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The general method of Lyapunov functionals construction which was developed during
the last decade for stability investigation of stochastic differential equations with afteref-
fect and stochastic difference equations is considered. It is shown that after some mod-
ification of the basic Lyapunov-type theorem, this method can be successfully used also
for stochastic difference Volterra equations with continuous time usable in mathematical
models. The theoretical results are illustrated by numerical calculations.

1. Stability theorem

Construction of Lyapunov functionals is usually used for investigation of stability of
hereditary systems which are described by functional differential equations or Volterra
equations and have numerous applications 3, 4, 8, 21]. The general method of Lyapunov
functionals construction for stability investigation of hereditary systems was proposed
and developed (see [2, 5,6, 7,9, 10, 11, 12, 13, 17, 18, 19]) for both stochastic differential
equations with aftereffect and stochastic difference equations. Here it is shown that after
some modification of the basic Lyapunov-type stability theorem, this method can also be
used for stochastic difference Volterra equations with continuous time, which are popular
enough in researches [1, 14, 15, 16, 20].

Let {Q,§,P} be a probability space, {F:, t = t;} a nondecreasing family of sub-o-
algebras of §, that is, §;, C §, for t; < f,, and H a space of §;-measurable functions
x(t) € R", t > to, with norms

x| = supE |x(8) |, IxII?= sup E|x(t)|” (1.1)

t=1y te[to,to+ho]
Consider the stochastic difference equation

x(t+ho) =n(t+ho) +F(t,x(t),x(t — hy),x(t — ha),...), t>t—ho, (1.2)
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68 Difference Volterra equations with continuous time
with the initial condition

X(0) = $(6), 020 = [to—hy—maxh,to) (13)
j=

Here, € H, hy, hy,... are positive constants, and ¢(60), 6 € ©, is an §, -measurable func-
tion such that

19113 = supE|$(6) | < o, (1.4)
0c®
the functional F € R” satisfies the condition
|F(t,x0,x1,x2,...)|2sZaj|xj|2, A=>aj< . (1.5)
j=0 j=0

A solution of problem (1.2), (1.3) is an §;-measurable process x(t) = x(t;ty,¢), which
is equal to the initial function ¢(¢) from (1.3) for ¢ < t; and with probability 1 defined by
(1.2) for t > to.

Definition 1.1. A function x(¢) from H is called

(i) uniformly mean square bounded if || x||? < oo;
(ii) asymptotically mean square trivial if

}imE|x(t)|2 —0; (1.6)
(iii) asymptotically mean square quasitrivial if, for each t = t,

KmE|x(t+ jho) |* = 0; (1.7)

jooo
(iv) uniformly mean square summable if
supZE|x(t+jh0)|2<00; (1.8)
t>ty j=0

(v) mean square integrable if
J E|x(t) | dt < oo. (1.9)
to

Remark 1.2. It is easy to see that if the function x(¢) is uniformly mean square summable,
then it is uniformly mean square bounded and asymptotically mean square quasitrivial.

Remark 1.3. Itis evident that condition (1.7) follows from (1.6), but the inverse statement
is not true. The corresponding function is considered in Example 5.1.

Together with (1.2) we will consider the auxiliary difference equation
x(t+h0) =F(t,x(t),x(t—hl),x(t—hz),...), t >ty — ho, (1.10)

with initial condition (1.3) and the functional F, satisfying condition (1.5).
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Definition 1.4. The trivial solution of (1.10) is called

(i) mean square stable if, for any € > 0 and ¢, > 0, there exists a § = §(€, %) > 0 such

that ||lx(£) 1% < € if |$113 < &5

(ii) asymptotically mean square stable if it is mean square stable and for each initial

function ¢, condition (1.6) holds;

(iii) asymptotically mean square quasistable if it is mean square stable and for each

initial function ¢ and each t € [f, ) + h¢), condition (1.7) holds.

TurOREM 1.5. Let the process 5(t) in (1.2) satisfy the condition ||n||} < o, and there exist a

nonnegative functional
V(t) = V(t,X(f),X(t - hl),x(t - I’lz),...),

positive numbers ci, ¢;, and nonnegative function y(t), such that

= sup Zy(s+jh0) <

s&[to,to+ho) j=0

EV(t) < cisupE|x(s)|?, t € [to,to+ho),

s<t

EAV(t) < —Elx(t) 1> +y(t), t=>to,
where
V(t)=V(t+ho)— V(t).

