy € C*(Ar), where suppFx C Dr4, C Dr,
k =1,2,.... Therefore, just in the same way as in proving Lemma 2.4, for the solution
of the Cauchy problem Luy = Fi, ug|i—o = 0, du/0t|—o = 0 in the strip At which exists,
is unique, and belongs to the space C*(Ar), we have suppuy C Dr and, more so, uy €

52(BT)ST)a k=,1,2
On the other hand, since supp Fx C Dr, Fy € C*(Ar) for the solution uy of the Cauchy
problem, by the Poisson formula the integral representation [33, page 227]

ka‘[

th\/t—f —|x=&|?

is valid and the estimate [33, page 215]

ur(x,t) dédr, (x,t) € Dr, (3.7)

||”k||c (Dr) ||FkHc(D,) (3.8)

holds.

By (3.4) and (3.8), the sequence {ux} C C*(Dr,Sr) is fundamental in the space COJ(ET,
St) and tends to some function u for which, by virtue of (3.7), the representation (3.1) is
valid and the estimate (3.2) holds. Thus we have proved that problem (2.23) is solvable

in the space é(BT,ST).
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As for the uniqueness of the strong generalized continuous solution of problem (2.23),
it follows from the following reasoning. Let u € &(BT,ST) and F = 0 and there exists
the sequence of functions u; € CO2 (Dr,Sr) such that limy_o lux — ullcipy = 0,
limy . o [ Luk || ¢(p,) =0. This implies that limy -  [|x — /|1, (py) =0 and limy . oo [| Lk || 1, (pr)
= 0. Since the function u; € CO2 (Dr,St) can be considered as the strong generalized solu-

tion of problem (2.23) for Fx = Luy from the space Wz (Dr,ST), the estimate || ug|| o 1 De.S)
2

< /eT||Lug|lr,(p;) is valid according to Remark 2.5. Therefore limy—. | Lutk|l1,(n;) = O

implies that limy_ IIukIIW \ Dr.Sy) =0, and hence limy_« [tk |1, (p;) = 0. Taking into ac-
2 T>

count the fact that limg_. [[ux — ull1,(p,;) = 0, we obtain u = 0. Thus Lemma 3.2 is proved
completely. O

LEmMMA 3.3. Letn=2,A<0,F € é(ﬁT,ST), and F > 0. Then ifu € C*(Dr) is the classical
solution of problem (2.1)-(2.2), then u = 0 in the domain Dr.

Proof. If u € C*(Dr) is the classical solution of problem (2.1)-(2.2), then u € COZ(ET,
St), and since F € EJ(BT,ST), the right-hand side G = —A|u|Pu+ F of (2.1) belongs to

the space &(BT,ST). Considering the function u € C?*(Dr,Sr) as the classical solution of
problem (2.23) for F = G, that is,

Lu=G, ulg =0, (3.9)

it will, more so, be the strong generalized continuous solution of problem (3.9). There-

fore, taking into account that G € C (Dr,St), by Lemma 3.2, for the function u the inte-
gral representation

|ulPu

S JW(t— EPEE

d&dt + Fo(x,t) (3.10)

holds. Here

J F@,1)
o, JE-12 = x— &2

dédr. (3.11)

0(x,1)

Consider now the integral equation

V(1) = J g dEdr+Folxt), (o) €Dp  (3.12)
D f(E—1)2 = [x - P2
with respect to an unknown function v, where gy = —(A/2m)|ul?.

Since gy, Fy € C (Dr,Sr), and the operator in the right-hand side of (3.12) is an integral
operator of Volterra type with a weak singularity, (3.12) is uniquely solvable in the space
C(Dr). It should be noted that the solution v of (3.12) can be obtained by Picard’s method
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of successive approximations:

vo =0,
Vi (x,1) = J &oVk dédr+Fy(x,t), k=1,2,.... (3.13)
Duc (=72~ [x - 2
Indeed, let
: =Droit=1h Wi |py = Vims1 = Vi (Wolp, = Fo),
Winljo<e<T1\D; = 05 Am(t) = max | Wi (X, 1) | , m=0,1,...,
o (3.14)
_ dnidn, 3
) J. <t W“gollcm = 27lgoll e, -
Then, if

Bso(t) bJ(t— ¥lp(r)dr, B>0, (3.15)

then taking into account the equality

1 t m
BP9 = g |, (BT (02 g(m)ar (3.16)

[12, page 206], by virtue of (3.13), we obtain

| Wi (1) | =

LoWm-1 d ‘

Lm (=72 - x - P2

t
sj dTJ Lol Wit | dédr
0 x—{|<t—r t—T 2_|x_€|2

) A1 (1) (3.17)
||g0||CD1 J dTJx El<t— T\/(t— — |x_£|2df

dnid
=IIgollc@,,)L(t—T)Am,l(r)dfj _aman,_

Inl<1 (1 — |n|?
= BZAm—l(t)) (X, t) € Dr.

