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An iterated function system (IFS) on the space of distribution functions is built with
the aim of proposing a new class of distribution function estimators. One IFS estimator
and its asymptotic properties are studied in detail. We also propose a density estimator
derived from the IFS distribution function estimator by using Fourier analysis. Relative
efficiencies of both estimators, for small and moderate sample sizes, are presented via
Monte Carlo analysis.

1. Introduction

The iterated function systems (IFSs) were born in the mid eighties [2, 7] as applications
of the theory of discrete dynamical systems and as useful tools for buildings’ fractals and
other similar sets. Some possible applications of IFSs can be found in image processing
theory [4], in the theory of stochastic growth models [14], and in the theory of random
dynamical systems [1, 3, 9]. Here we apply this methodology to estimation.

The fundamental result [2] on which the IFS method is based is the Banach contrac-
tion theorem. In practical applications, the crucial problem, usually called the inverse
problem in the IFS literature, is formulated as follows. Given f in some metric space
(S,d), find a contraction T : S→ S from among some given set of contractions that ad-

mits a unique fixed point f̃ ∈ S such that d( f , f̃ ) is small enough. In fact, if one is able

to solve the inverse problem exactly, it is possible to identify f̃ with the operator T which
has it as fixed point.

The paper is organized as follows. Section 2 introduces a contractive operator T on the
space of distribution functions and the definition of the inverse problem for T . Section 3
is devoted to estimation. We propose an IFS distribution function estimator and we study
its properties. In particular, we will be able to establish a Glivenko-Cantelli theorem, a law
of the iterated-logarithm-type theorem, and results concerning local asymptotic minimax
efficiency. Then we derive a characteristic function estimator and, consequently, a density
function estimator obtained via Fourier analysis. As the asymptotic results show good as-
ymptotic properties of the IFS estimator, we will also investigate if there is any advantage
in using the IFS estimator instead of the celebrated empirical distribution function (EDF)
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estimator when the sample size is small (n = 10 and 30) or moderate (n = 50 and 100).
Monte Carlo analysis seems to show some gain of the IFS over the EDF.

2. A contraction on the space of distribution functions

Given a distribution function F on [0,1], that is, F : [0,1] → [0,1] such that F(0) = 0,
F(1) = 1, F is nondecreasing and right continuous, we denote by �([0,1]) the space of
distribution functions and by �([0,1]) the space of real bounded functions on [0,1].
We further define, for F,G∈�([0,1]), d∞(F,G)= supx∈[0,1] |F(x)−G(x)|. Then (�([0,
1]),d∞) is a complete metric space.

Let N ∈N be fixed and let

(i) wi : [ai,bi)→ [ci,di)= wi([ai,bi)), i= 1, . . . ,N − 1, wN : [aN ,bN ]→ [cN ,dN ], with
a1 = c1 = 0 and bN = dN = 1; ci+1 = di, i= 1,2, . . . ,N − 1; [ai,bi)⊂ [0,1];

(ii) wi, i= 1, . . . ,N , are increasing and continuous;
(iii)

⋃N−1
i=1 [ci,di)∪ [cN ,dN ]= [0,1];

(iv) if i �= j, then [ci,di)∩ [cj ,dj)=∅;

(v) pi ≥ 0, i= 1, . . . ,N , δi ≥ 0, i= 1, . . . ,N − 1,
∑N

i=1 pi +
∑N−1

i=1 δi = 1.

On (�([0,1],d∞), we define an operator in the following way:

TF(x)=


p1F

(
w−1

1 (x)
)
, x ∈ [c1,d1

)
,

piF
(
w−1
i (x)

)
+
∑i−1

j=1 pj +
∑i−1

j=1 δj , x ∈ [ci,di), i= 2, . . . ,N − 1,

pNF
(
w−1
N (x)

)
+
∑N−1

j=1 pj +
∑N−1

j=1 δj , x ∈ [cN ,dN
]
,

(2.1)

where F ∈�([0,1]). In many practical cases, wi are affine maps. A similar approach has
been discussed in [10] but here a more general operator is defined.