Then the solution of (1.2), (1.3) is uniformly mean square summable.

Proof. Rewrite condition (1.14) in the form

EAV (t+ jho) < —coB|x(t+ jho) |* +y(t+ jho), t=to, j=0,1,....

Summing this inequality from j = 0 to j = i, by virtue of (1.15), we obtain

i i

EV(t+(i+1hy) —EV(t) < —c; > E|x(t+ jho) | Z (t+ jho).

Therefore,

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)
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We show that the right-hand side of inequality (1.18) is bounded. Really, using (1.14),

(1.15), for t > ty, we have

EV(t) <EV(t—ho) +y(t—ho)
<EV(t-2hy) +y(t— 2hg) +y(t— ho)

i

<-:--= t—lho Z t—]h()

T

-<EV(s)+ Z (t—jho),

IA

where

S=t—Th0€[f0,t0+h()), TZ[t_tO],
ho

[¢] is the integer part of a number t.
Since t = s+ thy, then

) [e9)

Zy(t+jh0)=2y(s+ (t+j)ho) = Z (s+ jho),
=0

j=0 j=r

T

>yt = jho) = X y(s+(x = j)ho) =Z (s+ jho).

j=1 j=1 j=0

Therefore, using (1.12), we obtain

[ [}

z (t+ jho) Z (t—jho) = Zy(s+jh0)sf/.

j=0 j=1 =0
So, from (1.18), (1.19), and (1.22), it follows that

t—to
ho

¢ D E|x(t+ jho) |2 <P+EV(s), t=ty s= t—[

1

Using (1.13), we get

sup EV(s)<c; sup Elx(t)|” < ci[lglZ+1Ix3].

s€[to,tot+ho) t<ty+ho

], ho € [to,to + ho).

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)
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From (1.2), (1.3), and (1.5), for t € [y, to + hy], we obtain

2

E|X(t)|2 =E|n(t)+ F(t = ho,x(t = ho),x(t —ho — h1),x(t —hg — h2),...) |
<2[E[n(t)|* +E| F(t - ho,x(t — ho),x(t — oy — ), x(t = ho — ha),...) |*]
<2 |:E|I’](l’)|2+aoE~¢(t—ho) |2+Z(1jE|¢(l’—h0—]’lj) |2:|

j=1

<2[llgll3 +Allgl12].
(1.25)

Using (1.23), (1.24), and (1.25), we have

e > E|x(t+ jho) |2 <P+ald+24)11¢15+2lnl13]. (1.26)

1

From here and (1.8), it follows that the solution of (1.2), (1.3) is uniformly mean square
summable. The theorem is proven. O

Remark 1.6. Replace condition (1.12) in Theorem 1.5 by the condition

[

p(t)dt < oo. (1.27)

to

Then the solution of (1.2) for each initial function (1.3) is mean square integrable. Really,
integrating (1.14) from t = ; to t = T, by virtue of (1.15), we have

T T T
EB(V (¢ +ho) — V(£))dt < —czj E|x(0)|2dt+ | y(n)dt (1.28)
to to

to

or

T+hg to+ho T ) T
J EV(t)dt—I EV(Hdt < —c» f E|x(t)] dt+f y(1)dt. (1.29)
T to to

to

From here and (1.24), (1.25), it follows that

T ) to+ho T
CQJ E|x(t)| dtsJ EV(t)dt+ | y(t)dt
to to to . (1.30)
sclho[(l+2A)||¢||5+2|m||%]+L y(B)dt < oo,

and by T — co, we obtain (1.9).

Remark 1.7. Suppose that for (1.10) the conditions of Theorem 1.5 hold with y(¢) = 0.
Then the trivial solution of (1.10) is asymptotically mean square quasistable. Really, in
the case y(t) = 0 from inequality (1.26) for (1.10) (5(¢) = 0), it follows that ¢;E[x(¢)|> <
c1(1+2A)l¢lI3 and condition (1.7) follows. It means that the trivial solution of (1.10) is
asymptotically mean square quasistable.
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From Theorem 1.5 and Remark 1.6, it follows that an investigation of the solution of
(1.2) can be reduced to the construction of appropriate Lyapunov functionals. Below,
some formal procedure of Lyapunov functionals construction for (1.2) is described.

