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We treat an initial boundary value problem for a nonlinear wave equation utt − uxx +
K|u|αu+ λ|ut|βut = f (x, t) in the domain 0 < x < 1, 0 < t < T . The boundary condition
at the boundary point x = 0 of the domain for a solution u involves a time convolution
term of the boundary value of u at x = 0, whereas the boundary condition at the other
boundary point is of the form ux(1, t) + K1u(1, t) + λ1ut(1, t) = 0 with K1 and λ1 given
nonnegative constants. We prove existence of a unique solution of such a problem in
classical Sobolev spaces. The proof is based on a Galerkin-type approximation, various
energy estimates, and compactness arguments. In the case of α= β = 0, the regularity of
solutions is studied also. Finally, we obtain an asymptotic expansion of the solution (u,P)
of this problem up to order N + 1 in two small parameters K , λ.

1. Introduction

Given T > 0, we consider the problem to find a pair of functions (u,P) such that

utt −uxx +F
(
u,ut

)= f (x, t), 0 < x < 1, 0 < t < T ,

ux(0, t)= P(t),

ux(1, t) +K1u(1, t) + λ1ut(1, t)= 0,

u(x,0)= u0(x), ut(x,0)= u1(x),

(1.1)

where
• F(u,ut)= K|u|αu+ λ|ut|βut,
• u0, u1, f are given functions,
• K , K1, α, β, λ and λ1 ≥ 0 are given constants

and the unknown function u(x, t) and the unknown boundary value P(t) satisfy the fol-
lowing Cauchy problem for ordinary differential equation

P//(t) +ω2P(t)= hutt(0, t), 0 < t < T ,

P(0)= P0, P/(0)= P1,
(1.2)
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where ω > 0, h ≥ 0, P0, P1 are given constants. Problem (1.1)–(1.2) describes the shock
between a solid body and a nonlinear viscoelastic bar resting on a viscoelastic base with
nonlinear elastic constraints at the side, constraints associated with a viscous frictional
resistance.

In [1], An and Trieu studied a special case of problem (1.1)–(1.2) with α= β = 0 and f ,
u0, u1 and P0 vanishing, associated with the homogeneous boundary condition u(1, t)= 0
instead of (1.1)3 being a mathematical model describing the shock of a rigid body and a
linear visoelastic bar resting on a rigid base.

From (1.2), solving the equation ordinary differential of second order, we get

P(t)= g(t) +hu(0, t)−
∫ t

0
k(t− s)u(0,s)ds, (1.3)

where

g(t)= (P0−hu0(0)
)

cosωt+
1
ω

(
P1−hu1(0)

)
sinωt,

k(t)= hω sinωt.
(1.4)

This observation motivates to consider problem (1.1) with a more general boundary term
of the form

P(t)= g(t) +hu(0, t)−
∫ t

0
k(t− s)u(0,s)ds, (1.5)

which we will do henceforth.
In [9, 10], Dinh and Long studied problem (1.1)1,2,4 and (1.5) with Dirichlet boundary

condition at boundary point x = 1 in [10] extending an earlier result of theirs for k = 0
in [9].

In [15], Santos has studied the following problem

utt −µ(t)uxx = 0, 0 < x < 1, t > 0,

u(0, t)= 0,

u(1, t) +
∫ t

0
G(t− s)µ(s)ux(1,s)ds= 0,

u(x,0)= u0(x), ut(x,0)= u1(x).

(1.6)

The integral in (1.6)3 is a boundary condition which includes the memory effect. Here,
by u we denote the displacement and by G the relaxation function. The function µ ∈
W1,∞

loc (R+) with µ(t) ≥ µ0 > 0 and µ/(t) ≤ 0 for all t ≥ 0. Frictional dissipative boundary
condition for the wave equation was studied by several authors, see for example [4, 5, 6,
11, 16, 17, 18, 19] and the references therein. In these works, existence of solutions and
exponential stabilization were proved for linear and for nonlinear equations. In contrast
with the large literature for frictional dissipative, for boundary condition with memory,
we have only a few works as for example [12, 13, 14].
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Applying the Volterra’s inverse operator, Santos [15] transformed (1.6)3 into

−µ(t)ux(1, t)= 1
G(0)

K(t)u0(1)

+
1

G(0)
ut(1, t) +

G/(0)
G2(0)

u(1, t)

+
1

G(0)

∫ t

0
K/(t− s)u(1,s)ds,

(1.7)

where the resolvent kernel satisfies

K(t) +
1

G(0)

∫ t

0
G/(t− s)K(s)ds= −1

G(0)
G/(t). (1.8)

The present paper consists of three main sections. In Section 2, we prove a theorem of
global existence and uniqueness of a weak solution u of problem (1.1), (1.5). The proof
is based on a Galerkin-type approximation in conjunction with various energy estimates,
weak convergence compactness arguments. The main difficulty encountered here is the
boundary condition at x = 1. In order to solve this particular difficulty, stronger assump-
tions on the initial conditions u0 and u1 will be made. We remark that the linearization
method in the papers [3, 8] cannot be used in [2, 9, 10]. In the case of α= β = 0, Section 3
is devoted to the study of the regularity of the solution u. Finally, in Section 4 we obtain
an asymptotic expansion of the solution (u,P) of the problem (1.1), (1.5) up to order
N + 1 in two small parameters K , λ. The results obtained here may be considered as gen-
eralizations of those in An and Trieu [1] and in Long and Dinh [2, 3, 8, 9, 10].

2. The existence and uniqueness theorem

Put Ω = (0,1), QT = Ω× (0,T), T > 0. We omit the definitions of the usual function
spaces: Cm(Ω), Lp(Ω) and Wm,p

(
Ω
)

and denote Wm,p =Wm,p(Ω), Lp =W0,p(Ω) and
Hm =Wm,2(Ω), 1≤ p ≤∞, m∈ IN . The norm in L2 is denoted by ‖ · ‖. Also, we denote
by 〈·,·〉 the scalar product in L2 or the dual pairing between continuous linear functionals
and elements of a function space, by ‖ · ‖X the norm of a Banach space X , by X/ its
dual space, and by Lp(0,T ;X), 1≤ p ≤∞ the Banach space of real measurable functions
u : (0,T)→ X such that

‖u‖Lp(0,T ;X) =
(∫ T

0

∥∥u(t)
∥∥p
Xdt
)1/p

<∞ for 1≤ p <∞,

‖u‖L∞(0,T ;X) = esssup
0<t<T

∥∥u(t)
∥∥
X for p =∞.

(2.1)

At last, denote u(t)= u(x, t), u/(t)= ut(t)= (∂u/∂t)(x, t), u//(t)= utt(t)= (∂2u/∂t2)(x, t),
u(r)(t)= (∂ru/∂tr)(x, t), ux(t)= (∂u/∂x)(x, t), uxx(t)= (∂2u/∂x2)(x, t).