It follows that

Aon(8) = Bk (£) < - - - < BJAo(t) jbr(z "t — 1P No(r)dr

F(2 )

m

- (b1?)" (bT?)™
~ I'(2m)

t
L(t )27 |wy || )d _WH Follew, T” Follewy
(3.18)
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and hence

(bT2)"
||Wm||c(§7<) = ||/\m||C([o,T]> = ! ||F0||c(5»,«)- (3.19)
2m)!

Therefore the series v = lim,,—. o Vi = Vo + >.p_o Wm converges in the class C(Dr) and its
sum is the solution of (3.12). The uniqueness of the solution (3.12) in the space C(D, ) is
proved analogously.

As far as A < 0, we have gy = —A/27 = 0, and by virtue of (3.11), the function Fy = 0
because F > 0 by the condition. Therefore successive approximations v from (3.13) are
nonnegative, and since limy_ [|[vk — v|l¢p,) = 0, the solution v > 0 in the domain Dr,
too. It now remains only to note that by virtue of (3.10), the function u is the solution of
(3.12), and according to the unique solvability of that equation, u = v = 0 in the domain
Dr. Thus the proof of Lemma 3.3 is complete. O

Remark 3.4. As it can be seen from the proof, Lemma 3.3 is likewise valid if instead of the
condition F > 0 we will require the fulfillment of a more weak condition Fy > 0, where
the function Fy is given by formula (3.11).

0o _ _
LemMma 3.5. Letn=2, F € C (Dy,Sr) and let u € C*(Dr) be the classical solution of prob-
lem (2.1)-(2.2). Then if for some point (x°,t°) € Dr the function Flp,, , = 0, then likewise
ulpy, =0, where Dy = {(x,t) € R3:|x|<t<td—|x—x0}).

Proof. Since F| Do =0 by the representation (3.1) from Lemma 3.2, the solution u of
problem (2.1)-(2.2) in the domain Do » satisfies the integral equation

20, n)u(f 1)

3 Du (k=) — [x = €|

u(x,t) =

dédr, (x,t) € Dy, (3.20)

where gy = —A|u|?. Taking into account the fact that

1 "
_nJDx,t\/(t—T)z—Lx—fz ZﬂJ J\x El<t— r t— ) lx— Elde

L dTJ _dn (3.21)
T <1 \[1— |n|2

tm+2

T (m+1)(m+2)

from (3.20) using the method of mathematical induction, we easily get

12k
|u(x,t)| < MMf——, (x,t) € Doy, k=1,2,..., (3.22)

LK)y
where M = maxp, [u(x,1)| = llullcp,), M1 = maxp, | (x,t)|. Therefore, as k — +o0, we

have ulp, , = 0. Thus Lemma 3.5 is proved completely. O
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Let cr and ¢gr(x) be, respectively, the first eigenvalue and the eigenfunction of the
Dirichlet problem in the circle Qg : x? + x3 < R%. Consequently,

(Apr+crpr) |, =0, ¢rlo0, = 0. (3.23)
Asis known, cg > 0, and if we change the sign and make the corresponding normalization,
we will be able to get [27, page 25]

¢R|QR >0, 0 q)Rdx =1. (3.24)

THEOREM 3.6. Let n=2,1<0, p>0, F € C(Dw), suppF N S = &, and F > 0. Then if
the condition

o T
i T<P+2>/Pj dtJ FTE D (E)dE = +oo (3.25)

o Ja
is fulfilled, then there exists the number Ty = To(F) > 0 such that for T = T, problem (2.1)-

(2.2) fails to have the classical solution u € C*(Dr) in the domain Dr.

Proof. Assume that problem (2.1)-(2.2) has the classical solution u € C*(Dr) in the do-
main Dr. Since suppF N So = @, there exists the positive number § < T/2 such that
Flusesy) = 0, where Us(St) : |x] <t < |x|+6, t < T. By Lemma 3.5, this implies that

u | Us (ST) =0. (3.26)

Further, since by the condition F > 0, due to Lemma 3.3,
ulp, = 0. (3.27)

Therefore continuing the functions F and u by zero outside the domain Dy to the strip
A1 :0<t< T and retaining the same notation, we find that u € C>(Dr) is the classical
solution of (2.1) in the strip Ay, which, by virtue of A < 0 and (3.27), we can write in the
form

Uy — Au= |AMuP™ +F(x,t), (x,t) € Ar. (3.28)
Moreover, by (3.26),
suppu C Drs, Drgs={(x,t) ER’:|x|+8<t< T} (3.29)