We stress here that in the following, we will think of the maps wi and the parameters
δj as fixed whilst the parameters pi have to be chosen. To put in evidence the dependence
of the operator T on the vector p= (p1, . . . , pN ), we will write Tp instead of T . Notice that
the ordering relations among the intervals [ci,di) are crucial in the definition of Tp.

In the first Remark below, hypotheses (ii) and (v) will be weakened to allow more
general functionals.

Theorem 2.1. Tp is an operator from �([0,1]) to itself.

Proof. It is trivial that TpF(0)= 0 and TpF(1)= 1. Furthermore, if x1 > x2, without loss
of generality, we can consider the following two cases: (i) x1,x2 ∈ wi([ai,bi)); (ii) x1 ∈
wi+1([ai+1,bi+1)) and x2 ∈wi([ai,bi)). In case (i), recalling that wi are increasing maps, we
have

TpF
(
x1
)= piF

(
w−1
i

(
x1
))

+
i−1∑
j=1

pj +
i−1∑
j=1

δj ≥ piF
(
w−1
i

(
x2
))

+
i−1∑
j=1

pj +
i−1∑
j=1

δj = TpF
(
x2
)
.

(2.2)
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In case (ii), we obtain

TpF
(
x1
)−TpF(x2

)= pi + δi + pi+1F
(
w−1
i+1

(
x1
))− piF

(
w−1
i

(
x2
))

= pi
(
1−F(w−1

i

(
x2
)))

+ pi+1F
(
w−1
i+1

(
x1
))

+ δi ≥ 0
(2.3)

since pi ≥ 0, δi ≥ 0, and 0≤ F(y)≤ 1. Finally, one can prove without difficulty the right
continuity of Tp f . �

The following remark will be useful for the applications in Section 3.

Remark 2.2. Replace hypotheses (i), (ii), and (v) in the definition of Tp by the following:

(i′ + ii′) wi(x) = x, ai = ci, bi = di, i = 1, . . . ,N ; (v′)pi = p, δi ≥ −p, Np +
∑N−1

i=1 δi = 1.
Then Tp : �([0,1])→�([0,1]).

Theorem 2.3. If c = maxi=1,...,N pi < 1, then Tp is a contraction on (�([0,1]),d∞) with
contractivity constant c.

Proof. Let F,G∈ (�([0,1]),d∞) and suppose that x ∈wi([ai,bi)). We have

∣∣TpF(x)−TpG(x)
∣∣= pi

∣∣F(w−1
i (x)

)−G(w−1
i (x)

)∣∣≤ cd∞(F,G). (2.4)

This implies that d∞(TpF,TpG)≤ cd∞(F,G). �

The following theorem states that small perturbations of the parameters pi produce
small variations on the fixed point of the operator.

Theorem 2.4. Let p, p∗ ∈ RN such that TpF1 = F1 and Tp∗F2 = F2, F1,F2 ∈ �([0,1]).
Then

d∞
(
F1,F2

)≤ 1
1− c

N∑
j=1

∣∣pj − p∗j
∣∣, (2.5)

where c is the contractivity constant of Tp.

Proof. In fact, recalling that wi and δi are fixed, we have

d∞
(
F1,F2

)= max
i=1,...,N

sup
x∈[ci,di)

{∣∣∣∣∣piF1
(
w−1
i (x)

)
+
i−1∑
j=1

pj − p∗i F2
(
w−1
i (x)

)− i−1∑
j=1

p∗j

∣∣∣∣∣
}

≤
N∑
i=1

∣∣pi− p∗i
∣∣+ cd∞

(
F1,F2

)
,

(2.6)
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since ∣∣∣∣∣piF1
(
w−1
i (x)

)
+
i−1∑
j=1

pj − p∗i F2
(
w−1
i (x)