Further, we make the following assumptions:
(H0) α≥ 0, β ≥ 0, K ≥ 0, λ≥ 0,
(H1) h≥ 0, K1 ≥ 0, K1 +h > 0 and λ1 > 0,
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(H2) u0 ∈H2 and u1 ∈H1,
(H3) f , ft ∈ L2(0,T ;L2),
(H4) k ∈H1(0,T)∩W2,1(0,T),
(H5) g ∈H2(0,T).

Then we have the following theorem.

Theorem 2.1. Let assumptions (H0)–(H5) be satisfied. Then there exists a unique weak
solution u of problem (1.1), (1.5) such that

u∈ L∞
(
0,T ;H2), ut ∈ L∞

(
0,T ;H1), utt ∈ L∞

(
0,T ;L2),

u(0,·)∈W1,∞(0,T), u(1,·)∈H2(0,T)∩W1,∞(0,T),

P ∈W1,∞(0,T).

(2.2)

Remark 2.2. It follows from (2.2) that the component u in the weak solution (u,P) of
problem (1.1), (1.5) satisfies

u∈ C0(0,T ;H1)∩C1(0,T ;L2)∩L∞
(
0,T ;H2). (2.3)

Proof of Theorem 2.1. The proof consists of Steps 1–5.
Step 1 (Galerkin approximation). Let {wj} be an enumeration of a basis of H2. We find
the approximate solution of problem (1.1), (1.5) in the form

um(t)=
m∑
j=1

cmj(t)wj , (2.4)

where the coefficient functions cmj satisfy the ordinary differential equation problem

〈
u//m(t),wj

〉
+
〈
umx(t),wjx

〉
+Pm(t)wj(0) +Qm(t)wj(1) +

〈
F
(
um(t),u/m(t)

)
,wj
〉

= 〈 f (t),wj
〉

, 1≤ j ≤m,

Pm(t)= g(t) +hum(0, t)−
∫ t

0
k(t− s)um(0,s)ds,

Qm(t)= K1um(1, t) + λ1u
/
m(1, t),

um(0)= u0m =
m∑
j=1

αmjwj −→ u0 strongly in H2,

u/m(0)= u1m =
m∑
j=1

βmjwj −→ u1 strongly in H1.

(2.5)

From the assumptions of Theorem 2.1, this problem has a solution {(um,Pm,Qm)} on
some interval [0,Tm]. The following estimates allow one to take Tm = T for all m.
Step 2 (a priori estimates I). Substituting (2.5)2–3 into (2.5)1, then multiplying the jth
equation of (2.5)1 by c/mj , summing up with respect to j and afterwards integrating with
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respect to the time variable from 0 to t, we get

Sm(t)= Sm(0)− 2
∫ t

0
g(s)u/m(0,s)ds

+ 2
∫ t

0
u/m(0,s)ds

∫ s

0
k(s− τ)um(0,τ)dτ + 2

∫ t

0

〈
f (s),u/m(s)

〉
ds,

(2.6)

where

Sm(t)= ∥∥u/m(t)
∥∥2

+
∥∥umx(t)

∥∥2
+

2K
α+ 2

∥∥um(t)
∥∥α+2
Lα+2 +hu2

m(0, t)

+K1u
2
m(1, t) + 2λ

∫ t

0

∥∥u/m(s)
∥∥β+2
Lβ+2ds+ 2λ1

∫ t

0

∣∣u/m(1,s)
∣∣2
ds.

(2.7)

Using assumptions (H4)–(H5) and then integrating by parts with respect to the time vari-
able, we get

Sm(t)= Sm(0) + 2g(0)u0m(0)− 2g(t)um(0, t) + 2
∫ t

0
g/(s)um(0,s)ds

+ 2um(0, t)
∫ t

0
k(t− τ)um(0,τ)dτ − 2k(0)

∫ t

0
u2
m(0,s)ds

− 2
∫ t

0
um(0,s)ds

∫ s

0
k/(s− τ)um(0,τ)dτ + 2

∫ t

0

〈
f (s),u/m(s)

〉
ds.

(2.8)

Then, using (2.5)4–5 and (2.7) we get

Sm(0) + 2
∣∣g(0)u0m(0)

∣∣≤ C1 ∀m≥ 1, (2.9)

where C1 is a constant independent of m. Using the inequality 2ab ≤ εa2 + (1/ε)b2 for all
a, b ∈R and for all ε > 0, it follows that

Sm(t)≤ C1 +
1
ε
g2(t) + εu2

m(0, t) +
1
ε

∫ t

0

∣∣g/(s)∣∣2
ds+ ε

∫ t

0
u2
m(0,s)ds

+ εu2
m(0, t) +

1
ε

∣∣∣∣∫ t

0
k(t− τ)um(0,τ)dτ

∣∣∣∣2

+ 2
∣∣k(0)

∣∣∫ t

0
u2
m(0,s)ds

+
∫ t

0

[
εu2

m(0,s) +
1
ε

∣∣∣∣∫ s

0
k/(s− τ)um(0,τ)dτ

∣∣∣∣2
]
ds

+
1
ε

∫ t

0

∥∥ f (s)
∥∥2
ds+ ε

∫ t

0

∥∥u/m(s)
∥∥2
ds
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= C1 +
1
ε

[
g2(t) +

∫ t

0

∣∣g/(s)∣∣2
ds+

∫ t

0

∥∥ f (s)
∥∥2
ds
]

+ 2εu2
m(0, t) + 2

(
ε+
∣∣k(0)

∣∣)∫ t

0
u2
m(0,s)ds

+ ε
∫ t

0

∥∥u/m(s)
∥∥2
ds+

1
ε

∣∣∣∣∫ t

0
k(t− τ)um(0,τ)dτ

∣∣∣∣2

+
1
ε

∫ t

0
ds
∣∣∣∣∫ s

0
k/(s− τ)um(0,τ)dτ

∣∣∣∣2

.

(2.10)

On the other hand, noticing K1 +h > 0,

∥∥vx∥∥2
+hv2(0) +K1v

2(1)≥ C̃‖v‖2
H1 ∀v ∈H1, (2.11)

where C̃ > 0 is a constant depending only onK1 and h, and on the other hand, byH1(Ω)↩
C0(Ω), we have

‖v‖C0(Ω) ≤ C0‖v‖H1 ∀v ∈H1, (2.12)

for some constant C0 > 0. Hence it follows from (2.7) that

∣∣um(0, t)
∣∣≤ ∥∥um(t)

∥∥
C0(Ω) ≤ C0

∥∥um(t)
∥∥
H1 ≤ C0√

C̃

√
Sm(t)≡ C̃0

√
Sm(t). (2.13)

Now, using the Cauchy-Schwarz inequality, we estimate in the right-hand side of (2.10)
the last but one integral as