Below, without restriction of generality we will assume that A = —1, and hence [A| =
1, since the case 1 <0, A # —1 with regard to p >0 is reduced to the case A = —1 by
introducing a new unknown function v = |A|"?u. The function v will satisfy the equation

Ve —Av = vP VL A VYPFE(x,t),  (x,f) € Ar. (3.30)
According to (3.30), below, instead of (2.1) we will consider the equation

Uy — Au=ul™ +F(x,t), (x,t) € Ar. (3.31)
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We take R > T and introduce into the consideration the functions

E(t) = J u(x,t)pr(x)dx,
e (3.32)
falt) = JQ Flx,Opr(x)dx, 0<t=<T

It is clear that E € C*([0,T]), fzr € C([0,T]), and, with regard to (3.27), the function
E = 0. By (3.23), (3.29), and (3.32), the integration by parts results in

Augprdx = J uArdx = —CRJ u@rdx = —cgE. (3.33)
Qr Qr Qr

By (3.24), (3.27), and p > 0, and using Jensen’s inequality [27, page 26], we obtain

ptl
J ullopdx > <J ugo;wlx) = EPHL, (3.34)
Qg Qr

From (3.29), (3.31), (3.32), (3.33), and (3.34) it follows that

E" +cpE > EP* + fp, 0<t<T,

E(0)=0, E(0)=0. (3.35)

To investigate problem (3.35), we will use the method of test functions [26, pages 10—
12]. To this end, we take Ty, 0 < T < T and consider the nonnegative test function y €
C%([0,T]) such that

O<y<l1, w(t)=1, 0<t<T, y®O(T)=0, k=0,1,2. (3.36)

From (3.35) and (3.36) it easily follows that

T T T
L EPY Oy (0)dt < L B[y (6) + cry (0] dt - L RBy@dt.  (337)

If, in Young’s inequality with parameter € > 0

£ 1 , o
ab<—a"+—b%, a,b=>0,a =

a  aer! a-1 (3.38)

weputa=p+1,a =(p+1)/p,a=EyYPV b= |y" +cryl/y"P*) and take into ac-
count that o'/a = 1/(« — 1) = &’ — 1, then we will get

, . g . . 1 "4 o
E|y" +cxy| = Ey" % e v v/a,cfl‘”' . (3.39)
By (3.39), from (3.37) we have
e\ (" pa L (MY Heay]® !
(1-2) ], By == | e dt- | fuoyiodr (3.40)
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Taking into account that mingce<,[((a@ — 1)/(a — €))(1/e¥~1)] = 1 which can be
achieved for € = 1, from (3.40) by means of (3.36), we find that

T, T |1//” +CR1//|a' T
prdr< | a- o | oo (3.41)
0 0 ye 0
Now in the capacity of the test function ¢ we take the function of the type
(D=vo(r), 1=, 077 =~ (3.42)
v/ - l//O > - T1 > =1L =1 = ’1«1 > .

where

vo € C*([0,71]), O=<wyo=<1,

3.43
wir)=1, 0=<7<1, wék)(n)=0, k=0,1,2. (343)
It is not difficult to see that
C1 1 C1 1 X
CRZESEST—IZ, @R(X):ﬁq)l(E) (344)

By virtue of (3.42), (3.43), and (3.44), taking into account that y"’(t) = 0for0 <t < T}
and fg > 0, since F > 0, as well as the well-known inequality |a+ b|* < 2¥~!(|a|* +
[b]¥), from (3.41) we obtain

T T, o o T |0 o T
B < | %de %dt—a’] feOy(t)dt
0 0 1 0
T, T 2\ .1 o T,
sC;g’J ydi+ TIJ |TDYe @+ ervo@ | 5 (M e
0 1 (vo(1)) 0
a' -1 T 7 o T T
<& T+ ZZ(HJ W@, lea’-lcg’J vo@dr—o [ fult)dt
Ti 1 (yo(1)) 1 0

| o o' -1

o T
o—rdT+ tx,fl (m—-1)—do | fr(t)dt
1 (wo(1)) ! Tt 0

of 290 Jyg(n)
- T]Zoc’—l + T120c'—1
(3.45)

Now we put R =T, 7; = 2, thatis, T1 = (1/2)T. Then inequality (3.45) takes the form

(12)T 1-2a 2 . o
[ E“dts(%T) [c?’(uzw’—l)”a'—lj lw@I"

0 o -1

20-1 +(1/2)T
—oc’(lT> J fT(t)dt], 20l — 1= L—f—Z
2 0 )

As is known, the function y, with the properties (3.43) for which the integral

_Plw@l” L
%(%)—L (%(T))a,_ldr<+ (3.47)

is finite does exist [26, page 11].
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With regard to (3.32) and (3.44), we have

