© Journal of Applied Mathematics & Decision Sciences, 2(1), 65-104 (1998)
Reprints Available directly from the Editor. Printed in New Zealand.

MANAGING COST UNCERTAINTIES IN
TRANSPORTATION AND ASSIGNMENT
PROBLEMS

V. ADLAKHA AND H. ARSHAM
Business Center, University of Baltimore,
1420 N. Charles Street, Baltimore, MD 21201-5779, USA

Abstract. In a fast changing global market, a manager is concerned with cost uncertainties
of the cost matrix in transportation problems (TP) and assignment problems (AP). A time lag
between the development and application of the model could cause cost parameters to assume
different values when an optimal assignment is implemented. The manager might wish to deter-
mine the responsiveness of the current optimal solution to such uncertainties. A desirable tool is
to construct a perturbation set (PS) of cost coefficients which ensures the stability of an optimal
solution under such uncertainties.

The widely-used methods of solving the TP and AP are the stepping-stone (SS) method and the
Hungarian method, respectively. Both methods fail to provide direct information to construct the
needed PS. An added difficulty is that these problems might be highly pivotal degenerate. There-
fore, the sensitivity results obtained via the available linear programming (LP) software might be
misleading.

We propose a unified pivotal solution algorithm for both TP and AP. The algorithm is free of piv-
otal degeneracy, which may cause cycling, and does not require any extra variables such as slack,
surplus, or artificial variables used in dual and primal simplex. The algorithm permits higher-
order assignment problems and side-constraints. Computational results comparing the proposed
algorithm to the closely-related pivotal solution algorithm, the simplex, via the widely-used pack-
age Lindo, are provided. The proposed algorithm has the advantage of being computationally
practical, being easy to understand, and providing useful information for managers. The results
empower the manager to assess and monitor various types of cost uncertainties encountered in
real-life situations. Some illustrative numerical examples are also presented.

Keywords: Transportation, assignment, linear models, cost sensitivity analysis, push-and-pull
algorithm.

1. Introduction

The widely-used methods of solving transportation problems (TP) and assignment
problems (AP) are the stepping-stone (SS) method and the Hungarian method,
respectively. Managerial applications are many and go beyond these prototype
problems to include job scheduling, production inventory, production distribution,
allocation problems, and investment analysis, among others. As a dual-simplex
algorithm, the SS proved successful for solving a TP and became the standard
technique for over 50 years. In practice, however, the SS algorithm encounters ma-
jor obstacles as a solution procedure. It has difficulties identifying an initial basic
feasible solution, resolving SS degeneracy, and enumerating SS paths. A recent
flurry of activity has improved the SS algorithm to an extent, enabling it to over-

66 V. ADLAKHA AND H. ARSHAM

come some of these deficiencies.

(a) Finding an initial basic feasible solution: A prerequisite for SS is a basic
feasible solution with a certain number of positive entries. The best known method
to achieve this is Vogel’s, which is not applicable to an unbalanced problem. Goyal
[39] modified Vogel’s method to cover unbalanced cases, and Ramakrishnan [68]
improved Goyal’s approach. Sultan [76] suggested a heuristic to find an initial
feasible solution that may produce an SS degenerate basis. Kirka and Satir [50]
present another heuristic method with minimal improvement over Vogel’s method
for the unbalanced case.

(b) Resolving SS degeneracy: Shafaat and Goyal’s [72] is the first paper with a
systematic approach for handling SS degeneracy (i.e., failure of the optimality test.)
Their algorithm, however, is limited to a special case of degeneracy.

(¢) Enumerating SS paths: Finding SS paths can be very tedious, particularly
for larger problems. Intrator and Szwarc [43] extended an existing decomposition
method. Their approach makes it easier to find SS paths but requires solving sev-
eral sub-problems. Later, Wilsdon [82] provided a systematic method for finding
the SS path that must be applied in each iteration.

The AP is a special case of TP and is traditionally solved using the Hungarian
method. Even though the method is more efficient than the SS method to solve
an AP, to "draw the minimum number of lines to cover all the zeros in the re-
duced cost matrix may not be an easy task”[36]. Moreover, the Hungarian method
is limited [55] to 2-dimensional problems (e.g., people to projects, jobs to machines).

Although we have gained new insights, these above-mentioned improvements do
not lend themselves to a unified approach for an efficient solution algorithm. The
network-based approaches have similar difficulties [25], [65].

There are strong motivations for performing perturbation analysis (PA) to deal
with a collection of managerial questions related to so-called ”what-if” problems.
Managers are concerned with unforeseen changes in the input cost parameters.
They are likely to be unsure of their current values and even more uncertain about
their future values at the time when the solution is to be implemented. Uncertainty
is the prime reason why PA is helpful in making decisions. We can use PA to give
us information like: the robustness of an optimal solution; critical values, thresh-
olds, and breaking-even values where the optimal strategy changes; sensitivity of
important variables; sub-optimal solutions; flexible recommendations; the values of
simple and complex decision strategies; and the "riskiness” of a strategy or scenario.
This information provides systematic guidelines for allocating scarce organizational
resources to data collection, data refinement, and prediction activities of the cost
parameters, and could be considered as a model validation activity. Examining the

MANAGING COST UNCERTAINTIES 67

effects of an increase or decrease in unit costs of transportation would help, for
example, to negotiate rates with trucking companies and in reacting to changed
conditions caused by rate changes.

Although it has long been known that TP and AP can be modeled as linear
programs, this is generally not done, due to the relative inefficiency and complex-
ity of the simplex methods (primal, dual, and other variations). These problems
are usually treated by one of over 20 specialized algorithms for each (see, e.g.,
(4], [9], [8], [10], [13], [14], [12], [19], [20], [29], [30], [31], [32], [37], [42], [45], [a8],
[49], [57], [58], [59], [61], [65], [66], [74], [78], [83]). This leads to several difficulties.
The solution algorithms are not unified as each algorithm uses a different strategy
to exploit the special structure of a specific problem. Furthermore, a small variation
in the problem, such as the introduction of side-constraints, destroys the special
structure and requires a new solution algorithm. These algorithms obtain solution
efficiency at the expense of managerial insight, as the final solutions from these
algorithms do not easily provide sufficient information to perform post optimality
analysis for TP and AP.

Another approach is to adapt the simplex network optimization through network
simplex. This provides unification of the various problems but maintains all ineffi-
ciencies of the simplex, such as pivotal degeneracy, as well as inflexibility to handle
side-constraints. Even ordinary (one-change-at-a-time) sensitivity analysis (OSA)
limits, long available in the simplex, are not easily available in network simplex.

Most linear programming books, including management science and operations
research books, have extensive discussion of linear programming (LP) sensitivity
analysis (SA) but remain silent about the SA and side-constraints for TP and AP.
Both methods, the SS and the Hungarian, lack the ability to test the validity of
the current optimal solution with changes in cost parameters without resolving the
problem. Some textbooks encourage the reader to formulate the problem as an LP
and solve with a software package. The available computer software packages also
have not proven to be effective in dealing with the SA of TP and AP as an LP.

Netsolve, Netflo, and Genos are three network-based software packages that
have a subroutine for TP and AP. Netsolve provides OSA for problems with non-
degenerate final tableau. Netflo and Genos have no SA capability [47]. Cplex [22],
the current state-of-the-art code for solving network problems, incorporates nothing
special for TP or AP’s SA. It uses LP-type SA which can be misleading because of a
degenerate optimal solution, especially for AP. Another popular software package,
QSB, has a module for TP that automatically deletes the last constraint from the
input to an LP formulation. (See [63] for details of these packages). Lindo, a general
LP package, yields one change at a time for cost coefficient. However, the results
are misleading for AP, and could be so for TP with degenerate optimal tableau. To
the best of our knowledge, the literature still lacks managing cost uncertainties for

68 V. ADLAKHA AND H. ARSHAM

a degenerate final tableau case, which is common in these problems.

We propose a single unified algorithm that solves both TP and AP, and also pro-
vides useful information to perform cost-sensitivity analysis to a decision maker.
Similar to the simplex algorithm and its many variants, the proposed solution algo-
rithm is pivotal. The algorithm initiates the solution with a warm-start and does
not require any slack/surplus or artificial variables. Unlike the Hungarian method,
the algorithm can solve higher than 2-dimensional AP. The proposed solution al-
gorithm also facilitates incorporation of side-constraints, which are frequently en-
countered in real-life applications. This algorithm makes available the full power of
LP’s SA extended to handle optimal degenerate solution. The essential calculations
of proposed PA involve the same data and the same manipulation as the solution
algorithm. With little extra computational effort we can obtain the perturbed so-
lution, which provides the necessary information to construct the ”critical” region,
that is, the largest set of cost values for which the current solution remains opti-
mal. In contrast to OSA, the proposed PA provides ranges for which the current
optimal basis remains optimal, for simultaneous dependent or independent changes
of the cost coefficients from their nominal values. The preliminary computational
results demonstrate that the algorithm is more efficient than the simplex method in
terms of number of iterations and size of tableaux. The proposed approach is easy
to understand, easy to implement, and thus can serve as effective tools for solving
TP, AP, and related problems in all phases, namely design, analysis, and operation.

The next section presents the solution algorithm which includes an illustrative TP
numerical example. This is followed by a discussion on geometric representation
and theoretical properties of the proposed solution algorithm in Section 3. Section
4 is devoted to the solution of a 3-dimensional AP. Computational behavior and
computer implementation issues are presented in Section 5. General perturbation
analysis of cost coefficients is covered in Section 6, followed by special cases of sen-
sitivity analysis in Section 7. Handling the side-constraints and PA of the optimal
degenerate case problems are given in Sections 8 and 9 respectively. The last section
presents some concluding remarks. The proofs are given in the appendix.

2. The Solution Algorithm

A shipper having m warehouses with supply S; of goods at his i*” warehouse must
ship goods to n geographically dispersed retail centers, each with a given customer
demand D; which must be met. The objective is to determine the minimum pos-
sible transportation cost given that the unit cost of transportation between the it"
warehouse and the j'" retail center is C;;.