)− i−1∑
j=1

p∗j

∣∣∣∣∣
≤

i−1∑
j=1

∣∣pj − p∗j
∣∣+

∣∣piF1
(
w−1
i (x)

)− piF2
(
w−1
i (x)

)∣∣
+
∣∣piF2

(
w−1
i (x)

)− p∗i F2
(
w−1
i (x)

)∣∣
≤

i−1∑
j=1

∣∣pj − p∗j
∣∣+ pid∞

(
F1,F2

)
+
∣∣pi− p∗i

∣∣
≤ cd∞

(
F1,F2

)
+

N∑
j=1

∣∣pj − p∗j
∣∣.

(2.7)

�

Choose F ∈ (�([0,1]),d∞). The goal now consists of finding a contractive map T :
�([0,1])→�([0,1]) which has a fixed point “near” to F. In fact if it is possible to solve
the inverse problem exactly, one can identify the operator T with its fixed point. With
a fixed system of maps wi and parameters δj , the inverse problem can be solved, if it is
possible, by using the parameters pi. These have to be chosen in the following convex set:

C =
{

p∈RN : pi ≥ 0, i= 1, . . . ,N ,
N∑
i=1

pi = 1−
N−1∑
i=1

δi

}
. (2.8)

We have the following result that is trivial to prove.

Proposition 2.5. Choose ε > 0 and p ∈ C such that all the pi > 0 for some i. If
d∞(TpF,F)≤ ε, then

d∞
(
F, F̃

)≤ ε
1− c , (2.9)

where F̃ is the fixed point of Tp on �([0,1]) and c =maxi=1,...,N pi is the contractivity con-
stant of Tp.

If we wish to find an approximate solution of the inverse problem, we have to solve the
following constrained optimization problem:

(P)

min
p∈C

d∞
(
TpF,F

)
. (2.10)

It is clear that the ideal solution of (P) consists of finding a p∗ ∈ C such that
d∞(Tp∗F,F)= 0. In fact this means that, given a distribution function F, we have found a
contractive map Tp which has exactly F as a fixed point. Indeed the use of Proposition 2.5
gives us only an approximation to F. This can be improved by increasing the number of
parameters pi (and maps wi).

The following result proves the convexity of the function D(p)= d∞(TpF,F), p∈RN .
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Theorem 2.6. The function D(p) :RN →R is convex.

Proof. If we choose p1,p2 ∈RN and λ∈ [0,1], then

D
(
λp1 + (1− λ)p2

)= sup
x∈[0,1]

∣∣Tλp1+(1−λ)p2F(x)−F(x)
∣∣

≤ λ sup
x∈[0,1]

∣∣Tp1F(x)−F(x)
∣∣+ (1− λ) sup

x∈[0,1]

∣∣Tp2F(x)−F(x)
∣∣

= λD(p1
)

+ (1− λ)D
(
p2
)
.

(2.11)

�

Hence for solving problem (P), one can recall classical results about convex program-
ming (see, e.g., [15]). A necessary and sufficient condition for p∗ ∈ C to be a solution of
(P) can be given by the Kuhn-Tucker conditions.

3. Distribution function estimation and applications

In this section, we focus on estimation problems. Instead of trying to solve exactly the
problem (P), we will use the properties of distribution functions to obtain a good ap-
proximator of F that can be directly used in distribution function estimation. We will
show that under suitable conditions on the maps wi, the proposed IFS distribution func-
tion estimator is asymptotically efficient for large samples. Via Monte Carlo analysis, we
will also show that, for small sample sizes, this IFS estimator is better than the celebrated
empirical distribution function in several situations.

As is usual in statistical applications, given a sample of n independent and identically
distributed observations, (x1,x2, . . . ,xn), drawn from an unknown continuous distribu-
tion function F ∈�([0,1]), one can easily construct the (EDF) F̂n given by

F̂n(x)= 1
n

n∑
i=1

χ(−∞,x]
(
xi
)
, x ∈R, (3.1)

where χA is the indicator function of the set A. Asymptotic optimality properties of F̂n as
an estimator of the unknown F when n goes to infinity are well known and studied; see
[12, 13].