(1/2)T

/3(T)=J fT(t)dt—Jl/Z dtJ Flx, Dgr(x)dx

0

= J’ (1/2)T dtJ ) TZ‘P1< )d (3.48)

/2T
| ar| Erenea
0 o}

If condition (3.25) is fulfilled, then by virtue of (3.46), (3.47), and (3.48) there exists
the number T = T, > 0 for which the right-hand side of inequality (3.46) is negative,
but this is impossible because the left-hand side of inequality (3.46) is nonnegative. Thus
for T = Ty, and hence for T = T, problem (2.1)-(2.2) fails to have the classical solution
u € C*(Dr) in the domain Dr. Thus Theorem 3.6 is proved completely. O

COROLLARY 3.7. Let n=2,1<0, F € C(D), suppFNSx =, F #0, and F> 0. If0 <
P < 2, then there exists the number Ty = To(F) > 0 such that for T > Ty problem (2.1)-(2.2)
fails to have the classical solution u € C*(Dr) in the domain Dr.

Indeed, since F # 0 and F > 0, there exists the point Py(x°t°) € D such that F(x?,
t%) > 0. Without restriction of generality, we can assume that the point Py lies on the axis
t, that is, x° = 0, since, otherwise, this can be achieved by the Lorentz transformation for
which (2.1) is invariant and which leaves the characteristic cone S« : t = |x| unchanged
[5, page 744]. Since F(0,t°) > 0and F € C(D«), there exist the numbers t° > §, & > 0, and
o > 0 such that F(x,t) > o for |x| < &y, |t — 1] < &y. Take T > 2(¢° + &y). Then for |x| < &
it is evident that |x/T| < 1/2, and if we introduce the notation m, = inf|,<1/2 ¢1(%), then
if ¢1(x) > 0 in the unit circle O, : [x| < 1, we find that m, > 0. Hence by virtue of (3.48),
we have

1 aT
B = |, at] Fonoe () ax
tO+e X
=g Jo ]P0 () o
t0+e _ 2megomy
L dtJ'lx‘Qnamodx—7712
and, consequently,
e dt || FQTE D9 (©)dE = TFPBCT) = Jnefomy T PP, (3.50)

From the last inequality for 0 < p < 2 we immediately obtain (3.25) and, according to
Theorem 3.6, problem (2.1)-(2.2) fails to have the classical solution u € C?2(Dr) in the
domain Dr for T > Ty.
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CoROLLARY 3.8. Let n =2,1<0, F € C(Dw), suppF N Swx = &, and F > 0. Suppose next
that F(x,t) = y(t) = 0 for |x| <e(t) <t, t > 6, and sup,.5(e(t)/t) = & < 1, where y(t) and
&(t) are the given continuous functions with y(t) = 0 and e(t) > 0. If the condition

T
iy T(Z*P)/PJ E(1)y(dt = +oo (3.51)
)

is fulfilled, then there exists the number Ty = To(F) > 0 such that for T = T, problem (2.1)-
(2.2) fails to have the classical solution u € C*(Dr) in the domain Dr.

Indeed, for |x| < &(t), t < (1/2)T, we have |x/T| < &(t)/T = (e(t)/t)(t/T) < (1/2)¢.
Since [, <(1/2), 91(11) = mo >0, by virtue of (3.48) we have

- a3

. ij(m)Tdt J (t) (f)dx (3.52)
T )s \x\<s(t)y i\ '
(1/2)T /2T
mg Tmo
> dtJ tdz—J 2(H)y(t)dt.
T2 L \x|<s(t)y( Jdx T2 Js e ®y)

Therefore with regard to (3.48),

T T
T(P”WJ dtf FQTE i ()dE = TP pT) = TH0 70~ L (1)1,
0 O
(3.53)

whence by (3.51) we obtain (3.25) and hence the validity of Corollary 3.8.

Remark 3.9. Inequality (3.46) allows us to estimate the time interval after which the so-
lution fails. Indeed, let

2a' =1 ~(1/2)t
x(T) = sup oc'(—t) J fi(r)dr,
0<t<T \2 0 (3.54)

yo = (1+2971) +2% Lo (yp),

where o' = (p +1)/p, and the finite positive number »(yy) is given by (3.47). Since
F € C(Dw), the function x(T) in the interval 0 < T < +co is continuous and nonde-
creasing, while by virtue of (3.25) and (3.48) we have limy_ . y(T) = +o. Hence since
limr_x(T) = 0, the equation y(T) = yo is solvable. Denote by T = T the root of the
above-mentioned equation for which y(T) > x(T}) for T) < T < T} +¢, where ¢ is a suf-
ficiently small positive number. Now it is clear that problem (2.1)-(2.2) has no classical
solution in the domain Dy for T > Tj, since in this case the right-hand side of inequality
(3.46) is negative.
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