This problem is known as the TP and has the following standard LP formulation:

MANAGING COST UNCERTAINTIES 69

Minimize Z Z C’inij,

subject to
YoXy=S i=12.m (1)
Y Xiy=D; j=1,2.n (2)

with the balanced condition

> Si=> "D, (3)

and X;;,D;,S; > 0. Note that any unbalanced problem can be converted to a bal-
anced one by adding a row or column. Clearly any of the above m + n constraints
which are redundant can be deleted. When S; and D; = 1, this problem refers to
the assignment problem that involves determining the most efficient assignment of
people to projects, jobs to machines, salespeople to territories, contracts to bidders,
and so on. The objective is to minimize total costs or total time for performing the
tasks at hand. In a 2-dimensional problem, the optimal solution of AP would be
an integer, i.e., only one job or worker is assigned to one machine or project. Also
note that in an AP, n = m and in any optimal solution exactly n out of the 2n — 1
basic variables have value 1 and (n—1)? non-basic variables along with (n—1) basic
variables have value 0. Thus, AP as an LP is extremely (primal) degenerate. The
PA using any software packages provide unrealistic results since all these packages
assume a problem to be non-degenerate.

Although the classical TP also requires that supply and demand (S; and D;) be
integers (traditionally the number of units), we can relax this condition without
loss of generality. Also, we relax the condition of an integer solution. We maintain,
however, the condition in an AP that all workers and jobs etc., should be fully
allocated, i.e., S; and D; = 1. The integrality condition of variables in these prob-
lems is superfluous, imposed by researchers only. The existing solution algorithms
associated with TP and AP, such as the SS, Hungarian and network algorithms,
can provide a solution only under such limiting condition. In real life situations,
however, as in a higher dimensional AP, it is feasible and may be optimal to ro-
tate workers among jobs, or salespeople among territories, and a TP could involve
non-discrete demand and supply, such as weights and volume. When S; and D; are
integers, our algorithm does provide an integer solution. Our approach, however,
does not restrict these variables to being discrete. This is a significant difference
between existing methods and the approach presented below. One can, however,
introduce Gomory’s cutting planes [6], [16] of LP to ensure an integer solution, if
so desired.

70 V. ADLAKHA AND H. ARSHAM

2.1. A Pivotal Algorithm

We present steps of a simplex-type pivotal algorithm for the solution of general TP
and AP, hereafter referred to as the Push-and-Pull algorithm, to reflect the two
main strategies of the approach. The following additional notations of the simplex
method are used:

GJP: Gauss-Jordan pivoting,
BV: basic variable,

BVS: BV set,

NB: non-basic variable,

PR: pivot row,

PC: pivot column,

PE: pivot element,

RHS: right hand side,

C/R: column ratio, RHS/PC,
OR: open row, a row not yet assigned to a BV, and
(?): label for an open row.

2.1.1. The Push-and-Pull Algorithm

The algorithm consists of cost adjustments and initialization followed by two phases.
Step 1 : Reduced cost matrizx

1.1 : Row-column reduction
From each row subtract the smallest cost.
Then subtract the smallest cost in each column.
Accumulate the effect of row and column reductions into the base cost.

1.2 : Eliminate redundant constraint
Identify the row/s and/or column/s with the most zeros in the reduced cost
matrix.
Eliminate the corresponding constraint/s (in case of an AP).

In this step we reduce the cost in the matrix cells by a base amount. This helps
identify lowest cost cells with zeros for variables to enter into basis. Dropping
the row with zeros facilitates a good start in the initialization phase, i.e., the
next step.

Step 2 : Initialization phase

MANAGING COST UNCERTAINTIES 71

2.1 : Set up the simplex tableau
Use a row for each constraint and a column for each variable. Enter reduced
C;’s in the cost row with a negative entry for the base cost under the RHS.

2.2 : Identify BVs
For each unit-vector column, label the row containing the ”one” with the
name of the variable for the column. Label the remaining rows as open
rows.

2.3 : Delete BV columns

This phase tries to set up the initial tableau with as many BVs as possible in it
without any iterations. These are the variables with only single +1 in its col-
umn. Since we drop the constraint with the most zeros, the phase gives many
basic variables immediately. At the end of this phase, the tableau has entries
of 1 and 0 only.

Step 3 : Push phase

3.1 : BVS iteration termination test
Check if a (?) label exists (open row). If none, BVS is complete. Go to
step 4.

3.2 : BV selection of PE
PC: Select the smallest C;; and any ties as candidate column(s). PR: Select
open rows as candidate rows. PE: Select the candidate row and the column
with the smallest non-negative C/R. If no non-negative C/R, choose the
C/R with the smallest absolute value. If the pivot element is zero, then
select the next best Cj;.

3.3 : BVS augmentation
Perform GJP. Replace the (?) row label with the variable name. Remove
PC from the tableau. Go back to step 3.1.

The purpose of this phase is to complete the BVS of the preliminary phase while
maintaining the optimality condition. The variables are brought into open rows
marked by (?) only, and no replacement of variables in BVS is done in this
phase. Thus, in this phase, we push toward optimality. We try to achieve this
by maintaining feasibility and optimality (step 3.2) as much as possible. If by
the end of this phase the RHS is positive, this is an optimum solution. Step 3.3
reduces the tableau by one column as you proceed to obtain short tableau.

Step 4 : Pull phase(feasibility phase)

4.1 : Iteration termination test
If RHS > 0, the tableau is optimal, STOP. Otherwise continue.

72 V. ADLAKHA AND H. ARSHAM

4.2 : Selection of PE
PR: row with the most negative RHS. PC: column with a negative element
in the PR. Tie breaker: column with the smallest Cj;.

4.3 : Transformation
Save PC. Perform usual GJP. Exchange PC and PR labels. Replace the
new PC with old saved PC. Go to 4.1.

The purpose of this phase is to make the current solution feasible while maintaining
the optimality condition. This phase is similar to the dual simplex in that it starts
from a vertex which is infeasible but close to the optimal solution (a warm-start).
This is in contrast to the usual dual simplex which often starts far from the optimal
vertex.

2.2. Numerical Example 1

We select a 3x3 TP used by Shih [73] to illustrate the Push-and-Pull algorithm.

Table 1. Cost matrix of Shih’s problem.
D, Dy, Ds Supply

S) 30 12 35
So 20 18 30 80
Ss 15 25 23 75

Demand 70 100 40

Step 1 : Cost-matrix adjustment:

5

o N O
= O N
— Ut O

0

The base cost is 5(55) + 18(80) + 15(75) + 7(40) = 3120 dollars. Delete the
first demand constraint with two zeros from the initial simplex tableau.

Step 2 : Initialization Phase:
The following tableau is obtained after steps 2.1 through 2.3.

MANAGING COST UNCERTAINTIES 73

Table 2. Initial tableau for Shih’s problem
BVS Xip Xi3 Xo1 Xpp Xpz X3 X3z RHS

X 1 1 55
? 1 1 1 80
Xa 1 1 75
? 1 1 1 100
? 1 1 1 40

Cost 25 0 2 0) 10 1 -3120

Step 3 : Push phase: Variables X3, X2, and Xy, in that order, replace the (7)
row labels, respectively. The following tableau is obtained after repeating steps
3.1 through 3.3.

BVS Xj» Xs3 Xz Xz RHS

Xu 1 1 1 15
Xop 1 1 100
Xa 1 1 75
Xoy -1 1 -1 20
X13 1 1 40

Cost 27 3 12 1 -3080

Step 4 : Pull phase: The RHS < 0, hence Pull phase is needed. Variable X3,
enters to replace variable Xo;. After GJP, the following optimal tableau is ob-
tained with non-negative RHS.

Table 3. Optimal tableau for Shih’s problem
BVS X, Xo3 X211 Xss RHS

X, 1 1 1 15
Xoo 1 1 80
Xy -1 1 1 1 55
Xz 1 -1 -1 20
Xi3 1 1 40
Cost 15 15 12 1 -3320

The optimal solution is: X711 = 15, X253 = 80, X31 = 55, X35 = 20, and X3 = 40,
with a total cost of $ 3320.

2.3. Comments on the Push-and-Pull Algorithm

i) The entries in the body of the tableau are 1, -1, and 0 only.
ii) Cost row always has non-negative entries.

iii) RHS entries are all non-negative at optimality.

74 V. ADLAKHA AND H. ARSHAM

iv) There are only m + n — 1 basic variables in any solution. This is consistent
with the theory that in a TP, no more than m +n — 1 cells should be occupied.

v) At the end of Step 3 we have an initial solution. The entries under non-basic
variables would have a count of one more 1 than of -1. In fact, these entries
are analogous to corner cells of a path of the SS method. When a NB variable
comes into basis, we add to the BV cell with -1 and subtract from the cell with
1. For example in Table 3, to add a unit to NB variable X5 (an unoccupied
cell), we have to take away a unit from X;; and X3» each with 1 entry and add
a unit to variable X3; with -1 entry. This indeed is a closed SS path from X;2
in this solution.

vi) The entries in the cost row for non-basic variables represent the amount by
which the current total cost would increase if a unit of that variable is to be
brought into the current basis.

vii) The algorithm avoids the use of the extra variables (slack and surplus) that
are needed for the equality constraints, each of which must be converted to
two inequalities, in the dual simplex [11] . The Push-and-Pull algorithm is also
artificial-free, as compared with the simplex method. This reduces computa-
tional complexity considerably.

2.4. Alternate Solutions

The proposed algorithm provides a clear indication of the presence of alternate,
optimal solutions upon termination. Clearly, different alternate solutions give the
same cost. The decision maker, however, has the option of deciding which optimal
solution to implement on the basis of all the other factors involved.

Note that generating all alternative solutions can be computationally burdensome
and may not be necessary. Moreover, the occurrence of alternative solutions is rare
and can easily be avoided by a slight perturbation of the cost parameters. A decision
maker, however, can easily generate alternate optimal solutions, if necessary. Given
a final solution, check the entries in the cost row to find if there are any alternate
solutions. An entry of 0 in the cost row represents a non-basic variable which can
come into the basis to provide an alternate solution. Discard any that result in
the same optimal strategy, that is, the basis changes but optimal shipment routes
do not change. This can happen if the final solution is primal degenerate. From
the distinct optimal strategies, pick one to implement. Failure to identify alternate
routes deprives a manager of the flexibility regarding decisions to reallocate capacity
from one route to another while maintaining the same cost. The optimal solution
for example 1 given in Table 3 indicates that there are no alternate solutions in this
case.