Remark 1.8. Suppose that in (1.2) ho = h >0, h; = jh, j = 1,2,.... Putting t = t, + sh,
y(s) = x(to + sh), and &(s) = y(ty + sh), one can reduce (1.2) to the form

y(s+1) =&+ 1)+G(s,9(5), y(s = 1), (s = 2),...), s>-1,

y(0) =¢(0), 6<o. (1.31)

Below, the equation of type (1.31) is considered.

2. Formal procedure of Lyapunov functionals construction

The proposed procedure of Lyapunov functionals construction consists of the following
four steps.

Step 1. Represent the functional F at the right-hand side of (1.2) in the form
F(t,x(t),x(t —hy),x(t — hy),...) = F1(t) + F>(t) + AF5(1), (2.1)

where

Fl(t) = Fl (t)x(t)>x(t_ hl)v"’x(t_ hk))>
Fi(t) = Fj(t,x(t),x(t —h1),x(t = h2),...), j=2,3, (2.2)
Fi(t,0,...,0) = F,(1,0,0,...) = F5(t,0,0,...) = 0,

k > 0 is a given integer, AF3(t) = F5(t + hg) — F3(t).
Step 2. Suppose that for the auxiliary equation
y(t+ho) =Fi(t,y(t),y(t —h1),...,y(t—hi)), t>to—ho, (2.3)
there exists a Lyapunov functional
v(t) = v(t,y (), y(t=h),.... y(t = b)), (2.4)

which satisfies the conditions of Theorem 1.5.
Step 3. Consider Lyapunov functional V(¢) for (1.2) in the form V(t) = Vi (t) + Va(t),
where the main component is

Vi(t) = v(t,x(t) — F3(t),x(t — hy),...,x(t — hy)). (2.5)

Calculate EAV/(¢) and, in a reasonable way, estimate it.

Step 4. In order to satisfy the conditions of Theorem 1.5, the additional component V;(t)
is chosen by some standard way.
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3. Linear Volterra equations with constant coefficients

We demonstrate the formal procedure of Lyapunov functionals construction described
above for stability investigation of the scalar equation

[t]+r

x(t+1)=n(t+1) aix(t—j), t>-1,
Z j J (3.1)

x(s) =¢(s), se[—-(r+1),0],

where r > 0 is a given integer, a; are known constants, and the process #(t) is uniformly
mean square summable.

3.1. The first way of Lyapunov functionals construction. Following the procedure,
represent (Step 1) equation (3.1) in the form (2.1) with F5(t) = 0,

k [1]+r
Z x(t—7), B®)= > ax(t-j), k=0, (3.2)
j=0 j=k+1
and consider (Step 2) the auxiliary equation
k
y(t+1) Z ajy(t—j), t>-1,k=0,

(3.3)
0, s<—(r+1).

{¢(s), se[—-(r+1),0],

Take into consideration the vector Y (t) = (y(t — k),...,y(t — 1), y(t))" and represent the
auxiliary equation (3.3) in the form

0 1 0 0 0
0 0 1 0 0
Y(t+1)=AY(t), A=|": I (3.4)
0 0 0 0 1
ax dk-1 Ag—2 -t ar 4do
Consider the matrix equation
0 --- 0 0
ADA-D=-U, U=|" =+ * -“|, (3.5)
0 --- 0 1

and suppose that the solution D of this equation is a positive semidefinite symmetric ma-
trix of dimension k + 1 with the elements d;; such that the condition di; k41 > 0 holds. In
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this case the function v(¢) = Y'(+)DY (¢) is a Lyapunov function for (3.4), that is, it sat-
isfies the conditions of Theorem 1.5, in particular, condition (1.14) with y(¢) = 0. Really,
using (3.4), we have

Av(t) =Y'(t+1)DY(t+1) - Y'(t)Dy(t)

=Y ()[A'DA-D]Y(t) = -Y' (HUY(t) = —y*(2). (3.6)

Following Step 3 of the procedure, we will construct a Lyapunov functional V (¢) for
(3.1) in the form V() = V1(t) + V»(t), where

Vi(t) = X' (t)DX(t), X() = (x(t=k),...,x(t = 1),x(2)) . (3.7)
Rewrite now (3.1) using representation (3.2) as

X(t+1)=AX(t)+B(¢),

, 3.8
B(t) = (0,...,0,b(2)) , b(t) =x(t+1)+F(1), (38)
where the matrix A is defined by (3.4). Calculating AV, (t), by virtue of (3.8), we have

AVi(t) =X'(t+1)DX(t+1) — X' (t)DX(t)
= (AX(t)+B(1)) D(AX(t) +B(t)) — X' () DX (¢) (3.9)
= —x*(t)+ B’ (t)DB(t) + 2B’ (t)DAX (t).