Remark 3.1. This function has an IFS representation that is exact and can be found with-
out solving any optimization problem. We assume that the xi in the sample are all dif-
ferent (this assumption is natural if F is a continuous distribution function). Let wi(x) :
[xi−1,xi)→ [xi−1,xi), when i= 1, . . . ,n, and w1(x) : [0,x1)→ [0,x1), wn+1(x) : [xn,xn+1]→
[xn,xn+1], with x0 = 0 and xn+1 = 1. Assume also that every map is of the form wi(x)= x.
If we choose pi = 1/n, i = 2, . . . ,n+ 1, p1 = 0 and δ1 = (n− 1)/n2, δi = −1/n2, then the
following representation holds:

TpF̂n(x)=



0, i= 1,
1
n
F̂n(x) +

n− 1
n2

, i= 2,

1
n
F̂n(x) +

i− 1
n

+
n− i+ 1
n2

, i= 3, . . . ,n+ 1,

(3.2)
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for x ∈ [xi−1,xi). It should be clear that any discrete distribution function can be repre-
sented exactly with an IFS by similar arguments.

From now on we assume δi = 0, for all i. To produce an estimator, we should first
provide a good approximator of F. So fix an F ∈ �([0,1]) and choose N + 1 ordered
points (x1, . . . ,xN+1) such that x1 = 0 and xN+1 = 1. Define the maps wi and coefficients pi
as follows: for i= 1, . . . ,N ,

pi(F)= F(xi+1
)−F(xi), wi(x) : [0,1)−→ [

xi,xi+1
)= (xi+1− xi

) · x+ xi. (3.3)

The functional Tp can be denoted as TN with this given set of maps and coefficients as
it depends on the number of points and their values. For any u ∈�([0,1]), TN can be
written for x ∈R as

TNu(x)=
N∑
i=1

piu
(
w−1
i (x)

)= N∑
i=1

(
F
(
xi+1

)−F(xi)) ·u
(

x− xi
xi+1− xi

)
. (3.4)

TN is a contraction on (�([0,1]),dsup) and TNu(xi)= F(xi), for all i.
This functional is indeed a function of F and cannot be used directly in statistical

applications as F is unknown. To this end, take the points Xi to be the quantiles qi of F,
that is, chooseN + 1 points u1 = 0 < u2 < ··· < un < uN+1 = 1 equally spaced on [0,1] and
set qi = F−1(ui). The function TN becomes

TNu(x)=
N∑
i=1

1
N
u

(
x− qi
qi+1− qi

)
, x ∈R, (3.5)

and TN depends on F only through the quantiles qi. Moreover in this way, it is assured
that the profile of F is followed smoothly. In fact, if two quantiles qi and qi+1 are relatively
distant from each other, then F is slowly increasing in the interval (qi,qi+1) and vice versa.
As the quantiles can be easily estimated from a sample, we now have a possible candidate
for an IFS distribution function estimator. Thus, let x1,x2, . . . ,xn be a sample drawn from
F and let q̂i, i= 1, . . . ,N + 1, be the empirical quantiles of order 1/N such that q̂1 = 0 and
q̂N+1 = 1. Then we propose as IFS distribution function estimator the fixed point of the
following IFS:

T̂Nu(x)=
N∑
i=1

1
N
u

(
x− q̂i
q̂i+1− q̂i

)
, x ∈R, (3.6)

with u∈�([0,1]).