MANAGING COST UNCERTAINTIES 75

3. Properties of The Push-and-Pull Algorithm

The Push-and-Pull algorithm operates in the space of the original variables and
has a geometric interpretation of its strategic process. We provide this geometric
interpretation of the algorithm by comparing it to the geometry behind the con-
ventional simplex method.

The simplex method is a vertex-searching method. It starts at the origin, which
is far away from the optimal solution for the TP and the AP. It then moves along
the intersection of the boundary hyper-planes of the constraints, hopping from one
vertex to neighboring vertex until an optimal vertex is reached in two phases. It
requires adding artificial variables since it lacks feasibility at the origin. In the first
phase, starting at the origin, the simplex hops from one vertex to the next vertex
to reach a feasible one. Upon reaching a feasible vertex, that is, upon removal of all
artificial variables from the basis, the simplex moves along the edge of the feasible
region to reach an optimal vertex, improving the objective value in the process.
Hence the first phase of simplex tries to reach feasibility, and the second phase
strives for optimality. The simplex works in the space of m*n+ (m+n —1) dimen-
sions, because there are m *n X;;s and m + n — 1 artificial variables, where m is
the number of supply points and n is the number of demand points for the TP or AP.

In contrast, the Push-and-Pull algorithm strives to create a full BVS, that is, the
intersection of m + n — 1 constraint hyper-planes of the TP or AP that provides
a vertex. The initialization phase provides the starting segment of a few intersect-
ing hyper-planes and yields an initial BVS with some open rows. The algorithmic
strategic process is to arrive at the feasible part of the boundary of the feasible re-
gion, initial BVS (never empty for TP or AP), which may contain an optimal vertex
or a vertex that is close to it. In the Push phase the algorithm pushes toward an
optimal vertex, unlike the simplex, which only strives for a feasible vertex. Occu-
pying an open row means arriving on the face of the hyper-plane of that constraint.
Each successive iteration in the Push phase augments the BVS by including another
hyper-plane in the current intersection. By restricting incoming variables to open
rows only, this phase ensures movement in the space of intersection of hyper-planes
selected in the initialization phase only until we hit another hyper-plane. Recall
that no replacement of variables is done in this phase. At each iteration we re-
duce the dimensionality of the working region until we fill up the BVS, indicating
a vertex. This phase is free from pivotal degeneracy. The selection of an incoming
variable as the one having the smallest C;; helps push toward an optimal vertex.
As a result, the next phase starts with a vertex in the neighborhood of an optimal
vertex.

At the end of the Push phase the BVS is complete, indicating a vertex. If feasible,
this is an optimal solution. If this basic solution is not feasible, it indicates that
we have pushed too far. Note that, in contrast to the first phase of the simplex,

76 V. ADLAKHA AND H. ARSHAM

this infeasible vertex is to the other side of the optimal vertex. Like the dual sim-
plex, now the Pull phase moves from vertex to vertex to retrieve feasibility while
maintaining optimality, and it is free from pivotal degeneracy since it removes any
negative (not zero) RHS elements. The space of the Push-and-Pull algorithm is
m + n — 1 dimensions in the Push phase and m x n dimensions in the Pull phase.
Note that m+mn—1 is the number of constraints and m*mn is the number of variables.

The importance of the Push-and-Pull algorithm is recognized by the fact that
whereas 95 percent of the pivots in the simplex method are degenerate, which may
cause cycling [62], in solving AP [28], the proposed algorithm is completely free of
pivotal degeneracy.

Theorem 1: The Push-and-Pull algorithm is free from pivotal degeneracy which
may cause cycling.

Theorem 2: The Push-and-Pull algorithm terminates successfully in a finite
number of iterations.

The proofs of Theorem 1 and Theorem 2 are provided in the appendix.

4. An Assignment Problem

The Push-and-Pull algorithm provides a discrete optimal solution for a 2-dimensional
AP, and if a discrete optimal solution exists, for higher-dimensional problems
[7], [23], [35] . Since a 2-dimensional AP formulation is straight-forward, we present
the algorithm for a 3-dimensional AP.

4.1. Numerical Example 2

Table 4. Cost matrix for
the 2x2x2 AP

Machine
1 2
Job Job
Person 1 2 1 2
Adams 10 5 7 8
Brown 4 7 9 2

The LP formulation of this AP is as follows:
Minimize 10X111 + 5X112 + 7X121 + 8X122 + 4X211 + 7X212 + 9X221 + 2X222
subject to

MANAGING COST UNCERTAINTIES 77

X + X2 + Xy + Xy =1
Xor1 + Xo1 + Xoog + Xopo =1
X111+ Xy19 + Xopr + Xo1p =1
X121 + X122 + Xoo1 + Xoop =1
X1 + Xio1 + Xopp + Xooy =1
X2 + Xi22 + Xop + Xogp =1

Two constraints are redundant, so we arbitrarily delete the 3rd and the 5th con-
straints.

Table 5. Initial tableau using the Push-and-Pull algorithm
BVS Xy X2 Xior Xise Xonn Xoip Xoop Xopp RHS

? 1 1 1 1 1
? 1 1 1 1 1
? 1 1 1 1 1
? 1 1 1 1 1
Cost 10 5 7 8 4 7 9 2 0

The Push Phase takes four iterations resulting in the following optimal tableau:

Table 6. Optimal tableau of the AP
BVS Xinn Xiz» Xoip Xoy RHS
Xi12 0.5 0.5 0.5 -0.5 0.5
X511 05 -0.5 0.5 0.5 0.5
Xooo -0.5 0.5 0.5 0.5 0.5
X1 05 0.5 -0.5 0.5 0.5
Cost 3 3 5 5 -9

The optimal solution of AP is Xi12 = Xs11 = Xoos = Xyo1 = 0.5, and all
other X;;rx = 0. This implies that Adams should do job 1 on machine 2 for 50
percent of the time and job 2 on machine 1 for the other 50 percent of the time.
Brown, likewise, should divide his time equally between job 1 on machine 1 and job
2 on machine 2. So each person spends 50 percent of his time on each job using
both machines at the total cost of 9. Note that this problem does not have a totally
unimodular matrix to ensure an integer solution. Solving this problem for an integer
solution using Gomory’s cutting planes [6] of LP yields solution X111 = X222 = 1,
with inferior optimal value of 12.

The theoretical basis for the Push-and-Pull algorithm rests largely upon the total
unimodularity of the coefficient matrix in the simplex tableau for TP, that is, the
values of the coefficients are 0, -1, or 1 (see the appendix for a detailed proof).
The nominal problem always has a unimodular constraint matrix. However, as
observed in numerical example 2, this may not be the case when side-constraints
are present. The violation of the total unimodularity does not affect the solution

78 V. ADLAKHA AND H. ARSHAM

procedure. This is a significant difference between existing methods dealing with
side-constraints and our approach. If the solution is not integral, one may introduce
cutting planes to ensure an integral solution, if so desired.

5. Computational Behaviour and Implementation

As mentioned earlier, there are well over 40 solution algorithms for the TP and AP.
Many different algorithms are presented and coded in various sources (see, e.g.,
[19], [24], [40], [51]). The network simplex algorithm is consistently superior to the
ordinary simplex and out-of-kilter algorithms. Most of this computational testing
has been done on random problems generated by the well-known computer program,
Netgen. To perform a meaningful comprehensive computational comparison, one
needs to code all existing algorithms using similar data structure and processing.
The computerized version of the algorithm must utilize the same compiler and the
same platform. Then one can perform a thorough computational comparison either
in terms of CPU, storage, or both. This is a major undertaking. Because of a lack
of manpower resources at the present time, we are not able to present this type of
comprehensive computational comparison.

The Push-and-Pull algorithm is pivotal like simplex-based algorithms and is more
efficient than any other pivotal algorithm, such as the dual simplex and many other
variants of simplex. A preliminary experiment to study computational behavior of
the algorithm supports this assertion. Table 7 presents results comparing the pro-
posed algorithm to the closely-related pivotal solution algorithm, namely the sim-
plex algorithm, via the widely-used package Lindo on the VAX VMS 5.5-2. This
computational comparison includes several small- to medium-sized published prob-
lems, which include some of the largest specific (non-random) problems of which
we are aware. Note that Lindo is equipped with many helpful features such as anti-
degeneracy devices, steepest-edge selection [38], [41], [84], crashing start, and so on.
In spite of all these features in Lindo, the Push-and-Pull algorithm is more efficient
in terms of number of iterations. As demonstrated by the results in Table 7, the
proposed algorithm reduces the number by almost 50 percent as compared to Lindo.

5.1. Computer Implementation Issue

Up to now, the description we have given of the Push-and-Pull algorithm aimed at
clarifying the underlying strategies and concepts. A second important aspect that
we consider now is efficient computer implementation and data structures similar
to those already developed by computer scientists for network-based solution al-
gorithms [40]. Practical TP and AP may have thousands of constraints and even
more variables. These problems have a large percentage of zero elements in the cost
matrix (i.e., a sparse matrix). The proposed algorithm as described is not efficient
for computer solution of large-scale problems since it updates all the elements of the

MANAGING COST UNCERTAINTIES 79

tableau at each iteration. Some useful modifications of the proposed algorithm as
well as its efficient implementation will reduce the number of elementary operations
and the amount of computer memory needed. This section describes how an effi-
cient implementation of the Push-and-Pull algorithm capable of solving large-scale
problems could be developed. Adaptation of sparse technology is motivated by the
fact that, for a large sparse problem, an iteration of the revised simplex method
takes less time than an iteration of the standard simplex GJP.

Table 7. Number of Iterations using the Push-and-Pull algorithm versus Lindo

Problem Type | Simplex | Algorithm | Problem Source

and Size (Lindo) | Push & Pull

TP 3 by 3 5 3 Shih [73]

TP 4 by 4 5 3 Taylor, example [77]

AP 4 by 4 5 3 Anderson et al., example [5]

TP 3 by 3 6 3 Davis et al., example [27]

AP 4 by 4 9 5 Taylor, example [77]

TP 3 by 3 with 10 5 Shih, with 3 fixed

3 side constrs capacitations [73]

TP 5 by 5 18 9 Shafaat and Goyal [72]

TP 5 by 6 19 9 Phillips and Garcia-
Diaz, example [67]

Total 7 40

Our implementation is a straightforward adaptation of the proposed algorithm
through appropriate use of data structure, sparse technology, pivot strategy rules,
and triangularity of the coefficient matrix. Computer implementation of all phases
of the algorithm is discussed. We are concerned with computational efficiency,
storage, accuracy, and ease of data entry.