1
ε

∣∣∣∣∫ t

0
k(t− τ)um(0,τ)dτ

∣∣∣∣2

≤ 1
ε

∫ t

0
k2(θ)dθ

∫ t

0
u2
m(0,τ)dτ ≤ C̃2

0

ε

∫ t

0
k2(θ)dθ

∫ t

0
Sm(τ)dτ,

(2.14)

and the last integral as

1
ε

∫ t

0
ds
∣∣∣∣∫ s

0
k/(s− τ)um(0,τ)dτ

∣∣∣∣2

≤ 1
ε
t
∫ t

0

∣∣k/(θ)
∣∣2
dθ
∫ t

0
u2
m(0,τ)dτ ≤ C̃2

0

ε
t
∫ t

0

∣∣k/(θ)
∣∣2
dθ
∫ t

0
Sm(τ)dτ.

(2.15)

Choosing ε so that 0 < 2εC̃2
0 ≤ 1/2 and using both these estimates, it follows from (2.10)

and (2.13) that

Sm(t)≤G1(t) +G2(t)
∫ t

0
Sm(τ)dτ, (2.16)
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where

G1(t)= 2C1 +
2
ε

[
g2(t) +

∫ t

0

∣∣g/(s)∣∣2
ds+

∫ t

0

∥∥ f (s)
∥∥2
ds
]

,

G2(t)= 2ε+ 4C̃2
0

(
ε+
∣∣k(0)

∣∣)+
2C̃2

0

ε

(∫ t

0
k2(θ)dθ + t

∫ t

0

∣∣k/(θ)
∣∣2
dθ
)
.

(2.17)

Since H1(0,T)↩C0([0,T]), from assumptions (H3)–(H5) we deduce that∣∣Gi(t)
∣∣≤M(i)

T , a.e. on t ∈ [0,T], i= 1,2, (2.18)

where the constants M(i)
T are depending on T only. Therefore

Sm(t)≤M(1)
T +M(2)

T

∫ t

0
Sm(τ)dτ, 0≤ t ≤ Tm ≤ T , (2.19)

which implies by Gronwall’s lemma

Sm(t)≤M(1)
T exp

(
tM(2)

T

)
≤MT ∀t ∈ [0,T]. (2.20)

Step 3 (a priori estimates II). Now differentiating (2.5)1 with respect to t we get〈
u///m (t),wj

〉
+
〈
u/mx(t),wjx

〉
+P/

m(t)wj(0) +Q/
m(t)wj(1) +K(α+ 1)

〈∣∣um∣∣αu/m(t),wj
〉

+ λ(β+ 1)
〈∣∣u/m(t)

∣∣βu//m(t),wj
〉= 〈 f /(t),wj

〉
, ∀1≤ j ≤m.

(2.21)

Multiplying the jth equation herein by c//mj , summing up with respect to j and then inte-
grating with respect to the time variable from 0 to t, after some rearrangements we get

Xm(t)= Xm(0)

− 2
∫ t

0
g/(s)u//m(0,s)ds+ 2

∫ t

0

[
k(0)um(0,τ) +

∫ τ

0
k/(τ − s)um(0,s)ds

]
u//m(0,τ)dτ

+ 2K(α+ 1)
∫ t

0
dτ
∫ 1

0

∣∣um(x,τ)
∣∣αu/m(x,τ)u//m(x,τ)dx+ 2

∫ t

0

〈
f /(s),u//m(s)

〉
ds,

(2.22)

where

Xm(t)= ∥∥u//m(t)
∥∥2

+
∥∥u/mx(t)

∥∥2
+h
∣∣u/m(0, t)

∣∣2
+K1

∣∣u/m(1, t)
∣∣2

+ 2λ1

∫ t

0

∣∣u//m(1,τ)
∣∣2
dτ

+ 2λ(β+ 1)
∫ t

0
dτ
∫ 1

0

∣∣u/m(x,τ)
∣∣β∣∣u//m(x,τ)

∣∣2
dx

= ∥∥u//m(t)
∥∥2

+
∥∥u/mx(t)

∥∥2
+h
∣∣u/m(0, t)

∣∣2
+K1

∣∣u/m(1, t)
∣∣2

+ 2λ1

∫ t

0

∣∣u//m(1,τ)
∣∣2
dτ

+
8λ

(β+ 2)2
(β+ 1)

∫ t

0
dτ
∫ 1

0

∣∣∣∣ d

dτ

(∣∣u/m(x,τ)
∣∣(β+2)/2

)∣∣∣∣2

dx.

(2.23)
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Integrating by parts in the integrals of the right-hand side of (2.22), we get

Xm(t)= Xm(0) + 2g/(0)u1m(0)− 2g/(t)u/m(0, t) + 2
∫ t

0
g//(s)u/m(0,s)ds

+ 2
[
k(0)um(0, t) +

∫ t

0
k/(t− s)um(0,s)ds

]
u/m(0, t)− 2k(0)u0m(0)u1m(0)

− 2
∫ t

0

[
k(0)u/m(0,τ) + k/(0)um(0,τ) +

∫ τ

0
k//(τ − s)um(0,s)ds

]
u/m(0,τ)dτ

+ 2K(α+ 1)
∫ t

0
dτ
∫ 1

0

∣∣um(x,τ)
∣∣αu/m(x,τ)u//m(x,τ)dx+ 2

∫ t

0

〈
f /(s),u//m(s)

〉
ds

= Xm(0) + 2g/(0)u1m(0)− 2k(0)u0m(0)u1m(0) + k/(0)u2
0m(0)

− k/(0)u2
m(0, t)− 2g/(t)u/m(0, t) + 2k(0)um(0, t)u/m(0, t)

+ 2
∫ t

0
g//(s)u/m(0,s)ds− 2k(0)

∫ t

0

∣∣u/m(0,τ)
∣∣2
dτ

+ 2
∫ t

0
k/(t− s)um(0,s)ds ·u/m(0, t)− 2

∫ t

0
u/m(0,τ)dτ

∫ τ

0
k//(τ − s)um(0,s)ds

+ 2K(α+ 1)
∫ t

0
dτ
∫ 1

0

∣∣um(x,τ)
∣∣αu/m(x,τ)u//m(x,τ)dx+ 2

∫ t

0

〈
f /(s),u//m(s)

〉
ds.

(2.24)

First, we deduce from (2.5)3, (2.23) and assumptions (H4)–(H5) that

∣∣Xm(0) + 2g/(0)u1m(0)− 2k(0)u0m(0)u1m(0) + k/(0)u2
0m(0)

∣∣≤ C2 +
∥∥u//m(0)

∥∥2
, (2.25)

where C2 > 0 is a constant depending only on u0, u1, g, k, K , K1, h only. But by (2.5)1–3

we have

∥∥u//m(0)
∥∥2− 〈u0mxx,u//m(0)

〉
+
〈
F
(
u0m,u1m

)
,u//m(0)

〉= 〈 f (0),u//m(0)
〉
. (2.26)

Therefore

∥∥u//m(0)
∥∥≤ ∥∥u0mxx

∥∥+
∥∥F(u0m,u1m

)∥∥+
∥∥ f (0)

∥∥ (2.27)

and by means of (2.5)4 we deduce that

∥∥u//m(0)
∥∥≤ C3, (2.28)

where C3 > 0 is a constant depending on u0, u1, f , K , λ only.
On the other hand, it follows from (2.11)–(2.13) that