Remark 3.2. The resulting IFS will only be an approximation of the target distribution
function F as it depends on the values of the sample quantiles that in turn are functions
of the observed values x1,x2, . . . ,xn. At the same time, the quality of the approximation
increases with n, the number of sample points, as the N sample quantiles converge, in
probability, to the true quantiles. In the theorems below, we discuss the relationship be-
tween the number of quantiles N and the sample size n when both are varying. Also note
that the fixed point of the IFS is a fractal object that does not share necessarily the same
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smoothness properties of the target distribution function F. This does not really matter
as we are mostly concerned with uniform convergence. Finally, our approach is differ-
ent from the current literature on distribution function estimation as we propose a fixed
point instead of an Lp development or projection techniques.

3.1. Asymptotic properties of the IFS distribution function estimator. Let N = Nn be
a sequence depending on the sample size n. Denote the fixed point of T̂Nn by T̂∗Nn

. Then

T̂∗Nn
satisfies

T̂∗Nn
(x)=

Nn∑
i=1

1
Nn

T̂∗Nn

(
x− q̂i
q̂i+1− q̂i

)
, x ∈R. (3.7)

Theorem 3.3 (Glivenko-Cantelli, see [16]). Let Nn→∞ as n→∞. Then for any fixed F,

lim
n→∞sup

x∈R

∣∣T̂∗Nn
(x)−F(x)

∣∣ a.s.= 0. (3.8)

Proof. Write ∣∣T̂∗Nn
(x)−F(x)

∣∣≤ ∣∣T̂∗Nn
(x)− F̂n(x)

∣∣+
∣∣F̂n(x)−F(x)

∣∣. (3.9)

The first term can be estimated by 1/Nn while the second one converges to 0 almost surely
by the Glivenko-Cantelli theorem for the empirical distribution function. �

We can also establish a law of iterated logarithm-type result. Recall that (see [18, 19,
20]) an estimator Fn of F is said to have the Chung-Smirnov property if

limsup
n→∞

(
2n

log logn

)1/2

sup
x∈[0,1]

∣∣Fn(x)−F(x)
∣∣≤ 1 with probability 1. (3.10)

Theorem 3.4. Let Nn =O(nα), α∈ (1/2,1]. Then T̂∗Nn
has the Chung-Smirnov property.

Proof. The result follows because, by assumptions,

limsup
n→∞

(
2n

log logn

)1/2
1
Nn

= 0. (3.11)

�

We can also establish the local asymptotic minimax optimality of our estimator when
F is in a rich family (in the sense of [6, 11] and [12, Section 6]) of distribution functions.
For any estimator Fn of the unknown distribution function F, we define the integrated
mean square error as follows:

Rn
(
Fn,F

)= nEF

∫ 1

0

(
Fn(x)−F(x)

)2
λ(dx)= EF

∥∥√n(Fn−F)∥∥2
2, (3.12)

where λ(·) is a fixed probability measure on [0,1] and EF is the expectation under the
true law F. What follows is the minimax theorem in the version given in [6]. To state the
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theorem, we first define the following quantity:

R0(F)=
∫ 1

0
F(x)

(
1−F(x)

)
λ(dx), F ∈�

(
[0,1]

)
. (3.13)

Theorem 3.5 (Gill and Levit [6]). If � is a rich family, then for any estimator Fn of F,

lim
V↓F0

liminf
n→∞ sup

F∈V
Rn
(
Fn,F

)≥ R0
(
F0
)
, (3.14)

where V ↓ F0 denotes the limit in the net of shrinking neighborhoods (with respect to the
variation distance) of F0.

The above theorem states that, for any fixed F0, it is impossible to do better than
R0(F0) when we try to estimate F0. The empirical distribution function F̂n is such that
Rn(F̂n,F) = R0(F) for all n and so it is asymptotically efficient in the above-mentioned
sense. The result follows from the continuity of Rn in the variation distance topology (see
[6]). It is almost trivial to show that also the IFS estimator is asymptotically efficient in
the sense of the minimax theorem. The only condition needed is the number of maps Nn

as in the law of iterated logarithm result.

Theorem 3.6. Let Nn =O(nα), α∈ (1/2,1]. Then T̂∗Nn
is asymptotically efficient under the

hypotheses of Theorem 3.5.