5.2. Sparsity and Data Structure

The density of a matrix is the ratio of the number of non-zero entries in the matrix
to the total number of entries in the matrix. A matrix that has a low density is
said to be sparse. The sparse matrix technology is based on the following principles:

- only non-zero elements are stored,
- only those computations that lead to changes are performed,
- the number of fill-in (i.e., non-zero) elements is kept small,

- any unused locations (zero elements) can be used for storing of fill-ins (non-zeros
produced later).

80 V. ADLAKHA AND H. ARSHAM

Sparse technology [56] enables us to reduce the total amount of work that is done
in each iteration. Many schemes are available to avoid storing the zero entries
of matrices. Since our calculations operate on tableaux by columns, we discuss a
storage structure, called a linked list, that makes it easy to access data by columuns.
A piece of computer memory must contain three entries: one to hold an entry from
the tableau, one to hold a row number, and one for the pointer to hold the next
memory address. For example, the initial tableau of our numerical example 1 and
its linked list for holding the data is as follows:

Table 8. Initial tableau of the numerical example 1
RHS
0 55
0 80
1 75
0
1
1

100
40
-3120

O = O O
O == OO

Ol= O O O -
OO = O = O
U= O O = O

NSO OO = O

Cost 25

—
o

Table 9. The linked list for the coefficient matrix of example 1

Column 1 2 3 4 5 6 7 8
Entry 1 1 95
Row 1 1 1
Pointer

Entry 1 1 1 80
Row 2 2 2 2
Pointer

Entry 1 1 75
Row 3 3 3
Pointer

Entry 1 1 1 100
Row 4 4 4 4
Pointer

Entry 1 1 1 40
Row 5 5 5 5
Pointer

Entry 25 2 5 10 1 -3120
Row 6 6 6 6 6 6

Pointer

MANAGING COST UNCERTAINTIES 81

The empty spaces in Table 9 are unused locations. By having a matrix generator
program in order to generate constraints and the objective function automatically
at our disposal, we can store the non-zero values in a linked-list form. This scheme
has minimal storage requirements and has proven to be very convenient for several
important operations, such as permutation, addition, and multiplication of sparse
matrices, in our solution algorithm and PA. For example, it can be shown that
if b is a [1 by m] matrix and A is an [m by n] matrix that is stored as a linked
list, then bA can be evaluated in d*m*n multiplications, where d is the density of
A. An advanced variant of this scheme is Sherman’s compression, which is useful
in storing triangularized matrices. Such an approach can be applied in all phases
of the Push-and-Pull solution algorithm and the needed PA, since the constrained
coefficients matrix can be triangularized.

5.3. Matrix Triangularization

Working with the triangularization of matrix A rather than A itself has been shown
to reduce the growth of new non-zero elements significantly. It is well known that
matrix A is reducible to a unique triangular structure. The very structure of matrix
A allows for rearranging it in a lower triangular form. The fill-in is zero when A
is triangularized. The general idea is to permute the rows and columns of the ba-
sis to make the rearranged matrix lower triangular. There are two phases as follows:

Front phase: Among the unassigned rows, find the one with the minimum count
of non-zeros. If this count is 1, assign the row and its (only) unassigned column to
the front and repeat; otherwise, exit.

Rear phase: Among the unassigned columns, find the one with the minimum
count of non-zeros. If this count is 1, assign the column and its (only) unassigned
row to the rear and repeat; otherwise, exit.

Table 10 shows a given matrix at a given iteration:

Table 10. Row and column counts
Col.1 Col.2 Col.3 Col.4 Count

Row 1 X X X 3
Row 2 X 1
Row 3 X 1
Row 4 X X X 3
Count 3 1 3 1

Upon entering the Front phase, we find that row 2 is a singleton, so it is assigned
to the front with column 1. Then, row 3 is assigned to the (new) front with column
3. Next the Rear phase is entered, and the singleton column 4 is assigned to the
rear with row 4. Finally, the singleton column 2 is assigned to the rear with row 1.

82 V. ADLAKHA AND H. ARSHAM

The result is shown in Table 11:

Table 11. Result of triangularization
Col. Col.3 Col. 4 Col. 2

Row 2 X

Row 3 X

Row 4 X X X

Row 1 X X X

Push phase

In the Push phase one can construct a lower (block) triangular matrix by permut-
ing matrix A with interchanging rows and columns. In order to preserve sparsity,
an alternative approach for this reordering is block triangular diagonalization. This
approach is attractive since under GJP, it maintains sparsity. In other words, this
triangular structure is invariant under row or column interchanges to achieve spar-
sity within each block.

We were able to develop a Push phase employing the strategy of avoiding the
use of artificial variables with large positive coefficients [15], [18], [26], [27]. In this
phase, we start the initial tableau with a partially filled basic variable set. There-
fore, the basic variable set is being developed. This particular crashing technique
pushes toward a ”vertex close to the optimal.” Most commercial codes incorporate
some other form of crashing techniques to provide the initial basis.

Pull phase

Using the matrix A, any iteration in this phase consists of solving [A]xp = b to
determine the direction of movement (say, k) and updating the pivot column yy
by solving [A]yr = Ck. This basic solution is used in the Pull phase to determine
which current basic variable must leave the basic variable set (if needed) and to
move to the new basic solution by performing the pivot operation (i.e., updating
the A matrix). In the computer implementation, the inverse of the basis matrix is
not needed [81]. If A is a triangular matrix, then the foregoing systems of equations
can be solved easily by one forward and two backward substitutions, respectively
[60].

We can also achieve efficiency in performing GJ operations in this phase from
another point of view known as A = LU factorization of A (see, e.g., [69], [75]).
Matrices L and U are lower and upper triangular matrices for which the inverses
can be computed easily and then solved for the above systems of equations by in-
version. In this approach L—! is stored as a sequence of ”elementary” matrices and
U is stored as a permuted upper triangular matrix.

MANAGING COST UNCERTAINTIES 83

In [33], [79], [80] some ingenious variant of the Bartles-Golub triangular factored
updating procedure to exploit sparsity is proposed. This approach could lead to
a decrease in accuracy through the introduction of round-off error. Working with
integers (not real numbers), however, and not using any large numbers such as
big-M, the computations would be precise and reliable. Since the [A] elements are
0, 1 or -1, the column ratio (C/R) division operations can be replaced by a simple
comparison operation.

The steepest-edge pivoting rule, also referred to as the largest-decrease rule,
chooses the candidate whose entrance into the basis brings about the largest de-
crease in the objective function. This usually reduces the number of iterations, but
may increase total computing time. A large fraction of the time needed to perform
an iteration can be spent in retrieving the data. However, this approach is best
suited to the Push-and-Pull algorithm, given the sparsity of TP and AP models
after the row-column reduction.

Our discussion of computer implementation is by necessity and in no way is
comprehensive. There are many interesting variants of what we mentioned that
deserve further study to reduce the total number of iterations (the sum of all the
iterations in all phases) and the amount of work that is done in each iteration.

6. Managing The Cost Uncertainties

The cost vector C, is composed of elements C;; appearing row-wise, i.e., C = {C11,
Ci2, ooy Ciny Co1,y Caay oovy Copy Cin1y Cri2y .y Cri b The cost parameters are more
or less uncertain. We are likely to be unsure of their current values and even more
uncertain about their future values at the time when the solution is to be imple-
mented. A time lag between the development and application of the model could
create such uncertainty. In a volatile global market, an ever-changing currency ex-
change rate could affect the cost of stationing executives in various countries in an
AP. Therefore, managers are concerned with the stability of the optimal solution
under uncertainty of the estimated cost parameters.

Uncertainty is the prime reason why PA is helpful in making decisions. We can
use PA to give us information like: the robustness of an optimal solution; critical
values, thresholds, and break-even values where the optimal strategy changes; sensi-
tivity of important variables; sub-optimal solutions; flexible recommendations; the
values of simple and complex decision strategies; and the ”riskiness” of a strategy
or scenario. For a more detailed discussion of PA in practice, see [64].

Current approaches to deal with cost uncertainties include:

Scenario Analysis - In this approach one assumes scenarios (a combination of
possible values of uncertain costs) and solves the problem for each. By solving the

84 V. ADLAKHA AND H. ARSHAM

problem repeatedly for different scenarios and studying the solutions obtained, a
manager observes sensitivity and heuristically decides on a subjective approxima-
tion.

Worst-Case Analysis - This technique attempts to account for putting safety mar-
gins into the problem in the planning stage.

Monte-Carlo Approach - In this approach, stochastic models assume that the un-
certainty in cost is known by its distribution (see, e.g., [54]).

Reoptimization - The combinatorial and the network-simplex approaches in network-
based SA can only handle integer changes in C;;. The combinatorial approach re-
quires the solution of a completely different maximum flow network problem for
each unit change in any cost coefficient C;, until infeasibility is reached. The
network-simplex approach can handle any number of unit changes [3]. Neither
of these two approaches produce any managerially-useful prescriptive ranges for
sensitivity analysis. A prerequisite for these approaches is to have an anticipated
direction of change. From a manager’s point of view, anticipation of possible sce-
narios may not be an easy task. Application of a transformation scheme to attain
the integrality condition for the nominal problem in the network-based algorithm
makes PA too complicated to interpret.

PA deals with a collection of questions related to so-called ”what-if” problems
in preservation of the current optimal strategy generated by the proposed solution
algorithm. PA starts as soon as one obtains the optimal solution to a given nom-
inal problem. There are strong motivations for a manager to perform PA for the
parameters Cj; to:

- help determine the responsiveness of the solution to changes or errors in cost
values,

- adapt a model to a new environment with an adjustment in these parameters,

- provide systematic guidelines for allocating scarce organizational resources to
data collection and data refinement activities by using the sensitivity informa-
tion,

- determine a cost perturbed region in which the current strategic decision is still
valid.