∥∥u/m(t)
∥∥
C0(Ω) ≤ C0

∥∥u/m(t)
∥∥
H1 ≤ C̃0

√
Xm(t). (2.29)
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Then, by means of (2.13), (2.20), and (2.29) we deduce that

2K(α+ 1)
∫ t

0
dτ
∫ 1

0

∣∣um(x,τ)
∣∣αu/m(x,τ)u//m(x,τ)dx

≤ 2K(α+ 1)
(
C̃0

√
MT

)α∫ t

0

∥∥u/m(τ)
∥∥∥∥u//m(τ)

∥∥dτ
≤ 2K(α+ 1)C̃0

(
C̃0

√
MT

)α∫ t

0
Xm(τ)dτ

(2.30)

and from here and (2.22)–(2.28) we obtain

Xm(t)≤ C2 +C2
3 +
∣∣k/(0)

∣∣u2
m(0, t) + 2

∣∣g/(t)u/m(0, t)
∣∣+ 2

∣∣k(0)um(0, t)u/m(0, t)
∣∣

+ 2
∫ t

0

∣∣g//(s)u/m(0,s)
∣∣ds+ 2

∣∣k(0)
∣∣∫ t

0

∣∣u/m(0,τ)
∣∣2
dτ

+ 2
∫ t

0

∣∣k/(t− s)um(0,s)
∣∣ds ·∣∣u/m(0, t)

∣∣
+ 2
∫ t

0

∣∣u/m(0,τ)
∣∣dτ ∫ τ

0

∣∣k//(τ − s)um(0,s)
∣∣ds

+ 2K(α+ 1)
∫ t

0
dτ
∫ 1

0

∣∣um(x,τ)
∣∣α∣∣u/m(x,τ)u//m(x,τ)

∣∣dx+ 2
∫ t

0

∣∣〈 f /(s),u//m(s)
〉∣∣ds

≤ C2 +C2
3 +
∣∣k/(0)

∣∣C̃2
0MT + 2

∣∣g/(t)∣∣C̃0

√
Xm(t)

+ 2
∣∣k(0)

∣∣C̃2
0

√
MT

√
Xm(t) + 2C̃0

∫ t

0

∣∣g//(s)∣∣√Xm(s)ds

+ 2
∣∣k(0)

∣∣C̃2
0

∫ t

0
Xm(τ)dτ + 2C̃2

0

√
MT

∫ t

0

∣∣k/(θ)
∣∣dθ√Xm(t)

+ 2C̃2
0

√
MT

∫ t

0

∣∣k//(θ)
∣∣dθ∫ t

0

√
Xm(τ)dτ

+ 2K(α+ 1)C̃0

(
C̃0

√
MT

)α∫ t

0
Xm(τ)dτ +

∫ t

0

∥∥ f /(s)∥∥2
ds+

∫ t

0
Xm(s)ds.

(2.31)

We again use the inequality 2ab ≤ εa2 + (1/ε)b2 ∀a,b ∈ R,∀ε > 0 with ε = (1/4). Then it
follows that

Xm(t)≤ C2 +C2
3 +
∣∣k/(0)

∣∣C̃2
0MT + 2

∣∣g/(t)∣∣C̃0

√
Xm(t)

+ 4
∣∣k(0)

∣∣C̃2
0

√
MT

√
Xm(t) + 2C̃0

∫ t

0

∣∣g//(s)∣∣√Xm(s)ds

+ 2
∣∣k(0)

∣∣C̃2
0

∫ t

0
Xm(τ)dτ + 2C̃2

0

√
MT

∫ t

0

∣∣k/(θ)
∣∣dθ√Xm(t)

+ C̃2
0

√
MT

∫ t

0

∣∣k//(θ)
∣∣dθ∫ t

0

√
Xm(τ)dτ + 2K(α+ 1)C̃0

(
C̃0

√
MT

)α∫ t

0
Xm(τ)dτ

+
∫ t

0

∥∥ f /(s)∥∥2
ds+

∫ t

0
Xm(s)ds
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≤ C2 +C2
3 +
∣∣k/(0)

∣∣C̃2
0MT + 4

(∣∣g/(t)∣∣C̃0
)2

+
1
4
Xm(t)

+ 4k2(0)C̃4
0MT +

1
4
Xm(t) + C̃2

0

∫ t

0

∣∣g//(s)∣∣2
ds

+
∫ t

0
Xm(s)ds+ 2

∣∣k(0)
∣∣C̃2

0

∫ t

0
Xm(τ)dτ + 4C̃4

0MT

(∫ t

0

∣∣k′(θ)
∣∣dθ)2

+
1
4
Xm(t)

+ C̃4
0MTt

(∫ t

0

∣∣k//(θ)
∣∣dθ)2

+
∫ t

0
Xm(τ)dτ + 2K(α+ 1)C̃0

(
C̃0

√
MT

)α∫ t

0
Xm(τ)dτ

+
∫ t

0

∥∥ f /(s)∥∥2
ds+

∫ t

0
Xm(s)ds.

(2.32)

Noting the embedding H1(0,T)↩ C0([0,T]), it follows from assumptions (H3)–(H5)
that

Xm(t)≤M(3)
T +M(4)

T

∫ t

0
Xm(τ)dτ ∀t ∈ [0,T], (2.33)

where

M(4)
T = 12 + 8C̃2

0

∣∣k(0)
∣∣+ 8K(α+ 1)C̃0

(
C̃0

√
MT

)α
(2.34)

and M(3)
T is a constant depending on T , f , g, k, C2, C3, C̃0, and MT only. By Gronwall’s

lemma we deduce that

Xm(t)≤M(3)
T exp

(
tM(4)

T

)
≤ M̃T ∀t ∈ [0,T]. (2.35)

On the other hand, we deduce from (2.5)2–3, (2.7), (2.20), (2.23), and (2.35) that∥∥Pm∥∥W1,∞(0,T) ≤M(5)
T ,∥∥Qm

∥∥
H1(0,T) ≤M(6)

T ,∥∥∥∣∣u/m∣∣βu/m∥∥∥(β+2)/

L(β+2)′ (QT )
= ∥∥u/m∥∥β+2

Lβ+2(QT ) ≤M(7)
T ,∥∥∥∥ ∂

∂t

(∣∣u/m∣∣(β+2)/2
)∥∥∥∥2

L2(QT )
≤ Xm(t)≤ M̃T ,

(2.36)

∥∥∥∥ ∂

∂x

(∣∣u/m∣∣(β+2)/2
)∥∥∥∥2

L2(QT )
= 1

4
(β+ 2)2

∫ T

0
dt
∫ 1

0

∣∣u/m(x, t)
∣∣β∣∣u/mx(x, t)

∣∣2
dx

≤ 1
4

(β+ 2)2
∫ T

0

(
C̃0

√
Xm(t)

)β
dt
∫ 1

0

∣∣u/mx(x, t)
∣∣2
dx

≤ 1
4

(β+ 2)2
∫ T

0

(
C̃0

√
Xm(t)