Put
a=>laj|, 1=01,... (3.10)
j=1

Using (3.8), (3.2), (3.10), and ¢ > 0, we obtain
EB'(t)DB(t)
= disr i BB (1) = dicer ko E[(¢+ 1) + Ba(1)]?

< disrirt [(L+@E[n(t+1) [P+ 1+ ) EF (1) |

, (114 : (3.11)
=disipn | Q+E[n+ D"+ 1+ E[ D ajx(t—j)

j=k+1

[t]+r
< dii1pr1 [(1+y)E|11(t+1)|2+(1+/41)0ck+1 > |aj|Ex2(t—j)].
j=k+1
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Since
x(t—k+1)
dikri x(t—k+2)
d2,k+1 .
DB(t) = b(t) : R AX(t) = ) , (3.12)
: x(t)
Ay fr1
it 1,41 D amx(t—m
then
EB'(t)DAX(t)
k k
= Eb(t) [Z dierrx(t —k+1) + disr e D, amx(t — m)}
I=1 m=0
k=1 (3.13)
=EBb(t) | D (amdisi et + deomper ) x(t — m) + agdier g1 x(£ — k)
m=0
k
= dirrier >, QunEb(D)x(t — m),
m=0
where
Qom = am+ om0 k1 Que—ak (3.14)
dk+1,k+1
Note that
k k k
Z QimEb(t)x(t —m Z QimEn(t+1)x(t — m) + EFy(t Z Qmx(t —m),  (3.15)
and for y >0,
2|Eq(t+ D)x(t —m)| < uBn?(t+1)+pu "Ex?(t — m). (3.16)
Putting
Ar—m k1
ﬁk-ZlQm!—lakHz Qo+ (3.17)
k+1,k+1
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and using (3.2), (3.10), and (3.17), we obtain

k
2EF>(t) D Qumx(t —m)

m=0
k  [t]+r

=23 Y QuuajEx(t - m)x(t - j)

m=0 j=k+1
k  [t]+r

<> > [ Qunllaj| (Bx(t—m) +Ex(t — j)) (3.18)

m=0 j=k+1

k [t +r
< > | Qunl (“kHEx + > |aj|Bx( t—]))

j=k+1

k [t]+r
=01 D, | Qun |BX*(t—m)+ B > |a;|Bx*(t—j)
m=0 j=k+1

So,

[t]+r
2EB' (t)DAX(t) < diy1441 |:/5k z |aj | Ex?(t — j)+ PruEn*(t+1)

j=k+1
(3.19)

k
+(ager ! Z | Qum | Ex?(t — m)} .

From (3.9), (3.11), and (3.19), we have

EAV,(t) < _Exz(t) + des1jert

[t]+r
X[((1+H1)0¢k+1+ﬁk) z |aj | Ex*(t— j)
j=k+1 (3.20)

k
(1 p(1+B) ) B (t4+ 1) + (e +p7") D |ka|Ex2(t—m)].
m=0
Put now

- m|» 0— —k)
ka:{(“k“w Q| =m= (3.21)

((T+p YHaksr +Be) lam|, m>k.

Then (3.20) takes the form

[t]+r

EAV,(t) < —Bx*(t) + dis1.6+1 [(1 +u(L+Be))En(t+ 1)+ > RemBa?(t— m)} )
m=0
(3.22)
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Choose now (Step 4) the functional V;(¢) in the form

[t]+r o0
Vo(t) = divrjs D, qmx*(E=m), qm = D Ryj. (3.23)
m=1 j=m

Then

m=1 m=1

[t]+1+r [t]+r
AVi(t) = drs1k+1 ( D> qux(t+l—m)— > gux*(t— m))
[t]+r [t]+r
= dis1 441 ( D quax?(t—m)— > qux*(t— m)) (3.24)
m=0 m=1

