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In analyzing large-scale systems, it is often desirable to treat the overall system as a col-
lection of interconnected subsystems. Solution properties of the large-scale system are
then deduced from the solution properties of the individual subsystems and the na-
ture of the system interconnections. In this paper, we develop an analysis framework for
discrete-time large-scale dynamical systems based on vector dissipativity notions. Specif-
ically, using vector storage functions and vector supply rates, dissipativity properties of
the discrete-time composite large-scale system are shown to be determined from the dissi-
pativity properties of the subsystems and their interconnections. In particular, extended
Kalman-Yakubovich-Popov conditions, in terms of the subsystem dynamics and inter-
connection constraints, characterizing vector dissipativeness via vector system storage
functions are derived. Finally, these results are used to develop feedback interconnection
stability results for discrete-time large-scale nonlinear dynamical systems using vector
Lyapunov functions.

1. Introduction

Modern complex dynamical systems are highly interconnected and mutually interdepen-
dent, both physically and through a multitude of information and communication net-
work constraints. The sheer size (i.e., dimensionality) and complexity of these large-scale
dynamical systems often necessitate a hierarchical decentralized architecture for analyz-
ing and controlling these systems. Specifically, in the analysis and control-system design
of complex large-scale dynamical systems, it is often desirable to treat the overall system
as a collection of interconnected subsystems. The behavior of the aggregate or compos-
ite (i.e., large-scale) system can then be predicted from the behaviors of the individual
subsystems and their interconnections. The need for decentralized analysis and control
design of large-scale systems is a direct consequence of the physical size and complexity
of the dynamical model. In particular, computational complexity may be too large for
model analysis while severe constraints on communication links between system sensors,
actuators, and processors may render centralized control architectures impractical.
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An approach to analyzing large-scale dynamical systems was introduced by the pio-
neering work of Siljak [19] and involves the notion of connective stability. In particular,
the large-scale dynamical system is decomposed into a collection of subsystems with local
dynamics and uncertain interactions. Then, each subsystem is considered independently
so that the stability of each subsystem is combined with the interconnection constraints
to obtain a vector Lyapunov function for the composite large-scale dynamical system guar-
anteeing connective stability for the overall system. Vector Lyapunov functions were first
introduced by Bellman [2] and Matrosov [17] and further developed by Lakshmikan-
tham et al. [11], with [7, 14, 15, 16, 18, 19, 20] exploiting their utility for analyzing large-
scale systems. The use of vector Lyapunov functions in large-scale system analysis offers
a very flexible framework since each component of the vector Lyapunov function can
satisfy less-rigid requirements as compared to a single scalar Lyapunov function. More-
over, in large-scale systems, several Lyapunov functions arise naturally from the stability
properties of each subsystem. An alternative approach to vector Lyapunov functions for
analyzing large-scale dynamical systems is an input-output approach wherein stability
criteria are derived by assuming that each subsystem is either finite gain, passive, or conic
[1, 12,13, 21].