)β
Xm(t)dt

≤ 1
4

(β+ 2)2T
(
C̃0

√
M̃T

)β
M̃T ≤M(8)

T ,

(2.37)

for all T > 0 and (β+ 2)/ = (β+ 2)/(β+ 1).
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Step 4 (limiting process). From (2.7), (2.20), (2.23), (2.35), and (2.36)1–3 we deduce the
existence of a subsequence of {(um,Pm,Qm)}, still also so denoted, such that

um −→ u in L∞
(
0,T ;H1) weak∗,

u/m −→ u/ in L∞
(
0,T ;H1) weak∗,

u/m −→ u/ in Lβ+2(QT
)

weakly,

u//m −→ u// in L∞
(
0,T ;L2) weak∗,

um(0,·)−→ u(0,·) in W1,∞(0,T) weak∗,

um(1,·)−→ u(1,·) in W1,∞(0,T) weak∗,

um(1,·)−→ u(1,·) in H2(0,T) weakly,

Pm −→ P̃ in W1,∞(0,T) weak∗,

Qm −→ Q̃ in H1(0,T) weakly,∣∣u/m∣∣βu/m −→ χ in L(β+2)/(QT
)

weakly.

(2.38)

By the compactness lemma of Lions [7, page 57] we can deduce from (2.36)4, (2.37), and
(2.38)1,2,4–6 the existence of a subsequence still denoted by {um} such that

um −→ u strongly in L2(QT
)
,

u/m −→ u/ strongly in L2(QT
)
,∣∣u/m∣∣(β+2)/2 −→ χ1 strongly in H1(QT
)
,

um(0,·)−→ u(0,·) strongly in C0([0,T]
)
,

um(1,·)−→ u(1,·) strongly in H1(0,T),

u/m(1,·)−→ u/(1,·) strongly in C0([0,T]
)
.

(2.39)

From (2.5)2–3 and (2.39)4–6 we have

Pm(t)−→ g(t) +hu(0, t)−
∫ t

0
k(t− s)u(0,s)ds≡ P(t),

Qm(t)−→ K1u(1, t) + λ1u
/(1, t)≡Q(t)

(2.40)

strongly in C0([0,T]) from where with (2.38)8–9

P(t)= P̃(t), Q(t)= Q̃(t) (2.41)

can be deduced. Using the inequality

‖x|αx−|y|αy| ≤ (α+ 1)Rα|x− y| ∀x, y ∈ [−R,R], (2.42)

for all R > 0 and all α≥ 0 it follows from (2.13), (2.20), and (2.39)1 that∣∣um∣∣αum −→ |u|αu strongly in L2(QT
)
. (2.43)
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Similarly, we can also obtain from (2.29), (2.35), (2.39)2 and inequality (2.42) with α= β,
that ∣∣u/m∣∣βu/m −→ ∣∣u/∣∣βu/ strongly in L2(QT

)
. (2.44)

Hence, because of (2.43),

F
(
um,u/m

)−→ F
(
u,u/

)
strongly in L2(QT

)
. (2.45)

Passing to the limit in (2.5)1,4–5, by (2.38)1,2,4 and (2.40)–(2.41) and (2.45) we have u
satisfying the problem〈

u//(t),v
〉

+
〈
ux(t),vx

〉
+P(t)v(0) +Q(t)v(1) +

〈
F
(
u(t),u/(t)

)
,v
〉= 〈 f (t),v

〉
,

u(0)= u0, u/(0)= u1
(2.46)

weak in L2(0,T) weak, for all v ∈H1. On the other hand, we have from (2.18)–(2.20) and
assumption (H3) that

uxx = u// +F
(
u,u/

)− f ∈ L∞
(
0,T ;L2(0,1)

)
. (2.47)

Hence u∈ L∞(0,T ;H2) and the existence proof is completed.
Step 5 (uniqueness of the solution). Let (ui,Pi), i= 1,2 be two weak solutions of problem
(1.1), (1.5) such that

ui ∈ L∞
(
0,T ;H2), u/i ∈ L∞

(
0,T ;H1), u//i ∈ L∞

(
0,T ;L2),

ui(0,·)∈W1,∞(0,T), ui(1,·)∈H2(0,T)∩W1,∞(0,T),

Pi ∈W1,∞(0,T).

(2.48)

Then (u,P) with u= u1−u2 and P = P1−P2 satisfies the variational problem〈
u//(t),v

〉
+
〈
ux(t),vx

〉
+P(t)v(0) +Q(t)v(1) +K

〈∣∣u1
∣∣αu1−

∣∣u2
∣∣αu2,v

〉
+ λ
〈∣∣u/1∣∣βu/1−∣∣u/2∣∣βu/2,v

〉= 0 ∀v ∈H1,

u(0)= u/(0)= 0,

(2.49)

where

P(t)= hu(0, t)−
∫ t

0
k(t− s)u(0,s)ds,

Q(t)= K1u(1, t) + λ1u
/(1, t).

(2.50)

We take v = u/in (2.36)1, afterwards integrating in t, we get

Z(t)=−2K
∫ t

0

〈∣∣u1
∣∣αu1−

∣∣u2
∣∣αu2,u/

〉
dτ + 2

∫ t

0
u/(0,τ)dτ

∫ τ

0
k(τ − s)u(0,s)ds,

(2.51)
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where

Z(t)= ∥∥u/(t)∥∥2
+
∥∥ux(t)

∥∥2
+hu2(0, t) +K1u

2(1, t)

+ 2λ1

∫ t

0

∣∣u/(1,s)
∣∣2
ds+ 2λ

∫ t

0

〈∣∣u/1∣∣βu/1−∣∣u/2∣∣βu/2,u/
〉
dτ.

(2.52)

Using inequality (2.42), the first term of the right-hand side of (2.51) can be estimated as

2K
∣∣∣∣∫ t

0

〈∣∣u1
∣∣αu1−

∣∣u2
∣∣αu2,u/

〉
dτ
∣∣∣∣

≤ 2K(α+ 1)Rα
∫ t

0

∥∥u(τ)
∥∥∥∥u/(τ)

∥∥dτ ≤ K(α+ 1)Rα
∫ t

0
Z(τ)dτ,

(2.53)

with R=max
i=1,2

‖ui‖L∞(0,T ;H1). Using integration by parts in the last integral of (2.51), we get

J ≡ 2
∫ t

0
u/(0,τ)dτ

∫ τ

0
k(τ − s)u(0,s)ds= 2u(0, t)

∫ t

0
k(t− s)u(0,s)ds

− 2k(0)
∫ t

0
u2(0,τ)dτ − 2

∫ t

0
u(0,τ)dτ

∫ τ

0
k/(τ − s)u(0,s)ds.