Although all aspects of PA are readily available for LP models, even OSA is rarely
performed on TP or AP. While the SS method, the Hungarian method, or other
traditional network-based solution algorithms may be efficient in solving a TP and
AP, they are not designed to perform PA. The final solutions generated by the SS
method for TP or the Hungarian method for AP do not contain enough informa-
tion to perform PA. If the needed sensitivity information were readily available in

MANAGING COST UNCERTAINTIES 85

these algorithms, the operations research and management science textbooks would
have covered the SA of the TP and AP. Considerable additional work is involved
in obtaining the needed information. Moreover, one must be careful in using the
existing LP computer packages for performing SA for AP as the optimal solutions
are degenerate.

The basis inverse matrix is an essential prerequisite to SA. The SS and Hun-
garian methods do not provide this matrix directly. One may suggest using the
optimal solution obtained by these methods, or any other traditional algorithm, to
construct the basis matrix. This basis matrix can then be inverted to obtain the
basis inverse matrix and other needed information. However, in addition to these
extra computational costs, there is the problem of recognizing the basic variables
contained in the optimal solution since the optimal solution may be degenerate.
This is always the case for the AP since the number of positive variables is much
smaller than the size of the BVS, due to a degenerate optimal solution. Also, note
that it is this degeneracy of the optimal solution which causes the regular simplex
to provide very misleading SA for the AP (and probably the TP).

Two recent developments in network-based SA, the combinatorial approach and
the network approach (including the SS and the Hungarian methods), can handle
only integer changes [3]. The combinatorial approach requires the solution of a
completely different problem, until infeasibility is reached. Specifically, it requires
a maximum flow problem for each unit change in a cost coefficient. More com-
plex changes such as simultaneous SA must be dealt with a sequence of this simple
change. The network algorithm approach to SA can handle any number of unit
changes. The change, however, is restricted to one change at a time as in the com-
binatorial approach. These limitations are caused by the inability of these solution
algorithms (SS, Hungarian, network-based, and others) to handle a larger scope of
SA. The network community has put much effort on developing efficient solution
algorithms at the expense of SA.

Neither of these approaches produces any managerially useful prescriptive ranges
on costs for the SA. Additionally, a prerequisite for some of these approaches is to
have an anticipated direction of changes. From a managerial point of view, antici-
pation of possible scenarios may not be an easy task.

Define the perturbed TP to be

Minimize Z Z(Cij + C;j)Xij)

with the same constraints as before and the admissibility condition C’;j > —Cjyj.
The PA starts as soon as we obtain the final tableau of the Push-and-Pull algo-
rithm. At this stage we need to introduce some more notations as shown in Table
12. The initial tableau is partitioned into B, the BV coefficients, and N, the NB

86 V. ADLAKHA AND H. ARSHAM

coefficients, as they appear in the final tableau, and the RHS column. Note that,
as it progresses, the solution algorithm removes the nonbasic columns.

Table 12. Necessary components for cost perturbation
analysis from the final tableau

BVS Xy RHS

Xp [A] b

Cost, C;, =Cny —Cp- [A]

As mentioned earlier, the occurrence of alternative solutions is rare and can easily
be avoided by a slight perturbation of the cost parameters. Note, however, that
if a decision maker wants alternate optimal solutions and related SA, he needs to
generate many (a combinatorial problem) optimal solutions to get basis matrices,
B, if using any other solution methods. Then each B has to be converted and mul-
tiplied by the N matrix. However, [A] = B"!N is provided by the Push-and-Pull
solution algorithm as a by-product. We can easily generate other distinct [A]’s by
using this one to generate all other solutions, if needed.

Having obtained the necessary information from the final tableau, cost PA can
be started. To find the critical region, that is, the largest set of perturbed costs for
which the current solution remains optimal, we must find the allowable changes in
the cost coefficients. The necessary and sufficient condition to maintain the cur-
rent optimal strategy is that C'y; > 0, where 0 stands for a zero vector with the
appropriate dimension. Let 6 denote the set of perturbed costs C;j to maintain
optimality:

’

0={C,;lCxk >0 and Cj; >—Cy}. (5)

1] —

The set 8 is non-empty since it contains the origin C’; ; =0, foralli, j. It is convex
with linear boundary functions, by virtue of GJP operations. This set can be used
to check whether the given perturbed (dependent or independent) cost coefficients
have the same optimal solution as the nominal problem. To help clarify what we
have done up to now, consider the numerical example 1. From the final tableau in
table 3, we have:

1

0
[A]= | -1

]__

0

O === O
— e e
HOoO R O~

The perturbed cost vector is:

MANAGING COST UNCERTAINTIES 87

C+C =[54C,30+ Cly, 12+ Ci3,20 + Cyy, 18 + Chs,
30 4 Chg, 15 + Clyy, 25 + Chy, 23 + Chgl,

with

Cp = [5+C,, 184Cy, 15+Cy,, 254Ch,, 124+C,5], and
On = [30+Cy, 204+Cs;, 304Chs, 234+Cas].

The perturbed set is

6 ={C;

il 15+ 012 - 011 + Cé1 - C:;Q >0, (6)
12+ Cyy — Chy — Cyy + Cp 2 0,

15+ Chg + Cyy — Chy — Clyy + Clgy — Oy > 0,

L+ C5+ Cly = Cay — Oy > 05

Chy > —5,C1y > —30,C)5 > —12,

—20,Clhy > —18,Chs > 30,

>
> —15,Cjy > —25,Cyy > —23}

>
>

The set # can be used to check whether a specific scenario has the same op-
timal basis as the nominal problem. For example, assume that the perturbed
cost vector for a given scenario is: C' 4+ C' = {9,22,15,13,16,15,17, 28,26} with
C' ={4,-8,3,—7,—2,—15,2,3,3}. By substituting the values of C;j, one can eas-
ily check that the current solution is still optimal.

For our numerical example 2 of AP, the critical region is:

0 = {Cii1] 3+ Cryy — 050715 — 0.5C; + 0.5C55, — 0.5C 5 >0, (7)
34 Chyy — 0.5C] 15 4 0.5Ch,; — 0.5Ch0 — 0.5C] 4, > 0,
54 Chyy — 0.5C] 15 — 0.5Ch;; — 0.5Ch0, + 0.5C] 5, > 0,
54 Chyy +0.5C] 15 — 0.5C5,; — 0.5C50, — 0.5C] 4, > 0;
Ciiy = —10,C1y5 > =5,Cyy > T,
Clas > =8,Chyy > —4,Cop5 > T,
C;m > —9, and Cém > —2}.

88 V. ADLAKHA AND H. ARSHAM

7. Special Cases of Sensitivity Analysis

The PA construction given in the previous section is the most general one that can
handle the simultaneous and independent changes in the cost parameters. In this
section we derive some special cases of the sensitivity analysis in a direct method.
The PA set would generate the same results.

7.1. Parametric Perturbation Analysis

Parametric sensitivity analysis is of particular interest whenever there is depen-
dency among the cost parameters. This analysis can be considered as simultaneous
changes in a given direction. Define a perturbation vector P specifying a perturbed
direction of the cost coefficients. Introducing a scalar parameter 6 > 0 (thus, per-
turbation analysis,) we would like to find out how far we can move in the direction of
P, § being the step size, while still maintaining optimality of the current assignment.

Step 1 : Identify Py and Pp, sub-vectors of P corresponding to the NB and BVS,
respectively, as they appear in the final tableau of the nominal problem.

Step 2 : Define S = {i — j|(P~ — Pp.[4]) < 0}.

Step 3 : If S = ®, then §' = co. Go to Step 5.

Step 4 : Calculate & = min[—(Old C%)i;j/(Px — P - [A])i;] over all {i — j} € S.
Step 5 : Determine § = min[d , min(8|Cy; — 6P;; > 0)].

Step 6 : New C% = Old C% + d(Py — Pg - [A]) for any & € [0,0'].

For our numerical example 1, let us assume that the cost vector C is perturbed
along vector P = {0, -1, 1, 1, 1, -2, -1, 1, 1}, i.e., the perturbed cost coefficient
vector is {5, 30-4, 1244, 20+4, 1844, 30-24, 15-9, 2544, 23+4}.

The perturbed coefficients for non-basic and basic coefficients are Py = (-1, 1,
-2, 1) and Pg= (0, 1, -1, 1, 1) respectively. Thus, Py — Pg.[A] = (-1, 1,-2, 1) -
(2,-1,0,0) = (-3, 2, -2, 1). This gives S = {1 — 2,2 — 3}, which results in § =
min[—15/—3,—15/ — 2] = 5. Since the admissibility condition of Step 5 is satisfied
for all § € [0, 5], the current optimal basis remain optimal for any § € [0, 5]. Clearly,
for 0 = 5 there is an alternate optimal solution which can be obtained by bringing
X, into basis. By one additional GJ row operation, we find the alternate optimal
solution as: X12 = 15, X22 = 80, X31 = 70, X32 = 5, and X13 = 40.

MANAGING COST UNCERTAINTIES 89

7.2. Ordinary Sensitivity Analysis

From a managerial point of view, anticipation of possible scenarios or directions of
change may not be possible. In this sub-section, we find the range for any particu-
lar arc cost, holding all other costs unchanged. Ordinary sensitivity analysis, OSA,
is very popular and readily available in LP. One cannot, however, use existing LP
computer packages for performing SA for these problems when the optimal solution
is degenerate. The other references present in current literature require significant
additional computation beyond the solution algorithm.

OSA is a special case of parametric analysis where we would like to find out how
far we can move in the direction of any one of the axes in the parametric space
C;]-. Here, P is a unit row vector or its negative, depending on whether we want
to compute an upper or lower limit. The step size § is the amount of increase or
decrease in that direction. Alternately, note that we can also find the allowable
changes for any particular cost C;j by setting all other costs to zero in the set 6 ,
equation (6). The results are as follows:

Lower Limit Upper Limit

c, -1 15
Cy, -15 00
Cls -12 1
Cy, -12 00
Cyy -18 12
Chs -15 00
Cyy -15 1
Csy -12 15
Cys -1 00

Similarly, for numerical example 2 for AP, these limits are obtained from the
corresponding set 6 , equation (7), by letting all Cijx =0, except the one for which
we are calculating the bounds.