[t]+r
= dir1,k41 (Q1x2(t) - Z Rimx*(t — m)) .

m=1
From (3.22), (3.24), for the functional V() = V;(t) + V,(t), we have
EAV(t) < - (1 - QOdkH,kJrl)ExZ(t) + )/(t), (3.25)
where

y(t) = dk+1,k+1(1+[,1(1+[3k))E;12(t+1). (3.26)

Since the process 7(t) is uniformly mean square summable, then the function y(t) satisfies
condition (1.12). So, if

qodk+1k+1 < 1, (3.27)

then the functional V(¢) satisfies condition (1.14). It is easy to check that condition (1.13)
holds too. Really, using (3.7), (3.23) for the functional V (t) = V,(t) + V,(t) and t € [0,1),
we have

k r
EV(t) < ID|| D Ex?*(t — j) + dis1r1 . qmEx(t —m)

j=0 m=1

) (3.28)
< ((k+1)IIDII +dkiiker . qm) supEx*(s).

m=1 S<t

So, if condition (3.27) holds, then the solution of (3.1) is uniformly mean square sum-
mable.
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Using (3.23), (3.21), (3.17), and (3.10), transform ¢ in the following way:

qo—sz; szﬂL Z Ri;j

j=0 j=k+1
[e9)

= (@ +p ") Z | Qi |+ (L e +B) D aj (3.29)
j=0 j=k+1

= (a1 )P+ (L +p7 ) agesr + Prc) ke
= 0y 2000 B+ (g +Br)-
Thus, if
QG yy 2001 B < dily s (3.30)

then there exists a so big y > 0 that condition (3.27) holds and, therefore, the solution of
(3.1) is uniformly mean square summable.
Note that condition (3.30) can also be represented in the form

et <y BE+ dicti i — Bre (3.31)

Remark 3.1. Suppose that in (3.1)
aj=0, j>k (3.32)

Then ax41 = 0. So, if condition (3.32) holds and the matrix equation (3.5) has a positive
semidefinite solution D with dji1k+1 > 0, then the solution of (3.1) is uniformly mean
square summable.

3.2. The second way of Lyapunov functionals construction. We get another stability
condition. Equation (3.1) can be represented (Step 1) in the form (2.1) with F,(t) =0,
k=0,

oo [t]+r 0
=pBx(t), P= Zaj, F5(t) = — z x(t—m) Z aj. (3.33)
=0 m=1 j=m
Really, calculating AF;(¢), we have
[t]+1+r ) [t]+r ©
AF3(t) = — Z (t+1—-m Z Zx(t—m)Za]
m=1 j=m m=1 j=m
[t]+r [t]+r
_— Z Z aj+ Zx(t—m)za, (3.34)
]:m+1

[t]+r

i Z (t—m)ay,.

+
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Thus,
x(t+1) =n(t+ 1)+ Px(t) + AF3(1). (3.35)

In this case the auxiliary equation (2.3) (Step 2) is y(t+ 1) = By(t). The function
v(t) = y*(t) is a Lyapunov function for this equation if || < 1. We will construct the
Lyapunov functional V(¢) (Step 3) for (3.1) in the form V(t) = Vi(t) + Va(t), where
Vi(t) = (x(t) — F5(t))?. Calculating EAV (#), by virtue of representation (3.33), we have

EAV (1) = E[ (x(t+1) = F5(t+ 1))’ = (x(t) - F5(1))’]

= E[ (n(t+1)+Bx(t) — F5(1)* = (x(t) — F5(1))’]
=E(n(t+ 1)+ (B—1)x()) (n(t+ 1)+ (B+ 1)x(t) — 2F3(t)) (3.36)
= (B> = 1)Ex2(t) + B (t + 1) + 2BEn(t + 1)x (1)

— 2En(t+1)F5(t) — 2(8 — 1)Ex(t)F5(t).