Since most physical processes evolve naturally in continuous time, it is not surprising
that the bulk of large-scale dynamical system theory has been developed for continuous-
time systems. Nevertheless, it is the overwhelming trend to implement controllers digi-
tally. Hence, in this paper we extend the notions of dissipativity theory [22, 23] to de-
velop vector dissipativity notions for large-scale nonlinear discrete-time dynamical sys-
tems; a notion not previously considered in the literature. In particular, we introduce
a generalized definition of dissipativity for large-scale nonlinear discrete-time dynami-
cal systems in terms of a vector inequality involving a vector supply rate, a vector storage
function, and a nonnegative, semistable dissipation matrix. Generalized notions of vector
available storage and vector required supply are also defined and shown to be element-
by-element ordered, nonnegative, and finite. On the subsystem level, the proposed ap-
proach provides a discrete energy flow balance in terms of the stored subsystem energy,
the supplied subsystem energy, the subsystem energy gained from all other subsystems
independent of the subsystem coupling strengths, and the subsystem energy dissipated.
Furthermore, for large-scale discrete-time dynamical systems decomposed into intercon-
nected subsystems, dissipativity of the composite system is shown to be determined from
the dissipativity properties of the individual subsystems and the nature of the intercon-
nections. In particular, we develop extended Kalman-Yakubovich-Popov conditions, in
terms of the local subsystem dynamics and the interconnection constraints, for charac-
terizing vector dissipativeness via vector storage functions for large-scale discrete-time
dynamical systems. Finally, using the concepts of vector dissipativity and vector storage
functions as candidate vector Lyapunov functions, we develop feedback interconnection
stability results of large-scale discrete-time nonlinear dynamical systems. General stability
criteria are given for Lyapunov and asymptotic stability of feedback interconnections of
large-scale discrete-time dynamical systems. In the case of vector quadratic supply rates
involving net subsystem powers and input-output subsystem energies, these results pro-
vide a positivity and small gain theorem for large-scale discrete-time systems predicated
on vector Lyapunov functions.
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2. Mathematical preliminaries

In this section, we introduce notation, several definitions, and some key results needed
for analyzing discrete-time large-scale nonlinear dynamical systems. Let R denote the set
of real numbers, let Z, denote the set of nonnegative integers, let R” denote the set of
n % 1 column vectors, let S" denote the set of n X n symmetric matrices, let N (resp.,
P") denote the set of n X n nonnegative (resp., positive) definite matrices, let (-)* denote
transpose, and let I, or I denote the n X n identity matrix. For v € R1, we write v=>0
(resp., v>>0) to indicate that every component of v is nonnegative (resp., positive). In
this case we say that v is nonnegative or positive, respectively. Let R and R? denote the
nonnegative and positive orthants of R7; that is, if v € R4, then v € Ez and v € R? are
equivalent, respectively, to v==>0 and v>>0. Finally, we write || - || for the Euclidean vector
norm, spec(M) for the spectrum of the square matrix M, p(M) for the spectral radius of
the square matrix M, AV (x(k)) for V(x(k+1)) — V(x(k)), Be(ax), « € R", € >0, for the
open ball centered at « with radius ¢, and M > 0 (resp., M > 0) to denote the fact that the
Hermitian matrix M is nonnegative (resp., positive) definite. The following definition
introduces the notion of nonnegative matrices.

Definition 2.1 (see [3, 4, 9]). Let W € R7*4. The matrix W is nonnegative (resp., positive)
if Wi jy =0 (resp., W j) >0), i,j = 1,...,q. (In this paper it is important to distinguish
between a square nonnegative (resp., positive) matrix and a nonnegative-definite (resp.,
positive-definite) matrix.)

The following definition introduces the notion of class W functions involving nonde-
creasing functions.

Definition 2.2. A function w = [wl,...,wq]T :R? — R4 is of class W if wi(r') < wi(r"),
i=1,...,q,forallr’,r” € Rl such thatr; <r}, j = 1,...,q, where r; denotes the jth com-
ponent of r.

Note that if w(r) = Wr, where W € R9%4, then the function w(-) is of class W if and
only if W is nonnegative. The following definition introduces the notion of nonnegative
functions [9].

Definition 2.3. Let w = [wy,... ,wq]T : V" — R4, where V" is an open subset of R4 that con-
tains R1. Then w is nonnegative if w(r)=>0 for all r € R?.

Note that if w: R?7 — R1 is such that w(-) € W and w(0)>=>0, then w is nonnegative.
Note that, if w(r) = Wr, then w(-) is nonnegative if and only if W € R7%7 is nonnegative.

PROPOSITION 2.4 (see [9]). Suppose R € V. Then RY is an invariant set with respect to
r(k+1)=w(rk)), r(0)=ry keZi, (2.1)
if and only if w : V' — RY is nonnegative.