(2.54)

On the other hand, it follows from (2.11)-(2.12) and (2.52) that

∣∣u(0, t)
∣∣≤ ∥∥u(t)

∥∥
C0(Ω) ≤ C0

∥∥u(t)
∥∥
H1 ≤ C0√

C̃

√
Z(t)≡ C̃0

√
Z(t). (2.55)

Thus

|J| ≤ 2C̃2
0

√
Z(t)

∫ t

0

∣∣k(t− s)
∣∣√Z(s)ds

+ 2
∣∣k(0)

∣∣C̃2
0

∫ t

0
Z(τ)dτ + 2C̃2

0

∫ t

0

√
Z(τ)dτ

∫ τ

0

∣∣k/(τ − s)
∣∣√Z(s)ds

≤ 1
2
Z(t) + 2C̃4

0

∫ t

0
k2(θ)dθ

∫ t

0
Z(s)ds+ 2

∣∣k(0)
∣∣C̃2

0

∫ t

0
Z(τ)dτ

+ 2C̃2
0

√
t
(∫ t

0

∣∣k/(θ)
∣∣2
dθ
)1/2∫ t

0
Z(s)ds

(2.56)

can be deduced. It follows from (2.51) and (2.53)–(2.56) that

Z(t)≤mT

∫ t

0
Z(s)ds ∀t ∈ [0,T], (2.57)
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where

mT = 2K(α+ 1)Rα + 4C̃4
0

∫ T

0
k2(θ)dθ + 4

∣∣k(0)
∣∣C̃2

0 + 4C̃2
0

√
T
(∫ T

0

∣∣k/(θ)
∣∣2
dθ
)1/2

.

(2.58)

By Gronwall’s lemma, we deduce that Z ≡ 0 and Theorem 2.1 is completely proved. �

3. Regularity of solutions

In this section, we study the regularity of solution of problem (1.1), (1.5) corresponding
to α = β = 0. From here, we assume that (h,K ,K1,λ,λ1) satisfy assumptions (H0), (H1).
Henceforth, we will impose the following stronger assumptions:

(H[1]
1 ) u0 ∈H3 and u1 ∈H2,

(H[1]
2 ) f , ft, ftt ∈ L2(0,T ;L2) and f (·,0)∈H1,

(H[1]
3 ) g ∈H3(0,T),

(H[1]
4 ) k ∈H2(0,T).

Formally differentiating problem (1.1) with respect to time and letting û= ût and P̂ = P/

we are led to consider the solution û of problem (Q̂):

Lû≡ ûtt − ûxx +F
(
û, ût

)= f̂ (x, t), (x, t)∈QT ,

ûx(0, t)= P̂(t),

B1û≡ ûx(1, t) +K1û(1, t) + λ1ût(1, t)= 0,

û(x,0)= û0(x), ût(x,0)= û1(x),

P̂(t)= ĝ(t) +hû(0, t)−
∫ t

0
k(t− s)û(0,s)ds,

(3.1)

where

F
(
u,ut

)= Ku+ λut, f̂ = ft, ĝ(t)= g/(t)− k(t)u0(0),

û0 = u1, û1 = u0xx −F
(
u0,u1

)
+ f (x,0).

(3.2)

Let u0, u1, f , g, k satisfy assumptions (H[1]
1 )–(H[1]

4 ). Then û0, û1, f̂ , ĝ, k satisfy assump-
tions (H1)–(H4) and by Theorem 2.1 for problem (Q̂) there exists a unique weak solution
(û, P̂) such that

û∈ C0(0,T ;H1)∩C1(0,T ;L2)∩L∞
(
0,T ;H2),

ût ∈ L∞
(
0,T ;H1), ûtt ∈ L∞

(
0,T ;L2),

û(0,·)∈W1,∞(0,T), û(1,·)∈H2(0,T)∩W1,∞(0,T),

P̂ ∈W1,∞(0,T).

(3.3)

Moreover, from the uniqueness of weak solution we have

û= ut, P̂ = P/. (3.4)
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It follows from (3.3)–(3.4) that

u∈ C0(0,T ;H2)∩C1(0,T ;H1)∩C2(0,T ;L2),
ut ∈ L∞

(
0,T ;H2), utt ∈ L∞

(
0,T ;H1), uttt ∈ L∞

(
0,T ;L2),

u(0,·)∈W2,∞(0,T), u(1,·)∈H3(0,T)∩W2,∞(0,T),

P ∈W2,∞(0,T).

(3.5)

We then have the following theorem.

Theorem 3.1. Let α= β = 0 and let assumptions (H0), (H1) and (H[1]
1 )–(H[1]

4 ) hold. Then
there exists a unique weak solution (u,P) of problem (1.1), (1.5) satisfying (3.5).

Similarly, formally differentiating problem (1.1) with respect to time up to order r
and letting u[r] = ∂ru/∂tr and P[r] = drP/dtr we are led to consider the solution u[r] of
problem (Q[r]):

Lu[r] = f [r](x, t), (x, t)∈ (0,1)× (0,T),

u[r]
x (0, t)= P[r](t),

B1u
[r] = 0,

u[r](x,0)= u[r]
0 (x), u[r]

t (x,0)= u[r]
1 (x),

P[r](t)= g[r](t) +hu[r](0, t)−
∫ t

0
k(t− s)u[r](0,s)ds,

(3.6)

where the functions u[r]
0 and u[r]

1 are defined by the recurrence formulas

u[0]
0 = u0, u[r]

0 = u[r−1]
1 , r ≥ 1,

u[0]
1 = u1, u[r]

1 = u[r−1]
0xx −F

(
u[r−1]

0 ,u[r−1]
1

)
+
∂r−1 f

∂tr−1
(x,0), r ≥ 1,

f [r] = ∂r f

∂tr
,

g[0] = g, g[r] = drg

dtr
−

r−1∑
ν=0

u(r−1−ν)
0 (0)

dνk

dtν
, r ≥ 1.

(3.7)

Assume that the data u0, u1, f , g, k satisfy the following conditions:

(H[r]
1 ) u0 ∈Hr+2 and u1 ∈Hr+1,

(H[r]
2 ) ∂ν f /∂tν ∈ L2(0,T ;L2), 0≤ ν≤ r + 1, and (∂µ f /∂tµ)(·,0)∈H1, 0≤ µ≤ r− 1,

(H[r]
3 ) g ∈Hr+2(0,T),

(H[r]
4 ) k ∈Hr+1(0,T), r ≥ 1.

Then u[r]
0 , u[r]

1 , f [r], g[r], k satisfy (H1)–(H4). Applying again Theorem 2.1 for problem
(Q[r]), there exists a unique weak solution u[r] satisfying (2.2) and the inclusion from
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Remark 2.2, that is, such that

u[r] ∈ C0(0,T ;H1)∩C1(0,T ;L2)∩L∞
(
0,T ;H2),

u[r]
t ∈ L∞

(
0,T ;H1), u[r]

tt ∈ L∞
(
0,T ;L2),

u[r](0,·)∈W1,∞(0,T), u[r](1,·)∈H2(0,T)∩W1,∞(0,T),

P[r] ∈W1,∞(0,T).