Using u > 0, we obtain

2E|n(t+ Dx(t)| < uBn?(t+1)+u "Ex*(t). (3.37)
Putting
=|>aj|, a=> Bu (3.38)
j=m m=1

and using (3.33), (3.10), we have

[t]+r

2B|n(t+1)F5(t)| =2 > B,E|n(t+ Dx(t—m)|

[t]+r
< > Bu(UE*(t+1)+p "Ex*(t — m))
m=1
[t]+r
<ouBn*(t+ 1) +u! Z B, Ex*(t —m),
= (3.39)

[t]+r

2E|x(tF3t)|<ZZB E|x(t)x(t—m)|

t]+r

zB (Ex*(t) + Ex?(t — m))

[t]+r
< aEx’( Z B Ex*(t — m).

m=1
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As a result,

EAV (t) < (B> = 1+alf— 1 +u ' IBNEX*(t) + (1+p(a+B1)En?(t+1)

[t]+r 3.40
+(B=11+p") ZBmExz(t—m). ( )

Put now (Step 4)
[t]+r 0
Xymx (t—=m), ym=(B—11+p"") > B, (3.41)
j=m
Then, using (3.38), similar to (3.24), we have
[t]+r
AV () = (IB— 1] +u! (ocx (t) — ZBmx t—m ) (3.42)

So, for the functional V(t) = V;(t) + V,(t), we obtain
EAV(t) < (B2 —1+2alf—1]+u "(a+|B]))Ex*(t)
+ (Lt plat [B)) B+ D). B
Thus, if
B+2alf—1]<1, (3.44)

then there exists a so big ¢ > 0 that condition [32 +2a|f -1 +;4‘1((x +181) < 1 holds also,
and, therefore, the solution of (3.1) is uniformly mean square summable.
It is easy to see that condition (3.44) can be written also in the form

1+B>2a, [BI<1. (3.45)

4. Particular cases

Here, particular cases of condition (3.31) for different k > 0 are considered.

4.1. Case k = 0. Equation (3.5) gives the solution di; = (1 —a3)~!, which is a positive
one if |ag| < 1. From (3.17), it follows that 3y = |ag|. Condition (3.31) takes the form

oy < 1. (4.1)

So, under condition (4.1), the solution of (3.1) is uniformly mean square summable.

4.2. Case k = 1. The matrix equation (3.5) is equivalent to the system of equations
ajdy —diy =0,
(a1 —1)diy +agaidy =0, (4.2)
d11 +2610d12 + (a%) — 1)d22 =—1,
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with the solution

1- ay (43)

The matrix D is a positive semidefinite one with dy, > 0 by conditions |a;] < 1, |ag| <
1 —a,. Using (3.17), (4.3), we have

apa a
/31—|a1|+ a0+—‘—|a1|+ a0+131 —|1|+1|_061,
1 ! (4.4)
+a
dy =1-a?—a? L
22 mETT
Condition (3.31) takes the form
|ao|
<(1- 1—-—. 4.5
< (1= far]) (1~ {20 @5)
Under condition (4.5), the solution of (3.1) is uniformly mean square summable.
Note that condition (4.5) can also be written in the form
oc0<1+|ao||“1| (4.6)
1-a

It is easy to see that condition (4.6) is not worse than (4.1). In particular, for a; > 0,
condition (4.6) coincides with (4.1).

4.3. Case k = 2. The matrix equation (3.5) is equivalent to the system of equations

(/’l%d33 — d11 =0
ardiz +aiaxdss —di; =0
axdy3 +agardss —diz =0
5 (4.7)
d11 +2a1d13 +a1d33 — dzz =0

dlz + a0d13 + a0a1d33 + (a1 — 1)d23 =0

doy +2a0drs + (a§ — 1)ds3 = -1,
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with the solution

2
din = a2d333

ax(1—ay)(a +apa
dyy = 2 ( 1) (a1 02)d33,

1—(11 —az(ao‘f'llz)

s ay(ao + ayaz)
13 — 33>

1—a; —ax(ap+ay) (4.8)
2a1a;(ag+ayaz)
dy=|at+a3+ dss,
2 [m as 1= —ay(ap+a) |
J _ (a0 +a) (a1 +a0ar)
» l—al—az(a0+a2) 3%
(a0 + @) +ap (a0 +ar) (@ +apar) |
ds3 = l—a%—a%—a%_zalaz aptaiap aplag+ay)\a; +apar . (4.9)
1—a;—ax(ap+ay)
Using (3.17), (4.7), and (4.8), we have
d d dis| +|d
132:|a2|+ ﬂ0+£ +‘a1+£ :|a2|+M
ds3 ds3 |ay | dss (4.10)
= |as| + lag+aiay | + | (1—ay) (a1 +aoaz) | :
= |a

|1—111 —Elz((lo+a2)|

If the matrix D with the elements defined by (4.8) is a positive semidefinite one with
ds3 > 0, then under the condition

a3 < B3 +d53 — Pas (4.11)

the solution of (3.1) is uniformly mean square summable.
5. Examples
Example 5.1. Consider the difference equation

x(t+1)=nt+1)+ax(t) +bx(t-1), t>-1,

x(0) = ¢(0), 0€[-2,0]. (5.1)