The following lemma is needed for developing several of the results in later sections.
For the statement of this lemma, the following definition is required.
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Definition 2.5. The equilibrium solution (k) = r. of (2.1) is Lyapunov stable if, for ev-
ery & > 0, there exists 8 = (&) > 0 such that if ry € Bs(re) " RY, then r(k) € B.(r.) N RY,
k € Z,. The equilibrium solution r(k) = r. of (2.1) is semistable if it is Lyapunov stable
and there exists 8 > 0 such that if ry € Bs(r.) N Ri, then limy_ (k) exists and con-
verges to a Lyapunov stable equilibrium point. The equilibrium solution r(k) = r. of
(2.1) is asymptotically stable if it is Lyapunov stable and there exists § > 0 such that if
10 € Bs(re) N Ez, then limk_.. 7(k) = re. Finally, the equilibrium solution r(k) = r. of
(2.1) is globally asymptotically stable if the previous statement holds for all r, € RY.

Recall that a matrix W € R9%4 is semistable if and only if limi .., W exists [9] while
W is asymptotically stable if and only if limy_.., W* = 0.

LEmMA 2.6. Suppose W € R9*1 is nonsingular and nonnegative. If W is semistable (resp.,
asymptotically stable), then there exist a scalar a = 1 (resp., « > 1) and a nonnegative vector
peRL p+0, (resp., positive vector p € RY) such that

W Tp=ap. (2.2)

Proof. Since W is semistable, it follows from [9, Theorem 3.3] that [A| <1 or A = 1 and
A =1 is semisimple, where A € spec(W). Since WT>>0, it follows from the Perron-
Frobenius theorem that p(W) € spec(W) and hence there exists p>=>0, p # 0, such that
WTp = p(W)p. In addition, since W is nonsingular, p(W) > 0. Hence, WTp = a"!p,
where a = 1/p(W), which proves that there exist p>>0, p # 0, and « > 1 such that (2.2)
holds. In the case where W is asymptotically stable, the result is a direct consequence of
the Perron-Frobenius theorem. |

Next, we present a stability result for discrete-time large-scale nonlinear dynamical
systems using vector Lyapunov functions. In particular, we consider discrete-time non-
linear dynamical systems of the form

x(k+1)=F(x(k)), x(ko)=x0, k= ko, (2.3)

where F: 9% — R" is continuous on %, % < R" is an open set with 0 € &, and F(0) = 0.
Here, we assume that (2.3) characterizes a discrete-time large-scale nonlinear dynami-
cal system composed of g interconnected subsystems such that, for all i = 1,...,4, each
element of F(x) is given by Fi(x) = fi(x;) + $i(x), where f;: R" — R" defines the vec-
tor field of each isolated subsystem of (2.3), $;: % — R™ defines the structure of inter-
connection dynamics of the ith subsystem with all other subsystems, x; € R", f;(0) =0,
$:(0) = 0,and 3L, n; = n. For the discrete-time large-scale nonlinear dynamical system
(2.3), we note that the subsystem states x;(k), k = ko, for all i = 1,...,q, belong to R" as
long as x(k) £ [x] (k),... ,qu(k)]T € 9, k = ko. The next theorem presents a stability result
for (2.3) via vector Lyapunov functions by relating the stability properties of a compari-
son system to the stability properties of the discrete-time large-scale nonlinear dynamical
system.