(3.8)

Moreover, from the uniqueness of weak solution we have (u[r],P[r])= (∂ru/∂tr , drP/dtr).
Hence we obtain from (3.8) that

u∈ Cr−1(0,T ;H2)∩Cr
(
0,T ;H1)∩Cr+1(0,T ;L2),

u(0,·)∈Wr+1,∞(0,T), u(1,·)∈Hr+2(0,T)∩Wr+1,∞(0,T),

P ∈Wr+1,∞(0,T).

(3.9)

We then have the following theorem.

Theorem 3.2. Let α= β = 0 and let assumptions (H1) and (H[r]
1 )–(H[r]

4 ) hold. Then there
exists a unique weak solution (u,P) of problem (1.1), (1.5) satisfying (3.9) and

∂ru

∂tr
∈ L∞

(
0,T ;H2),

∂r+1u

∂tr+1
∈ L∞

(
0,T ;H1),

∂r+2u

∂tr+2
∈ L∞

(
0,T ;L2).

(3.10)

4. Asymptotic expansion of solutions

In this section, we assume that α= β = 0 and (h, K1, λ1, f , g, k) satisfy the assumptions
(H1)–(H5).

We consider the following perturbed problem (Q̃K ,λ), where K ≥ 0, λ ≥ 0 are small
parameters:

Lu≡ utt −uxx =−Ku− λut + f (x, t), 0 < x < 1, 0 < t < T ,

B0u≡ ux(0, t)= P(t),

B1u≡ ux(1, t) +K1u(1, t) + λ1ut(1, t)= 0,

u(x,0)= u0(x), ut(x,0)= u1(x),

P(t)= g(t) +hu(0, t)−
∫ t

0
k(t− s)u(0,s)ds.

(Q̃K ,λ)
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Let (u0,0,P0,0) be a unique weak solution of problem (Q̃0,0) as in Theorem 2.1, corre-
sponding to (K ,λ)= (0,0), that is,

Lu0,0 = H̃0,0 ≡ f (x, t), 0 < x < 1, 0 < t < T ,

B0u0,0 = P0,0(t), B1u0,0 = 0,

u0,0(x,0)= u0(x), u/0,0(x,0)= u1(x),

P0,0(t)= g(t) +hu0,0(0, t)−
∫ t

0
k(t− s)u0,0(0,s)ds,

u0,0 ∈ C0(0,T ;H1)∩C1(0,T ;L2)∩L∞
(
0,T ;H2),

u/0,0 ∈ L∞
(
0,T ;H1), u//0,0 ∈ L∞

(
0,T ;L2),

u0,0(0,·)∈W1,∞(0,T), u0,0(1,·)∈H2(0,T)∩W1,∞(0,T),

P0,0 ∈W1,∞(0,T).

(Q̃0,0)

Let us consider the sequence of weak solutions (uγ1,γ2 ,Pγ1,γ2 ), (γ1,γ2)∈ Z2
+, 1≤ γ1 + γ2 ≤

N , defined by the following problems:

Luγ1,γ2 = H̃γ1,γ2 , 0 < x < 1, 0 < t < T ,

B0uγ1,γ2 = Pγ1,γ2 (t), B1uγ1,γ2 = 0,

uγ1,γ2 (x,0)= u/γ1,γ2
(x,0)= 0,

Pγ1,γ2 (t)= huγ1,γ2 (0, t)−
∫ t

0
k(t− s)uγ1,γ2 (0,s)ds,

uγ1,γ2 ∈ C0(0,T ;H1)∩C1(0,T ;L2)∩L∞
(
0,T ;H2),

u/γ1,γ2
∈ L∞

(
0,T ;H1), u//γ1,γ2

∈ L∞
(
0,T ;L2),

uγ1,γ2 (0,·)∈W1,∞(0,T), uγ1,γ2 (1,·)∈H2(0,T)∩W1,∞(0,T),

Pγ1,γ2 ∈W1,∞(0,T),

(Q̃γ1,γ2)

where

H̃1,0 =−u0,0, H̃0,1 =−u/0,0,

H̃γ1,γ2 =−uγ1−1,γ2 −u/γ1,γ2−1,
(
γ1,γ2

)∈ Z2
+, 2≤ γ1 + γ2 ≤N.

(4.1)

Let (u,P)= (uK ,λ,PK ,λ) be a unique weak solution of problem (Q̃K ,λ). Then (v,R), with

v = uK ,λ−
∑

0≤γ1+γ2≤N
uγ1,γ2K

γ1λγ2 , R= PK ,λ−
∑

0≤γ1+γ2≤N
Pγ1,γ2K

γ1λγ2 , (4.2)
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satisfies the problem

Lv =−Kv− λvt + eN ,K ,λ(x, t), 0 < x < 1, 0 < t < T ,

B0v = R(t),

B1v = 0,

v(x,0)= vt(x,0)= 0,

R(t)= hv(0, t)−
∫ t

0
k(t− s)v(0,s)ds,

v ∈ C0(0,T ;H1)∩C1(0,T ;L2)∩L∞
(
0,T ;H2),

v/ ∈ L∞
(
0,T ;H1), v// ∈ L∞

(
0,T ;L2),

v(0,·)∈W1,∞(0,T), v(1,·)∈H2(0,T)∩W1,∞(0,T),

R∈W1,∞(0,T),

(4.3)

where

eN ,K ,λ =−
∑

γ1+γ2=N+1

(
uγ1−1,γ2 +u/γ1,γ2−1

)
Kγ1λγ2 . (4.4)

Then, we have the following lemma.

Lemma 4.1. Let α= β = 0 and let assumptions (H1)–(H5) be satisfied. Then

∥∥eN ,K ,λ
∥∥
L∞(0,T ;L2) ≤ C̃N

(√
K2 + λ2

)N+1
, (4.5)

where C̃N is a constant depending only on the constants

∥∥uγ1−1,γ2

∥∥
L∞(0,T ;H1),

∥∥u/γ1,γ2−1

∥∥
L∞(0,T ;H1),

(
γ1,γ2

)∈ Z2
+, γ1 + γ2 =N + 1. (4.6)

Proof. By the boundedness of the functions uγ1−1,γ2 , u/γ1,γ2−1, (γ1,γ2)∈ Z2
+, γ1 + γ2 =N + 1

in the function space L∞(0,T ;H1), we obtain from (4.4), that

∥∥eN ,K ,λ
∥∥
L∞(0,T ;L2) ≤

∑
γ1+γ2=N+1

(∥∥uγ1−1,γ2

∥∥
L∞(0,T ;H1) +

∥∥u/γ1,γ2−1

∥∥
L∞(0,T ;H1)

)
Kγ1λγ2 . (4.7)

On the other hand, using the Hölder’s inequality ab ≤ (1/p)ap + (1/q)bq, 1/p + 1/q = 1,
∀a,b ≥ 0,∀p,q > 1 with a= K2γ1/(N+1), b = λ2γ2/(N+1), p = (N + 1)/γ1, q = (N + 1)/γ2, we
obtain

Kγ1λγ2 = (K2γ1/(N+1)λ2γ2/(N+1))(N+1)/2 ≤ (K2 + λ2)(N+1)/2
, (4.8)

for all (γ1,γ2)∈ Z2
+, γ1 + γ2 =N + 1.
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Finally, by the estimates (4.7), (4.8), we deduce that (4.5) holds, with

C̃N =
∑

γ1+γ2=N+1

(∥∥uγ1−1,γ2

∥∥
L∞(0,T ;H1) +

∥∥u/γ1,γ2−1

∥∥
L∞(0,T ;H1)

)
. (4.9)

The proof of Lemma 4.1 is completed. �

Next, we obtain the following theorem.