From conditions (4.1) and (4.5) follow two sufficient conditions for uniformly mean
square summability of the solution of (5.1):

lal +1b| < 1, (5.2)
lal+b<1, |bl<1. (5.3)

Condition (4.11) for (5.1) coincides with (5.3). Condition (3.45) takes the form

l1+a+b>2|bl, la+bl<]l1. (5.4)
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Figure 5.1

On Figure 5.1 are shown the regions of uniformly mean square summability, obtained
for (5.1) by conditions (5.2) (the square number 1), (5.3) (the triangle number 2), and
(5.4) (the triangle number 3).

For numerical investigation of the solution of (5.1), we determine one of the possible
trajectories of the process #(t), t = to, in the following way. On the interval [¢ + nhy, o +
(n+1)hy), n=0,1,..., put

n(t) =0 (5.5)
if
te [to + Tl]’l(),to + (1’1+ 1- Z—In)]’lo) (56)
or
te [to+ (n+1- 20 Jhosto + (n+ Do) (5.7)
put
_ An+2 t—t o i)
n(t)=2 (—ho n—1+ o (5.8)
if
1 3
te[t0+(n+1—2—n)ho,t0+(n+1—2n+2>h0>, (5.9)
and put

n(t)=1—2"+2<t;—t°—n—1+ > ) (5.10)
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if
5 ), L,
te | th+ n+1—§;§ 0,fo + n+1—5;1 0. (5.11)
The graph of the function #(t) for o = 0, hy = 1 is shown on Figure 5.2.

The function 7(t) constructed above satisfies the following conditions:

Y]

0sp =l Sqlt+jh) <1, L a(t)dt =3 (5.12)

j=0

It is easy to see also that for each fixed t € [to,t, + ho), the sequence #; = #(t + jho) has
only one nonzero member, and therefore lim; ., (¢ + jho) = 0. On the other hand, for
every T > 0, there exists a so large number 7 that

3
on+2

t1=t0+(n+1— >h0>T, () = 1. (5.13)
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Therefore, lim,_.., 7(t) does not exist. So, the function #(¢) is an asymptotically quasitriv-
ial function (satisfies condition (1.7)) but not an asymptotically trivial one (does not
satisfy condition (1.6)).

The trajectory of (5.1) with the initial function ¢(8) = cos260 — 1 is shown in the point
A(1.1,-0.9), which belongs to the summability region, on Figure 5.3 with #(¢) = 0 and
on Figure 5.4 with #(t) described above. The trajectory of (5.1) with the initial func-
tion ¢(0) = 0.05co0s20 is shown in the point B(—0.5,0.6), which does not belong to the
summability region, on Figure 5.5 with #(¢) = 0 and on Figure 5.6 with #(t) described
above. The points A and B are shown on Figure 5.1.

Example 5.2. Consider the difference equation

[t]+r
x(t+1)=n(t+1)+ax(t bix(t—j), t>-1,
1 Z (5.14)
x(0)=¢(0), 6e [—(r+1),0], r=0.
From condition (4.1), it follows that the inequality
1-21b| 1
lal < "6 Ib] < > (5.15)

is a sufficient condition for uniformly mean square summability of the solution of (5.14).
Condition (4.5) gives us a sufficient condition for uniformly mean square summability
of the solution of (5.14) in the form

l—2|b|>(l—b> 1

al< (=) (=) w5 (5.16)
From (4.8), (4.10), and (4.11), we obtain another sufficient condition for uniformly mean
square summability of the solution of (5.14):

b3
l|—||b| < \/ﬁ%+d§31 -2 lbl<1,

B la+b®| +(1—b)|b(1+ab)]
po=b? T—b—b2(a+b)] (
b*(a+b®) +a(a+b?)(1+ab)
—b—b(atb))