7.3. The 100% Rule

The above analysis is for one-change-at-a-time. Suppose we want to find the simul-
taneous allowable increases in all cost coefficients. Bradley et al [17] discuss the use
of the 100 percent rule for simultaneous increase or decrease of all costs. This rule
is based on the ordinary sensitivity limits. The 100 percent rule says that optimal
basis will be preserved if

90 V. ADLAKHA AND H. ARSHAM

YN /e <1 (8)

where the sum is over all i and j and the denominators (C;;) are the allowable
increases from the ordinary sensitivity analysis. That is, as long as the sum of all
of the percentages based on the allowable changes for each cost coefficient is less
than 100 percent, the current optimal basis remains unchanged. For the above
example, the current routings are optimal as long as cost increases are such that
C1,/15 + Cig + Cyy /12 + Cyy + C4y/15 < 1. This condition is sufficient and not
necessary. Similarly, the application of the 100 percent rule when decreasing all
cost coefficients provides Y C;j/ —(C;; <1, where the sum is over all i and j and
the denominators are the allowable decreases from the ordinary sensitivity analysis
with a similar interpretation. Note that the upper limit and lower limit must be
rounded down and up respectively.

8. Models with Side-Constraints

In real-life situations, it is common for a few side-constraints to evolve during the
time period of development and implementation of an optimal solution [2], [46],
[71], [73]. For example, there could be a limit on the shipment along a partic-
ular route or combination of routes. Alternately, there could be a constraint on
one route in relation to other routes. A general side-constraint is to determine
the amount of shipment from source i to destination j under the conditions that
L;; <3 a;;X;; < U;j where X;; denotes the number of units shipped from i to
j and L;;, U;; and a;; are constants. Without loss of generality, we assume the
L;; to be zero. If an Ly > 0, then a change in variable Xj; reduces the lower
bound to zero. We provide a method to accommodate these constraints through
the Push-and-Pull algorithm.

8.1. Method Capacitated

Step 1 : Ignore the upper bounds. Solve this nominal problem by Push-and-Pull
algorithm.

Step 2 : Derive the final tableau of the nominal TP.
Step 3 : Check if all conditions } a;; X;; < U;; are satisfied. If yes, go to step 7.

Step 4 : Pick the basic variable Xy, for which U;; — > a;; X;; is the largest.
Add an open row with constraint) a;; X;; = Ug:.

Step 5 : Pivot on Xj; column so Xi; remains basic.
By construction, RHS is infeasible with a negative entry in the open row.

Step 6 : Perform the Pull phase of the Push-and-Pull algorithm. Go to step 3.

MANAGING COST UNCERTAINTIES 91

Step 7 : This is the optimal tableau. STOP. Obtain the solution.

Consider the example of Table 1 with constraint X3; < 2X35. This constraint is
not satisfied in the optimal solution of the nominal TP, Table 3. After performing
steps 4 and 5 of the Method Capacitated, we obtain the following table:

Table 13. Tableau after adding an open row
and adjusting X3; and Xso
BVS Xia X1 Xoz X3 RHS

X 1 1 -1 15
Xoo 1 1 80
Xy -1 1 1 1 55
Xz 1 -1 -1 20
Xis 1 1 40
? 3 3 3 -1 -15
Cost 15 12 15 1 “3320

Note that due to the unrestricted nature of the given constraints, the non-zero
entries of a tableau in Method Capacitated could deviate from the regular pattern
of being 1 and -1 only. This deviation from unimodularity does not affect the solu-
tion algorithm. After performing the Pull phase to bring X33 into BVS, we obtain
the following optimal tableau:

Table 14. Optimal tableau of TP with side-constraints

BVS X12 X21 X23 RHS
Xu -2 3 2 30
Xo» 1 1 80
Xy 2 2 2 40
Xz 1 -1 20
X3 3 -3 2 25
X3 -3 3 3 15
Cost 18 9 12 “3335

8.2. Numerical Example for Fixed Upper Bounds in TP

Shih [73] discusses the special case of L;; < X;; < U;; where X;; are bound by
constants only and offers a solution by modifying the SS method. Though concep-
tually the modification Shih offers is simple, creating new tables and finding new
alternative paths repeatedly, turns out to be cumbersome. We illustrate the steps
of Method Capacitated further by walking through the example of Table 1 with
fixed upper bound constraints Xos < 70, X3; < 50, X5 < 8.

92 V. ADLAKHA AND H. ARSHAM

Step 1: Perform the row and column cost reductions. Solve the TP by using
Push-and-Pull algorithm.

Step 2: Obtain the final tableau as presented in Table 3 in the previous section.
Step 3: Check feasibility. Constraints X5 < 70 and X3; < 50 are violated.

Step 4: Open a row with Xs» = 70, corresponding to the most violated constraint
X5 < 70.

Step 5: Adjust the column for the basic variable Xoo.

Table 15. Modified tableau after adjusting column X

BVS X1» Xo1 Xoz Xa3 RHS
X 1 1 -1 15
Xo» 1 1 80
Xy -1 1 1 1 55
Xz 1 -1 -1 20
Xi3 1 1 40
? 1 -1 -10
Cost 15 12 15 1 "3320

Step 6: Pull phase - Since X5; has lower cost, enter Xo; in the open row.

Table 16. Revised tableau with X»; as a BV

BVS X12 X23 X33 RHS
X1 1 -1 -1 15
Xoo 70
X3 -1 1 45
X3 1 30
X3 1 1 40
X1 1 10
Cost 15 3 1 -3440

Check feasibility. Constraint X»; < 8 is violated. Set X5; = 8. Repeat steps 4
through 6.

MANAGING COST UNCERTAINTIES 93

Table 17. Optimal tableau with fixed upper bounds
BVS X, X33 RHS
X11 1 -1 17

Xoo 70
Xy -1 1 45
X3 1 30
Xis 1 38
Xo 8
Xo3 2

Cost 15 1 -3446

Step 7: This tableau is optimal with solution Xi; = 17, X2 = 70, X3; = 45,
X35 =30, X153 =38, Xo; =8, and Xo3 = 2 at the cost of 3446.

9. Degenerate Optimal Solution

The effect of degenerate optimal solution on SA has been studied by many research
workers (see, e.g., [34], [53], [52]) and is well known. However, to the best of our
knowledge, no algorithm or LP package exists for cost SA in case of an optimal
degenerate problem. The researchers have completely overlooked the degeneracy
phenomenon, a common occurrence in a TP, in cost SA. Lindo and Netsolve give
wrong cost sensitivity results if the optimal solution of a TP turns out to be degen-
erate, which is always the case with an AP. Note that the set 6 given by equation
(5) is valid for a non-degenerate problem only, that is, when RHS > 0. For a degen-
erate optimal solution, we modify the procedure for solving the perturbed problem
(4) as follows:

Step 1 : Let Z = count of zeros in the RHS of the optimal tableau. Set I = Z+1,
i=0.

Step 2 : Let i = i+1. Determine #; for the current optimal tableau.
Step 3 : Ifi =1, go to Step 8.
Step 4 : PR = pick a degenerate row (i.e., a row with RHS=0) to exit.

Step 5 : PC = pick the column with the largest negative row ratio, i.e., cost
row/PR.

Step 6 : Generate the next distinct final tableau.
Step 7 : Go to Step 2.

Step 8 : Determine § =N0; i, i € 1.

94 V. ADLAKHA AND H. ARSHAM

Note that as before, we can use @ for any scenario analysis. The set can also be
used for parametric, or ordinary cost SA. Alternately, we find § for parametric PA,
and lower and upper limits for OSA, for each distinct final tableau and then use the
corresponding intersection for analysis. We illustrate using the AP from Anderson
et al. [5].

9.1. Numerical Example 3

Cost matrix of the AP:

10 15 9
9 18 5
6 14 3

We solve this AP using the Push-and-Pull algorithm. The following final tableau
is obtained.

Table 18. Final degenerate tableau
BVS X3 X Xi3 X3 RHS

X5 1 T 1 1 1
Xos 1 1 1
X33 -1 -1 1 0
X1 11 -1 0

1

There are no alternative optimal strategies. As expected, however, the optimal
tableau is degenerate. The other optimal tableaux are as follows:

Table 19. Second degenerate final tableau
BVS X33 X2 X1z Xso RHS

X3 1 1 1
Xo3 1 1 1
X1 -1 1 -1 0
X1 -1 1 -1 0

1

MANAGING COST UNCERTAINTIES

Table 20. Third degenerate final tableau
BVS X» X2 Xi3 X111 RHS
Xs1 1 1 1

Xos 1 1 1
Xgs -1 -1 1 0
X3o 1 -1 -1 0

1

The critical regions, 6;’s, based on these final tableaux are:

61 = {Ci;|1+ Cyy — Ciyy — Ciy + Cyy > 0,
5+ Cyy — Cyy — Cy3 + C33C, — C5 20,
2+Ci3+0é1—0é3—011 >0,
3+C:;2 - Cé1 +C;1 - 012 > 0},

By = {C};]1 + Cg — Ciy — Cog + Cy >0,
4+ Chy — Cyy — Chy — Cpp >0,
3+ Cly — Chy + Chy — Cyy 20,
3+ Cly — Cy +Cyy — Cpy >0},

B3 = {C};]1 + Chy — Ciy — Chy + Cly > 0,
24 Cyy — Cog + Clyy — Clyy 20,
54 Cy — Cyg + Cyy — Cy 20,
3+ Cly — Cy + Cyy — Cpy > 0},

and finally, § = 6; N fs N #3. The ordinary sensitivity limits based on 8 are:

96 V. ADLAKHA AND H. ARSHAM

Lower Limit Upper Limit

c, -3 2
Cy, -00 3
Cls -2 00
Cy, -1 4
Cy -2 00
Chs -00 1
Cy -2 1
Cys -3 00
Cs -1 2

The 100% rule limits for C’;j > 0 and C;j < 0 can be obtained directly from these
above limits. Similarly, to carry out parametric analysis given any perturbation
vector P, we first find §;, d,, 5. The current basis are optimal for any step size

5 €[0,6'] where § = min{é,,dy,d's}.