Proof. Note that R0(F0) is a lower bound on the asymptotic risk of T̂∗Nn
by Theorem 3.5.

Moreover,

Rn
(
T̂∗Nn

,F
)= EF

∥∥√n(T̂∗Nn
−F)∥∥2

2

≤ EF
∥∥√n(T̂∗Nn

− F̂n
)∥∥2

2 + EF
∥∥√n(F̂n−F)∥∥2

2

+ 2EF
(∥∥√n(T̂∗Nn

− F̂n
)∥∥

2 ·
∥∥√n(F̂n−F)∥∥2

)
≤ n

N2
n

+R0(F) + 2
√
n

Nn

√
R0(F)

(3.15)

by the Cauchy-Schwartz inequality applied to the cross-product of the binomial expan-
sion. As Nn =O(nα), α∈ (1/2,1], we have the result. Note that α > 1 is not admissible as
at most Nn = n quantiles are of statistical interest. �

3.2. Application to density function estimation. We will derive now a density estimator
by using the Fourier analysis. This is possible because an IFS with affine maps admits a
simple representation of the Fourier transform. Let

φ(t) :R−→ C, φ(t)=
∫ 1

0
e−itx f (x)dx, t ∈R, (3.16)

be the Fourier transform (FT) of a continuous distribution function F with density f .
The FT is such that φ(0)= 1 and |φ(t)| ≤ 1, for all t ∈R. We denote by ��([0,1]) the set
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of all FTs associated to the distribution functions in �([0,1]). Given two elements φ and
ψ in ��(X), the following metric can be defined:

dFT(φ,ψ)=
(∫

R

∣∣φ(t)−ψ(t)
∣∣2
t−2dt

)1/2

. (3.17)

The above integral is always finite (see [5]). With this metric, (��([0,1]), dFT) is a com-
plete metric space. The FT of the IFS operator Tp, with coefficients pi and affine maps
wi = six+ ai, using the same arguments in [5], is given by

ψ(t)= Bφ(t)=
N∑
k=1

pke
−itakφ

(
skt
)
, t ∈R, (3.18)

where φ is the FT of a distribution function F and ψ is the FT of G= TpF. The operator
B : �T([0,1])→�T([0,1]) is a contractive operator and can be shown to have a unique
fixed point φ̄ that satisfies

φ̄(t)=
N∑
k=1

pke
−itak φ̄

(
skt
)
, t ∈R. (3.19)

Moreover, φ̄ is the FT of the fixed point of TN . The proof of the above results is trivial (by
the linearity of the operators and the maps) and can be derived from [5]. Given the FT of
F, the density f can always be derived by means of

f (x)= 1
2π

+∞∑
k=−∞

Bke
ikx, Bk =

∫ 1

0
f (x)e−ikxdx = φ(k). (3.20)

Denote by φ̂∗ the fixed point of the operator B where the maps and coefficients are the
same as those of T̂Nn . Then a density function estimator is given by

f̂FT(x)= 1
2π

+m∑
k=−m

φ̂∗(k)eikx, (3.21)

where m can be chosen according to the following rule of thumb (see [17]):

if
∣∣φ̂∗(m+ 1)

∣∣2
and

∣∣φ̂∗(m+ 2)
∣∣2
<

2
n+ 1

, then use the first m coefficients, (3.22)

where n is the sample size. Note that by the properties of the Fourier expansion, it is

also possible to estimate the first derivative of f by differentiating f̂FT or have another

distribution function estimator, this time a smooth one, by integrating f̂FT .

3.3. Monte Carlo analysis for small samples. We have seen in the previous sections that
the IFS estimator is as efficient as the empirical distribution function in the large sample
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Table 3.1. Relative efficiency of IFS-based estimator with respect to the empirical distribution func-
tion and the kernel density estimator for small and moderate sample sizes with ten thousand replica-
tions for each distribution and sample size.

n Law
AMSE SUP-NORM AMSE MAE

T̂N w.r.t. F̂n T̂N w.r.t. F̂n f̂FT w.r.t. kernel f̂FT w.r.t. kernel
(std. err.) (std. err.) (std. err.) (std. err.)