5.17)

dil=1-a*>-b*-b*-2b

Using Mathematica program for solution of the matrix equation (3.5), sufficient con-
dition (3.31) for uniformly mean square summability of the solution of (5.14) was ob-
tained also for k = 3 and k = 4. In particular, for k = 3, this condition takes the form

b4
b < \/ﬁ§+d;41 —Bs, Ibl<1,

d24
= ||+
Bs = |b°| o

5.18
e (5.18)

+ b+ ,
d44

e | 22
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where

dis
d44
% = b [a’b+b*+b> b —bP +a(1+b"+b°) ]G,
44
dsa
d44
dy =G[1-b-b*—a*t® - 2b* +2b7 — 263 +2b° — b0 — b2 +

b+ - (B +b°) —a*(1+b+5b* —b° +b° -2

=[P+ -3 +a(l1-b>+b*)]|G!

=b[b*+a??+b* — b +a?(b+b*) +a(l+2b° +b° - b° —

b)]G!

b13
b7

_p9)

—ab*(1+4b—b*+5b% —b* +b° — 4b° + 467 — 10+ p11)] 7,

G=1-b—ab®— (1+a)b> — b* — ab® — b+ b7 + b°.

(5.19)
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Condition (3.45) for (5.14) takes the form

1-3|b| 1-2b

_(l—b)(l—|b|)<a< 1-b° [b| < 1. (5.20)

On Figure 5.7, the regions of uniformly mean square summability of the solution of
(5.14) are shown, obtained by condition (3.31). For k = 0 (condition (5.15), the brown
curve), for k = 1 (condition (5.16), the blue curve), for k = 2 (condition (5.17), the green
curve), for k = 3 (condition (5.18), the cyan curve), for k = 4 (the red curve) and also
obtained by condition (5.20) (the magenta curve).

As it is shown on Figure 5.7 (and naturally it can be shown analytically), for b = 0
condition (5.15) coincides with condition (5.16) and, for a > 0, b > 0, conditions (5.15),
(5.16), (5.17), and (5.18) give the same region of uniformly mean square summability,
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which is defined by the inequality

at+——<1, bzl

(5.21)

Note also that the region of uniformly mean square summability Qx of the solution
of (5.14), obtained by condition (3.31), expands if k increases, that is, Qy C Q; C Q, C
Q3 C Qq. So, to get a greater region of uniformly mean square summability, one can use
condition (3.31) for k = 5, k = 6, and so forth. But it is clear that each region Qj can be

obtained by the condition |b| < 1 only.
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To obtain a condition of another type for uniformly mean square summability of the
solution of (5.14), transform the sum from (5.14) for ¢t > 0 in the following way:

[t]+r [t]+r
D bix(t—j)=b> b 'x(t—j)
j=1 j=1
[t]-1+r
=b bix(t—1-j)
Eo (5.22)
[t]—1+r
:b(x(t—1)+ > bfx(t—1—j))
j=1

— B[(1 - a)x(t— 1)+ x(0) — (1)),
Substituting (5.22) into (5.14), we obtain (5.14) in the form

r—1
x(t+1) =nt+1)+ax(t)+ > bix(t—j), te(-1,0],
j=1

x(t+1) = gi(t+ 1)+ (a+b)x(t) +b(1 — a)x(t - 1), (5.23)

mE+1)=n(t+1)-by(t), t>0.

The corresponding matrix D is defined by (4.3) with ap = a+b, a; = b(1 —a), and it
is a positive semidefinite one if and only if

|b(1-a)| <1, la+bl<1-b(1-a). (5.24)

On Figure 5.8 the graph on Figure 5.7 is shown together with the region of uniformly
mean square summability obtained by condition (5.24) (the yellow curve).

The trajectory of (5.14) with r = 1 and the initial functional ¢(8) =0.8 cos8 is shown
in the point A(1.2,—1.8), which belongs to the summability region, on Figure 5.9 with
#(t) = 0 and on Figure 5.10 with #(t) described above. The trajectory of (5.14) with r = 1
and the initial functional ¢(6) = 0.1cos0 is shown in the point B(1.33,—1.8), which does
not belong to the summability region, on Figure 5.11 with #(t) = 0 and on Figure 5.12
with 7(t) described above. The points A and B are shown on Figure 5.8.
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