10. Concluding Remarks

We have proposed a general-purpose unified algorithm to solve the classical TP
and AP. The algorithm provides one treatment for both problems, in place of the
SS and Hungarian methods. The proposed algorithm solves these problems with
a warm-start and uses Gauss-Jordan pivoting only. It is computationally practical
in the sense that it does not require any slack/surplus variables (as in simplex)
or any artificial variables (as in dual simplex). In addition, the Push-and-Pull al-
gorithm and the proposed PA have the advantage of being easy for managers to
understand and implement. The results empower the manager to assess and moni-
tor various types of cost uncertainties encountered in real-life situations. The final
solution tableau provides the information required to handle any special cases of
side-constraints. For such a case, it is not necessary to restart the algorithm. If the
current solution does not satisfy some of the side-constraints, the method brings the
most violated constraint into the final tableau and uses the ”catch-up” operations
of the Pull phase to generate the updated final tableau. This catch-up capability is
also useful in coping with structural changes, such as the deletion of a route that
becomes inaccessible due to a storm, construction, or bad road conditions. Finally,
the algorithm is free from pivotal degeneracy (cycling) and can solve AP of higher
dimensions than the traditional 2-dimensional AP.

The proposed solution algorithm deals effectively with change and chance and is
compatible with other solution algorithms. The PA in this paper is efficient since it
uses the same data and the same manipulation as the solution algorithm. All the in-
formation needed to carry out PA of cost coefficients is readily provided by the final

MANAGING COST UNCERTAINTIES 97

tableau. In contrast to OSA, our algorithm allows for simultaneous, independent,
or dependent change of the cost coefficients from the estimated values. Unlike the
existing network-based SA, the PA provides prescriptive uncertainty ranges. As
long as the estimated parameters remain within ranges specified by the PA, the
current optimal strategy remains optimal. In cases where the optimal solution is
not unique, one must be careful in using any part of the PA results, because the
results may not be correct for an alternate optimal solution. We demonstrate the
applications of PA when an optimal solution is degenerate and provide modified
steps [44].

From a managerial point of view, the PA results provide an assessment and anal-
ysis of the stability of the optimal strategy by monitoring the admissible range
that preserves it. This permits evaluation of the impact of uncertainty in the data.
PA gives a manager more leverage in allocating scarce resources. Monitoring the
admissible ranges of PA that preserve the current optimal strategy aids in deter-
mining how resources should be applied. Information about departure from these
limits allows a manager to anticipate the consequences and to pre-determine back-
up strategies. The results empower a manager to assess, analyze, monitor, and
manage various types of cost uncertainties in all phases of the model, namely de-
sign, solution, and implementation.

The proposed approach can also provide a rich modeling environment for strate-
gic management of complex transportation and assignment problems using Monte
Carlo simulation experiments. In this treatment, one may select a priori cost coef-
ficients for each route or assignment with the support domain produced by the PA.
The stability of optimal shipments with respect to changes in supply and demand
in TP is given in [1].

Computational results comparing the proposed algorithm to the closely-related
pivotal solution algorithm, the simplex, via the widely-used package Lindo, indicate
that the Push-and-Pull algorithm reduces the number of iterations by almost 50
percent as compared to the simplex. Future work should develop efficient codes
to implement this approach for computational studies, design and experiment to
compare the Push-and-Pull algorithm to existing algorithms. An immediate ex-
tension would apply our approach to a study of the more-for-less paradox, that is,
given an optimal solution, is it possible to find a less (or equivalent) cost solution
by shipping more total goods under the restriction that the same amount of goods
are shipped from each origin and to each destination and all shipment costs are
non-negative [70]. Another possible direction for future research would be design
of an intelligent computer-assisted system of various parts of PA for the decision
maker.

98

V. ADLAKHA AND H. ARSHAM

Acknowledgments

We are most appreciative to the referees for their useful comments and suggestions.
Dr. Arsham’s work is supported by NSF Grant CCR-9505732.

References
1. V.G. Adlakha and H. Arsham. Distribution-routes stability analysis of the transportation
problem. Optimization, 43, 1998. in press.
2. V. Aggarwal. A Lagrangean-relaxation method for the constrained assignment problem.
Computers and Operations Research, 12:97-106, 1985.
3. R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall, New Jersey, 1993.
4. M. Amini. Vectorization of an auction algorithm for linear cost assignment problem. Com-
puters and Industrial Engineering, 24:141-149, 1994.
5. D. Anderson, D. Sweeny, and T. William. An Introduction to Management Science. West
Publishing Co, St. Paul, MA, 1997.
6. E. Balas, S. Ceria, G. Gornuejols, and N. Natraj. Gomory cuts revisited. Operations Research
Letters, 19:1-9, 1996.
7. E. Balas and M.J. Saltzman. An algorithm for the three-index assignment problem. Opera-
tions Research, 39:207-302, 1991.
8. M.L. Balinski. Signature methods for the assignment problem. Operations Research, 33:207—
305, 1985.
9. M.L. Balinski. A competitive (dual) simplex method for the assignment problem. Mathe-
matical Programming, 34:125-141, 1986.
10. R. Barr, F. Glover, and D. Klingman. The alternating basis algorithm for assignment prob-
lems. Mathematical Programming, 13:1-13, 1977.
11. M.S. Bazaraa, J.J. Jarvis, and H. Sherali. Linear Programming and Networks Flows. Wiley,
New York, 1990.
12. D.P. Bertsekas. A new algorithm for the assignment problem. Mathematical Programming,
21:152-171, 1981.
13. D.P. Bertsekas. The auction algorithm for assignment and other network flow problems: A
tutorial. Interfaces, 20:133-149, 1990.
14. D.P. Bertsekas and P. T'seng. The relax codes for linear minimum cost network flow problems.
Annals of Operations Research, 13:125-190, 1988.
15. R. Bixby. Implementing the simplex method: The initial basis. ORSA Journal of Computing,
4:267-282, 1992.
16. E. Boyd. Fenchel cutting planes for integer programs. Operations Research, 40:53-64, 1994.
17. S.P. Bradley, A.C. Hax, and T.L. Magnanti. Applied Mathematics Programming. Addison-
Wesley, Reading, MA, 1977.
18. J. Camm, A. Raturi, and S. Tsubakitani. Cutting big M down to sizes. Interfaces, 20:61-66,
1990.
19. G. Carpaneto, S. Martello, and P. Toth. Algorithms and codes for the assignment problem.
Annals of Operations Research, 13:193-223, 1988.
20. G. Carpaneto and P. Toth. Algorithm for the solution of the assignment problem for sparse
matrices. Computing, 31:83—94, 1983.
21. A. Charens and M. Kress. Two simple applications of the unimodularity property. Operations
Research Letters, 14:257-260, 1993.
22. CPLEX Optimization, Inc. Using the CPLEX Callable Library. CPLEX Optimization, Inc.,
Incline Village, NV, 1996.
23. Y. Crama and F. Spiekma. Approximation algorithms for three-dimensional assignment

problems with triangle inequalities. European Journal of Operational Research, 60:273-279,
1992.

MANAGING COST UNCERTAINTIES 99

24.
25.

26.
27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

W. Cunningham. A network simplex method. Mathematical Programming, 11:105-116, 1976.
W. Cunningham and J. Klincewicz. On cycling in the network simplex method. Mathematical
Programming, 26:182-189, 1983.

G. Dantzig and M. Thapa. Linear Programming. Springer-Verlag, New York, 1997.

K. Davis, P. McKeown, and T. Rakes. Management Science, An Introduction. Kent, Boston,
MA, 1986.

U. Derigs. Programming in Networks and Graphs. Springer-Verlag, New York, 1988.

U. Derigs and A. Metz. An efficient labeling technique for solving sparse assignment problems.
Computing, 36:301-311, 1986.

U. Derigs and A. Metz. An in-core/out-of-core method for solving large scale assignment
problems. Optimization, 30:181-195, 1986.

M. Engquist. A successive shortest path algorithm for the assignment problem. INFOR,
20:370-384, 1982.

M. Florian and M. Klein. An experimental evaluation of some methods of solving the as-
signment problem. INFOR, 8:101-106, 1970.

J. Forrest and J. Tomlin. Updating triangular factors of the basis to maintain sparsity in
the product form simplex method. Mathematical Programming, 2:263-278, 1979.

T. Gal. Shadow prices and sensitivity analysis in linear programming under degeneracy. OR
Spektrum, 8:59-71, 1986.

K. Gilbert and R. Hofstra. Multidimensional assignment problems. Decision Sciences,
19:306-321, 1988.

B. Gillett. Introduction to Operations Research: A Computer-oriented Algorithmic Ap-
proach. McGraw-Hill, New York, 1976.

D. Goldfarb. Efficient dual simplex algorithms for the assignment problem. Mathematical
Programming, 33:187-203, 1985.

D. Goldfarb and J. Reid. A practicable steepest-edge simplex algorithm. Mathematical
Programming, 12:361-371, 1977.

S.K. Goyal. Improving VAM for unbalanced transportation problems. Journal of the Oper-
ational Research Society, 35:1113-1114, 1984.

M. Grigoriadis. An efficient implementation of network simplex method. Mathematical
Programming, 26:83-111, 1986.

B. Hattersley and J. Wilson. A dual approach to primal degeneracy. Mathematical Program-
ming, 42:135-145, 1988.

M.S. Hung and W.O. Rom. Solving the assignment problem by relaxation. Operations
Research, 28:969-982, 1980.

J. Intrator and W. Szwarc. An inductive property of transportation problem. Asia-Pacific
Journal of Operational Research Society, 5:79-83, 1988.

B. Jansen. Sensitivity analysis in linear programming: just be careful! European Journal of
Operational Research, 101:15-28, 1997.

R. Jonker and A. Volgenant. Improving the Hungarian assignment algorithm. Operations
Research Letters, 5:171-175, 1986.

K. Jornsten and M. Nasberg. A new Lagrangian relaxation approach to the generalized
assignment problem. Furopean Journal of Operational Research, 27:313-323, 1986.

J. Kennington and R. Helgason. Algorithms for Network Programming. Wiley, New York,
1980.

J. Kennington and Z. Wang. An empirical analysis of the dense assignment problem: Se-
quential and parallel implementations. ORSA Journal on Computing, 3:299-306, 1986.

G. Kindervater, A. Volgenant, G. de Leve, and V. Gijlswijk. On dual solution of the linear
assignment problem. Furopean Journal of Operational Research, 19:76-81, 1985.

O. Kirka and A. Satir. A heuristic for obtaining an initial solution for the transportation
problem. Journal of the Operational Research Society, 41:865-871, 1990.

D. Klingman, A. Napier, and J. Stutz. Netgen — a program for generating large scale uncapac-
itated assignment, transportation and minimum cost flow network problems. Management
Science, 20:814-821, 1974.