TaEOREM 2.7 (see [11]). Consider the discrete-time large-scale nonlinear dynamical system
given by (2.3). Suppose there exist a continuous vector function V : % — R and a positive
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vector p € R? such that V(0) = 0, the scalar functionv : % — R, defined by v(x) = p"V(x),
x € 9, is such that v(0) = 0, v(x) >0, x £ 0, and

V(F(x))<<w(V(x)), x€D, (2.4)

where w : R — R4 is a class W function such that w(0) = 0. Then the stability properties of
the zero solution r(k) = 0 to

r(k+1)=w(rk)), r(ko)=ro, k= ko, (2.5)

imply the corresponding stability properties of the zero solution x(k) = 0 to (2.3). That is, if
the zero solution r(k) = 0 to (2.5) is Lyapunov (resp., asymptotically) stable, then the zero
solution x(k) = 0 to (2.3) is Lyapunov (resp., asymptotically) stable. If, in addition, % = R"
and V(x) — o as ||x|| — oo, then global asymptotic stability of the zero solution r(k) = 0 to
(2.5) implies global asymptotic stability of the zero solution x(k) = 0 to (2.3).

fvV:9 — EZ satisfies the conditions of Theorem 2.7, we say that V(x), x € 9, is a vec-
tor Lyapunov function for the discrete-time large-scale nonlinear dynamical system (2.3).
Finally, we recall the notions of dissipativity [6] and geometric dissipativity [8, 9] for
discrete-time nonlinear dynamical systems %4 of the form

x(k+1) = f(x(k)) + G(x(k))u(k), x(ko) =x0, k= ko, (2.6)
y(k) = h(x(k)) +] (x(k))u(k), (2.7)

where x e D R, uc U R™, y e YR, f:% — R” satisfies f(0) =0, G: D —
R™™ h: % — R satisfies h(0) = 0, and ] : @ — R>"™, For the discrete-time nonlinear dy-
namical system 9, we assume that the required properties for the existence and unique-
ness of solutions are satisfied; that is, u(-) satisfies sufficient regularity conditions such
that (2.6) has a unique solution forward in time. Note that since all input-output pairs
u €U, y €Y of the discrete-time nonlinear dynamical system 4 are defined on 7., the
supply rate [22] satistying s(0,0) = 0 is locally summable for all input-output pairs satis-
fying (2.6), (2.7); that is, for all input-output pairs u € U, y € Y satisfying (2.6), (2.7),
s(-, ) satisfies 32 Is(u(k), y(k))| < 0, ki, k; € Z..

Definition 2.8 (see [6, 8]). The discrete-time nonlinear dynamical system % given by (2.6),
(2.7) is geometrically dissipative (resp., dissipative) with respect to the supply rate s(u, )
if there exist a continuous nonnegative-definite function v : R” — Ry, called a storage
function, and a scalar p > 1 (resp., p = 1) such that v5(0) = 0 and the dissipation inequality

k-1

PRy (x(ka)) < pFrvg(x (ki) + Z p s (u(i), y(i)), ko= ki, (2.8)
i~k

is satisfied for all k, > k; > ko, where x(k), k > ko, is the solution to (2.6) with u € U. The
discrete-time nonlinear dynamical system % given by (2.6), (2.7) is lossless with respect to
the supply rate s(u, y) if the dissipation inequality is satisfied as an equality with p = 1 for
all k2 = k1 = ko.
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An equivalent statement for dissipativity of the dynamical system (2.6), (2.7) is
Avs(x(k)) < s(u(k),y(k)), k=ko, uclU, ycV. (2.9)

Alternatively, an equivalent statement for geometric dissipativity of the dynamical system
(2.6), (2.7) is

pvs(x(k+1)) —vs(x(k)) < ps(u(k),y(k)), k=ko, uclU, y Y. (2.10)

3. Vector dissipativity theory for discrete-time large-scale nonlinear dynamical
systems

In this section, we extend the notion of dissipative dynamical systems to develop the gen-
eralized notion of vector dissipativity for discrete-time large-scale nonlinear dynamical
systems. We begin by considering discrete-time nonlinear dynamical systems § of the
form

x(k+1) = F(x(k),u(k)), x(ko) =xo, k= ko, (3.1)
y(k) = H (x(k), u(k)), (3.2)

where x € 9 = R", ueoug]Rm,ye@QRZ,F:QDXOILﬁR”,H:QDX%—»@,QZJ is
an open set with 0 € %, and F(0,0) = 0. Here, we assume that 4 represents a discrete-
time large-scale dynamical system composed of q interconnected controlled subsystems
%; such that, foralli=1,...,q,