Theorem 4.2. Let α = β = 0 and let assumptions (H1)–(H5) be satisfied. Then, for every
K ≥ 0, λ≥ 0, problem (Q̃K ,λ) has a unique weak solution (u,P)= (uK ,λ, PK ,λ) satisfying the
asymptotic estimations up to order N + 1 as follows

∥∥∥∥∥u/K ,λ−
∑

0≤γ1+γ2≤N
u/γ1,γ2

Kγ1λγ2

∥∥∥∥∥
L∞(0,T ;L2)

+

∥∥∥∥∥uK ,λ−
∑

0≤γ1+γ2≤N
uγ1,γ2K

γ1λγ2

∥∥∥∥∥
L∞(0,T ;H1)

+

∥∥∥∥∥u/K ,λ(1,·)−
∑

0≤γ1+γ2≤N
u/γ1,γ2

(1,·)Kγ1λγ2

∥∥∥∥∥
L2(0,T)

≤ C̃∗N
(√

K2 + λ2
)N+1

,

(4.10)∥∥∥∥∥PK ,λ−
∑

0≤γ1+γ2≤N
Pγ1,γ2K

γ1λγ2

∥∥∥∥∥
C0([0,T])

≤ C̃∗∗N
(√

K2 + λ2
)N+1

, (4.11)

for all K ≥ 0, λ≥ 0, the functions (uγ1,γ2 ,Pγ1,γ2 ) being the weak solutions of problems (Q̃γ1,γ2),
(γ1,γ2)∈ Z2

+, γ1 + γ2 ≤N .

Proof. By multiplying the two sides of (4.3)1 with v/ , and after integration in t, we obtain

z(t)= 2
∫ t

0

〈
eN ,K ,λ,v/〉dτ + 2

∫ t

0
v/(0,τ)dτ

∫ τ

0
k(τ − s)v(0,s)ds, (4.12)

where

z(t)= ∥∥v/(t)∥∥2
+
∥∥vx(t)

∥∥2
+hv2(0, t) +K1v

2(1, t) +K
∥∥v(t)

∥∥2

+ 2λ
∫ t

0

∥∥v/(τ)
∥∥2
dτ + 2λ1

∫ t

0

∣∣v/(1,s)
∣∣2
ds.

(4.13)

Noting that

z(t)≥ ∥∥v/(t)∥∥2
+
∥∥vx(t)

∥∥2
+hv2(0, t) +K1v

2(1, t) + 2λ1

∫ t

0

∣∣v/(1,s)
∣∣2
ds

≥ ∥∥v/(t)∥∥2
+ C̃

∥∥v(t)
∥∥2
H1 + 2λ1

t∫
0

|v/(1,s)
∣∣2
ds,

∣∣v(0, t)
∣∣≤ ∥∥v(t)

∥∥
C0(Ω) ≤ C̃0

√
z(t),

(4.14)
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where the constants C̃, C̃0 are defined by (2.11), (2.13), respectively. Then, we prove, in a
manner similar to the above part, that

z(t)≤ T
∥∥eN ,K ,λ

∥∥2
L∞(0,T ;L2) +

∫ t

0
z(s)ds+ εz(t) +

1
ε
C̃4

0

∫ t

0
k2(θ)dθ

∫ t

0
z(s)ds

+ 2
∣∣k(0)

∣∣C̃2
0

∫ t

0
z(s)ds+ 2C̃2

0

√
t
(∫ t

0

∣∣k/(θ)
∣∣2
dθ
)1/2∫ t

0
z(s)ds

(4.15)

for all t ∈ [0,T] and ε > 0. Choosing ε > 0, such that ε ≤ 1/2, we obtain from (4.5), (4.15),
that

z(t)≤ 2TC̃2
N

(
K2 + λ2)N+1

+ ρT

∫ t

0
z(s)ds, (4.16)

where

ρT = 2 + 4
∣∣k(0)

∣∣C̃2
0 + 4C̃4

0

∫ T

0
k2(θ)dθ +

2
ε
C̃2

0

√
T
(∫ T

0

∣∣k/(θ)
∣∣2
dθ
)1/2

. (4.17)

By Gronwall’s lemma, it follows from (4.16), (4.17), that

z(t)≤ 2TC̃2
N

(
K2 + λ2)N+1

exp
(
TρT

)
. (4.18)

It follows from (4.14), that

∥∥v/(t)∥∥2
+ C̃

∥∥v(t)
∥∥2
H1 + 2λ1

∫ t

0

∣∣v/(1,s)
∣∣2
ds

≤ z(t)≤ 2TC̃2
N

(
K2 + λ2)N+1

exp
(
TρT

)
.

(4.19)

Hence

∥∥v/∥∥L∞(0,T ;L2) +‖v‖L∞(0,T ;H1) +
∥∥v/(1,·)∥∥L2(0,T) ≤ C̃∗N

(√
K2 + λ2

)N+1
, (4.20)

or

∥∥∥∥∥∥u/K ,λ−
∑

0≤γ1+γ2≤N
u/γ1,γ2

Kγ1λγ2

∥∥∥∥∥∥
L∞(0,T ;L2)

+

∥∥∥∥∥uK ,λ−
∑

0≤γ1+γ2≤N
uγ1,γ2K

γ1λγ2

∥∥∥∥∥
L∞(0,T ;H1)

+

∥∥∥∥∥u/K ,λ(1,·)−
∑

0≤γ1+γ2≤N
u/γ1,γ2

(1,·)Kγ1λγ2

∥∥∥∥∥
L2(0,T)

≤ C̃∗N
(√

K2 + λ2
)N+1

.

(4.21)
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On the other hand, it follows from (4.3)5, (4.20), that

‖R‖C0([0,T]) ≤
(
h+

∫ T

0

∣∣k(θ)
∣∣dθ)‖v‖L∞(0,T ;H1)

≤
(
h+

∫ T

0

∣∣k(θ)
∣∣dθ)C̃∗N(√K2 + λ2

)N+1

= C̃∗∗N
(√

K2 + λ2
)N+1

,

(4.22)

or ∥∥∥∥∥PK ,λ−
∑

0≤γ1+γ2≤N
Pγ1,γ2K

γ1λγ2

∥∥∥∥∥
C0([0,T])

≤ C̃∗∗N
(√

K2 + λ2
)N+1

. (4.23)

The proof of Theorem 4.2 is completed. �
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