10 beta(0.9,0.1) 110.05 82.50 — —
(66.3) (15.3)

10 beta(0.1,0.9) 108.58 82.43 — —
(65.5) (15.1)

10 beta(0.1,0.1) 81.28 83.18 — —
(14.4) (11.2)

10 beta(2,2) 97.98 73.00 132.96 107.55
(50.9) (16.7) (150.4) (57.4)

10 beta(5,5) 135.67 76.11 288.39 176.53
(72.7) (16.5) (381.9) (94.4)

10 beta(5,3) 122.24 76.57 224.50 146.66
(64.7) (17.4) (283.9) (76.6)

10 beta(3,5) 120.97 76.53 217.67 145.18
(63.8) (17.3) (257.7) (74.0)

10 beta(1,1) 81.99 74.54 84.01 91.40
(35.6) (17.8) (56.9) (36.6)

30 beta(0.9,0.1) 102.90 91.36 — —
(40.4) (12.4)

30 beta(0.1,0.9) 100.88 91.15 — —
(37.3) (12.0)

30 beta(0.1,0.1) 88.69 91.89 — —
(13.9) ( 9.9)

30 beta(2,2) 104.12 82.66 98.92 96.36
(38.0) (13.2) (73.4) (37.0)

30 beta(5,5) 126.88 85.47 152.12 131.06
(51.0) (13.5) (109.3) (43.1)

30 beta(5,3) 118.49 85.40 133.69 115.89
(47.5) (13.7) (89.6) (33.4)

30 beta(3,5) 118.31 85.29 133.02 115.82
(47.9) (13.8) (87.5) (33.6)

30 beta(1,1) 93.50 82.85 120.62 105.93
(29.1) (13.9) (65.6) (28.4)

50 beta(0.9,0.1) 101.58 94.13 — —
(31.9) (10.9)

50 beta(0.1,0.9) 99.60 93.90 — —
(29.7) (10.7)

50 beta(0.1,0.1) 92.31 94.19 — —
(13.9) ( 9.1)

50 beta(2,2) 102.63 86.60 83.50 89.39
(30.8) (11.2) (45.4) (26.1)
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Table 3.1. Continued.

n Law

AMSE SUP-NORM AMSE MAE

T̂N w.r.t. F̂n T̂N w.r.t. F̂n f̂FT w.r.t. kernel f̂FT w.r.t. kernel

(std. err.) (std. err.) (std. err.) (std. err.)

50 beta(5,5) 119.08 88.91 100.99 107.73

(39.7) (11.4) (44.5) (25.2)

50 beta(5,3) 113.30 88.92 107.62 106.32

(36.4) (11.6) (48.2) (22.3)

50 beta(3,5) 112.80 88.79 106.55 105.99

(36.8) (11.7) (48.2) (22.2)

50 beta(1,1) 95.88 86.02 128.60 115.00

(24.7) (11.7) (59.5) (24.1)

100 beta(.9,.1) 101.07 96.50 — —

(23.3) ( 8.5)

100 beta(.1,.9) 99.38 96.60 — —

(20.6) ( 8.6)

100 beta(.1,.1) 96.51 96.29 — —

(12.8) ( 7.6)

100 beta(2,2) 101.49 90.86 82.93 87.93

(22.4) ( 8.7) (38.0) (21.2)

100 beta(5,5) 110.66 92.73 73.08 91.48

(28.2) ( 8.8) (30.6) (22.0)

100 beta(5,3) 107.86 92.86 93.66 100.50

(26.4) ( 9.1) (32.0) (17.3)

100 beta(3,5) 107.90 92.88 93.69 100.36

(26.6) ( 9.2) (32.7) (17.6)