100 V. ADLAKHA AND H. ARSHAM

52. G. Knolmayer. How many-sided are shadow prices at degenerate primal optimal? Omega,
4:493-494, 1976.

53. G. Knolmayer. The effect of degeneracy on cost-coefficient ranges and an algorithm to resolve
interpretation problems. Decision Sciences, 15:14-21, 1984.

54. A.J. Lazrus. Certain expected values in the random assignment problems. Operations Re-
search Letters, 14:207-214, 1993.

55. R. Lehmann. Contribution to Hungarian method. Math. Operationforsch. u. Statist., ser.
Optimization, 15:91-97, 1984.

56. J.W.H. Liu. The role of elimination trees in spares factorization. SIAM Journal on Matriz
Analysis and Applications, 11:134—-172, 1990.

57. V. Lotfi. A labeling algorithm to solve the assignment problems. Computers and Operations
Research, 16:397—408, 1989.

58. C. Mack. The Bradford method for the assignment problem. New Journal of Statistics and
Operational Research, 1:17-29, 1969.

59. S. Martello and P. Toth. Linear assignment problems. Annuals of Discrete Mathematics,
31:259-282, 1987.

60. D. McBride. A bump triangular dynamic factorization algorithm for the simplex method.
Mathematical Programming, 18:49-61, 1980.

61. L.F. McGinnis. Implementation and testing of a primal-dual algorithm for the assignment
problem. Operations Research, 31:32-48, 1983.

62. B. Moores. A note on degeneracy in integer linear programming problems. Journal of the
Operational Research Society, 39:1175-1178, 1988.

63. J. More and S. Wright. Optimization Software Guide. SIAM, Philadelphia, PA, 1993.

64. D. Pannell. Introduction to Practical Linear Programming. Wiley, New York, 1997.

65. K. Paparrizos. An infeasible exterior point simplex algorithm for assignment problems.
Mathematical Programming, 51:45-54, 1991.

66. K. Paparrizos. A non improving simplex algorithm for transportation problems. Recherche
Operationnelle, 30:1-15, 1996.

67. D. Phillips and A Garcia-Diaz. Fundamentals of Network Analysis. Waveland Press, Inc.,
1990.

68. C.S. Ramakrishnan. An improvement to Goyal’s modified VAM for the unbalanced trans-
portation problem. Journal of Operational Research Society, 39:609-610, 1988.

69. J. Reid. A sparsity-exploiting variant of the bartles-golub decomposition for linear program
basis. Mathematical Programming, 24:55—69, 1982.

70. D. Robb. The more for less paradox in distribution models: an intuitive explanation. ITE
Transactions, 22:377-378, 1990.

71. M. Rosenwein. An improved bounding procedure for the constrained assignment problem.
Computers and Operations Research, 18:531-535, 1991.

72. A. Shafaat and S.K. Goyal. Resolution of degeneracy in transportation problems. Journal
of the Operational Research Society, 39:411-413, 1988.

73. W. Shih. Modified stepping-stone method as a teaching aid for capacitated transportation
problems. Decision Sciences, 18:662-676, 1987.

74. R. Silver. An algorithm for the assignment problem. Communications of ACM, 3:605, 1960.

75. L. Suhl and U. Suhl. A fast LU update for linear programming. In Applied Mathematical
Programming and Modelling, Baltzer Press, 1992.

76. A. Sultan. Heuristic for finding an initial B. F. S. in a transportation problem. Opsearch,
25:197-199, 1988.

77. B. Taylor. III. Introduction to Management Science. Prentice Hall, New Jersey, 1996.

78. G. Thompson. A recursive method for solving assignment problems. In Studies on Graphs
and Discrete Programming, North-Holland, Amsterdam, 1981.

79. P. Tolla. A stable and sparsity exploiting lu factorization of the basis matrix in linear
programming. Furopean Journal of Operational Research, 24:247-251, 1986.

80. J. Tomlin and J. Welch. Mathematical programming systems. Handbooks in OR € MS,
3:561-601, 1992.

MANAGING COST UNCERTAINTIES 101

81. H. Williams. Model Solving in Mathematical Programming. Wiley, Chichester, England,
1993.

82. C.E. Wilsdon. A simple, easily programmed method for locating Rook’s tours in the trans-
portation problem. Journal of the Operational Research Society, 41:879-880, 1990.

83. M. Wright. Speeding up the Hungarian algorithm. Computers and Operations Research,
17:95-96, 1990.

84. P. Zornig. Degeneracy Graphs and Simplex Cycling. Lecture Notes in Economics and Math-
ematical Systems, Springer-Verlag, Berlin, 1991.

Note. More relevant references can be found at
http://ubmail.ubalt.edu/~harsham/refop/Refop.htm

102 V. ADLAKHA AND H. ARSHAM

Appendix
All notations and abbreviations in the appendix are the same as used in the paper.

Proof of Theorem 1: As is well known, whenever a RHS element is zero in
any simplex tableau (except the final tableau) the subsequent iterations would be
degenerate, which may cause cycling if one follows ordinary simplex pivotal rules.
In the Push phase, we do not replace any variables. Rather, we expand the basic
variable set (BVS) by bringing in new variables to the open rows marked with (7).
The Pull phase uses the customary dual simplex rule to determine which variable
goes out. This phase is also free from pivotal degeneracy (cycling) since its aim is
to replace any negative (not zero) RHS entries. Hence, unlike primal simplex and
network simplex-based algorithms, the Push-and-Pull algorithm is free from pivotal
degeneracy.

Note that we do not mean to imply that an optimal solution would be non-
degenerate, which could have some RHS = 0. This is always the case for the AP
since the number of positive variables is much smaller than the size of the BVS.
Rather, in the process of searching for an optimal solution, the algorithm is free
from pivotal degeneracy, which may cause cycling, which in turn would prevent
generating an optimal solution.

Proof of Theorem 2: The Push-and-Pull algorithm consists of the Initialization
phase to generate an initial tableau that contains some basic variables, followed by
the Push and Pull phases. The Push phase is a BVS augmentation process that
develops a basic solution, which may or may not be feasible. If feasible, this basic
solution is optimal. Otherwise, the Pull phase is activated to obtain a feasible op-
timal solution. Both phases use the GJP, but differ in the method used to select
the pivot element (PE). The Push phase uses modified simplex column selection
criteria to enter one variable at a time into an open row, rather than replacing a
variable, while moving toward a vertex that is ”close” to the optimal vertex. This
strategy pushes toward an optimal solution, which may result in pushing too far
into non-feasibility. The Pull phase, if needed, pulls back to a feasible solution that
is optimal. The concise statement of the proposed scheme is as follows:

Row-column reduction : Reduce the cost matrix by a base amount to get a
good start in the initialization phase.

Initialization: Start with the initial tableau with as many basic variables as
possible without GJP iterations.

Push phase: Fill up the BVS completely while pushing toward an optimal
vertex.

MANAGING COST UNCERTAINTIES 103

Pull phase: If the feasibility condition is not satisfied, pull back to an optimal
vertex (a dual simplex approach).

The theoretical basis for the Push-and-Pull algorithm for the nominal (classical)
TP and AP rests largely upon the total unimodularity of the coefficient matrix
(see, e.g., [11], [21]). We use the property that a unimodal matrix remains uni-
modal under the GJP. Under LP formulation, optimality is attained when all Cj;s
in the cost row are non-negative and the algorithm terminates successfully (without
any simplex-type degeneracy that may cause cycling). The current algorithm starts
with all non-negative Cjjs. We show that the C';;s remain non-negative under the
push and pull operations to obtain a basic and feasible solution, .

Clearly, in the Row-column reduction phase, by row-column (or column-row) re-
duction of the cost matrix, non-negativity of the Cj;s is preserved. The number
of basic variables readily available is equal to the number of C;;s equal to zero in
the row (or column) to be eliminated. In the nominal TP and AP, each variable
has at most three non-zero elements, corresponding to its origin row, destination
column, and its cost. Removing the redundant constraint eliminates one non-zero
element, and a zero cost removes a second, turning the column in to a unit vector
identifying basic variables for the Initialization phase.

Since we are adding (not replacing) variables to the BVS in the Initialization and
Push phases, deletion of basic columns is permissible. This reduces the complexity
significantly and results in a smaller tableau.

The selection criteria for entering variables in the Push phase leaves several pos-
sibilities. Selection of a variable with the smallest C;; ensures that the C;;s remain
non-negative after pivoting. Negative C/R relaxes the feasibility, but does not af-
fect non-negativity of the C;;s. If the PE is positive, we are subtracting a smaller
C;; from a larger C;;. Finally, a negative PE adds to the C;;. If pivoting is not
possible (no finite C/R), we select the next smallest C;;. However, the value of the
smallest C;; is unchanged since the pivot row element in its column is zero. By
this pivoting selection rule in the Push phase, the proposed algorithm is free from
pivotal degeneracy that may cause cycling.

In the Pull phase, if an RHS < 0, there exists at least one element of -1 in that
row. If this were not the case, we would have an inconsistent constraint, which
is impossible for the reduced TP and AP. In this phase, the reduced pivoting rule
produces the same results as the usual pivoting with a smaller tableau. The proof
follows from the well-known reduced pivoting rule in GJP. Notice that in the Pull
phase we are considering negative, or zero, RHS elements only. Thus, the Pull
phase is also free from pivotal degeneracy.

Knowing that the Push-and-Pull algorithm is free from pivotal degeneracy, we
must show that the proposed algorithm converges successfully. Since the path

104 V. ADLAKHA AND H. ARSHAM

through the Push and Pull phases does not contain any loops, it suffices to show
that each phase terminates successfully.

The Initialization phase uses the structure of the problem to fill-up the BVS as
much as possible without requiring GJP iterations. The Push phase completes the
BVS. The number of iterations is finite since the size of the BVS is finite. At the
end of the Push phase we have a basic solution that may not be feasible. The Pull
phase terminates successfully by the well-known theory of dual simplex for these
problems.

Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and

Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due December 1, 2008

First Round of Reviews | March 1, 2009

Publication Date June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of Sdo Paulo, 05508-970 Sao Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratério Associado de
Matemadtica Aplicada e Computagdo (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), Sdo Jose dos
Campos, 12227-010 Sao Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research,
King’s College, University of Aberdeen, Aberdeen AB24
3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation

http://www.hindawi.com

http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers4pt
	Guest Editors