Fi(x,ui) = fi(xi) +$i(x) + Gi (x;) s,

Hi(xi,ui) = hi(x;) +Ji (i) iy 5

where x; € R™, u; € W; € R™, y; 2 H(x;,u;) € Y; < RY, (u;, y;) is the input-output pair

for the ith subsystem, f; : R" — R" and $; : 9@ — R" are continuous and satisfy f;(0) =0
and $;(0) = 0, G; : R — R"*mi {5 continuous, h; : R" — R satisfies 4;(0) = 0, J; : R —
Rimi STy =n, 3L m; =m, and 3L, I; = I. Furthermore, for the system % we as-
sume that the required properties for the existence and uniqueness of solutions are sat-
isfied. We define the composite input and composite output for the discrete-time large-
scale system 9 as u = [ulT,...,ug]T and y = [le,...,qu]T, respectively. Note that, in this
case, the set U = Uy X - - - XU, contains the set of input values and Y =Yy x - - - XY,

contains the set of output values.

Definition 3.1. For the discrete-time large-scale nonlinear dynamical system % given by
(3.1), (3.2), a vector function S = [sy,...,54]T : U X Y — R such that S(u, y) 2 [s1(ur, 1),
...,sq(uq,yq)]T and $(0,0) = 0 is called a vector supply rate.

Note that, since all input-output pairs (u;, ;) € U; X Y;, i = 1,...,q, satisfying (3.1),
(3.2) are defined on Z., s;(-, -) satisfies Zf:kl Isi(ui(k), yi(k))| < 0, ki, ky € Zs.

Definition 3.2. The discrete-time large-scale nonlinear dynamical system % given by (3.1),
(3.2) is vector dissipative (resp., geometrically vector dissipative) with respect to the vector
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supply rate S(u, ) if there exist a continuous, nonnegative definite vector function V; =
[vsl,...,vsq]T 1P - RZ, called a vector storage function, and a nonsingular nonnegative
dissipation matrix W € R71 such that V,(0) = 0, W is semistable (resp., asymptotically
stable), and the vector dissipation inequality

k-1
Vi(x(k)) <sWERVi(x (ko)) + D WS (u(i), y(i)), k= ko, (3.4)
i=ko

is satisfied, where x(k), k > ko, is the solution to (3.1) with u € U. The discrete-time large-
scale nonlinear dynamical system % given by (3.1), (3.2) is vector lossless with respect to
the vector supply rate S(u, y) if the vector dissipation inequality is satisfied as an equality
with W semistable.

Note that if the subsystems §; of G are disconnected, that is, $;(x) = 0 for all i =
1,...,q, and W € R7%1 js diagonal, positive definite, and semistable, then it follows from
Definition 3.2 that each of the isolated subsystems %; is dissipative or geometrically dis-
sipative in the sense of Definition 2.8. A similar remark holds in the case where g = 1.
Next, define the vector available storage of the discrete-time large-scale nonlinear dynam-
ical system 4 by

K-1
Vai(xo) £ sup [— > W_(k“_k“)S(u(k),y(k))}, (3.5)

K=ko, u(-) k=ko

where x(k), k = ko, is the solution to (3.1) with x(ko) = xo and admissible inputs u €
U. The supremum in (3.5) is taken componentwise, which implies that, for different
elements of V,(-), the supremum is calculated separately. Note that V,(x9)=>=0, xo € 9,
since V,(xo) is the supremum over a set of vectors containing the zero vector (K = k). To
state the main results of this section, the following definition is required.