100 beta(1,1) 97.32 89.86 126.04 116.07

(18.5) ( 9.0) (50.7) (23.5)

case. We will now give empirical evidence that it can be even better in some situations
for the small sample case. The main difference between the EDF and the IFS estima-
tor is that the empirical distribution function is a stepwise function whilst the IFS is
somewhat “smooth” in the sense that the IFS jumps have several orders of magnitude
smaller then the ones of the empirical distribution function. Remember that we assume
that the underlying distribution function F is a continuous one. We will also compare
the performance of the density function estimator with respect to the kernel density es-
timator with optimal bandwidth. Table 3.1 reports the results of a Monte Carlo analy-
sis for both distribution and density function estimation. At each Monte Carlo step, we
have drawn samples of n = 10,30,50,100 replications for several types of distribution.
For each distribution and sample size n, we have done 10 000 Monte Carlo simulations.
We have chosen the beta family of distribution functions because they allow very good
and well-tested random number generators, different kinds of asymmetry (beta(3,5) and
beta(5,3)), bell-shaped distributions with (beta(5,5)) or without (beta(2,2)) tails, and
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Figure 3.1. Old Faithful geyser data rescaled on [0,1]. Dotted line is the kernel density estimator
(bw= 0.03, kernel=Gaussian), solid line is the IFS-Fourier expansion estimator (iterated 2 times, 26
Fourier coefficients).

also U-shaped distributions (beta(0.1,0.1)). For distribution function estimation, we have
considered the dsup (SUP-NORM) distance and the average mean square error (AMSE)

both for T̂N and F̂n, then we have reported in the table only the ratio of the indexes. Thus,
each entry in the table reports the percentage of error of T̂N with respect to F̂n, the error

of F̂n being 100. For density function estimation, we have compared f̂FT and the ker-
nel estimator with optimal bandwidth and Gaussian kernel. We have reported again the
AMSE and the mean absolute error (MAE). The table reports the value of the index for
f̂FT with respect to the same value for the kernel density estimator, 100 being the value of
the index of the last estimator. All the distances are evaluated in 512 points equally spaced
on [0,1]. For the distributions like beta(0.1,0.1) that have unbounded density in the end-
points of the interval, both kernel and our Fourier estimators become really unstable, so
we decided to omit the value of the index in the tables. The software used is R [8], freely
available on http://cran.R-project.org, using a beta package IFS available as an additional
contributed package.

For the estimator T̂N , we have chosen to take Nn = n/2 that fits the conditions of The-
orems 3.4 and 3.6 on the law of iterated logarithm and asymptotic efficiency.

In the small sample size case, n= 10,30, it can be noticed that T̂N is sometimes better
(from 10% to 20%) than the empirical distribution function in the sup-norm distance.
This behavior is not shown by the density function estimator f̂FT . For moderate sample
sizes, n = 50,100, the distance between T̂N and F̂n decreases and consequently the gain
in using the IFS estimator is not so evident (on the average 5% to 10% in sup-norm
distance). The density estimator performs a little better in this case, but the associated
standard errors are too high to lead to sharp conclusions.
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4. Final remarks about the method

There is at least one open issue in this topic as this is a first attempt to introduce IFS
in distribution function estimation: are there maps other than the ones used in TN that
can improve the performance of the corresponding IFS estimator? We have suggested a
quantile approach but some other good partition of the space, like a dyadic sequence, can
be used at the cost of the need to solve some optimization problems. In [4], this problem
is incidentally touched on, but not in a statistical context.

We have tested our density estimator on real data and we have chosen the Old Faithful
geyser data. This classical textbook data set is used to show the power of the kernel esti-
mator in discriminating subpopulations by adjusting the bandwidth. We have used the
automatic procedure to select the number of Fourier coefficients as explained previously.
Figure 3.1 shows that this ability of discriminating subpopulation curves is maintained

by the f̂FT estimator.
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