Definition 3.3 (see [9]). The discrete-time large-scale nonlinear dynamical system  given
by (3.1), (3.2) is completely reachable if, for all x, € & < R", there exist a ki < ko and
a square summable input u(-) defined on [kj, ko] such that the state x(k), k > k;, can
be driven from x(ki) = 0 to x(ko) = xo. A discrete-time large-scale nonlinear dynamical
system 9 is zero-state observable if u(k) = 0 and y(k) = 0 imply x(k) = 0.

THEOREM 3.4. Consider the discrete-time large-scale nonlinear dynamical system G given
by (3.1), (3.2) and assume that § is completely reachable. Let W € R1*1 be nonsingular,
nonnegative, and semistable (resp., asymptotically stable). Then

K-1
> W kRIS (y(k), y(k)) 220, K = ko, u €U, (3.6)
k=ko

for x(ko) = 0 if and only if V,(0) = 0 and V,(x) is finite for all x € @. Moreover, if (3.6)
holds, then V,(x), x € D, is a vector storage function for G and hence § is vector dissipative
(resp., geometrically vector dissipative) with respect to the vector supply rate S(u, y).
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Proof. Suppose V,(0) = 0 and V,(x), x € 9, is finite. Then

K-1
0="V,(0)= sup [— > W("“k")S(u(k),y(k))], (3.7)
K=>ko, u(+) k=ko

which implies (3.6).
Next, suppose (3.6) holds. Then, for x(ko) = 0,

K-1
sup [— > W“‘“"“)S(u(k),y(k))] <=0, (3.8)
K=ko, u(+) k=ko

which implies that V,(0) <<0. However, since V,(x¢)=>0, xo € 9, it follows that V,(0) =
0. Moreover, since § is completely reachable, it follows that, for every xy € 9, there exists
k > ko and an admissible input u(-) defined on [ko,l%] such that x(l%) = xp. Now, since
(3.6) holds for x(ky) = 0, it follows that, for all admissible u(-) € U,

K-1

S Wk RIS (u(k), y(k) 220, K =k, (39)
k=ko

or, equivalently, multiplying (3.9) by the nonnegative matrix Wkko > k, yields

K-1 . k-1 ;
> W ERS(u(k), y(k) << > W EBS(u(k), y(k))
= Pt (3.10)

<<Q(xp)<oo, K= k,ueau,

where Q : 9 — R4. Hence,

K-1 A
Va(xo) = sup [— Z W(k“k)S(u(k),y(k))]ssQ(xo)<<<>0, X €9, (3.11)
K=k, u(-) K=k

which implies that V,(x), xo € 9, is finite.
Finally, since (3.6) implies that V,(0) = 0 and V,(x), x € 9, is finite, it follows from
the definition of the vector available storage that

K-1
—Val(xo) == > W EI=RIS(y(k), y(k))
k=ko
ke—1
= > W RIS (u(k), y(k)) (3.12)
k=ko
K-1

+ > W kRIS (y(k), y(k)), K = k.
k=k¢
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Now, multiplying (3.12) by the nonnegative matrix Whki=ko ke > kg, it follows that

ke—1
WhRV, (x0) + > Wk 1=RIS (u(k), y(k))
k=ko
- 3.13
>> sup [ 2 RIS (u(k), }’(k))] o1
K=k¢, u(-) k=
= Va(x(ke)),

which implies that V,(x), x € 9, is a vector storage function and hence 4 is vector dis-
sipative (resp., geometrically vector dissipative) with respect to the vector supply rate
S(u, y). O

It follows from Lemma 2.6 that if W € R7%7 is nonsingular, nonnegative, and semi-
stable (resp., asymptotically stable), then there exist a scalar a > 1 (resp., « > 1) and a
nonnegative vector p € @3, p#0, (resp., p € R‘i) such that (2.2) holds. In this case,

PTWHR=apTw kD = ... = okpT keZ,. (3.14)

Using (3.14), we define the (scalar) available storage for the discrete-time large-scale non-
linear dynamical system 4 by

K-1
va(x0) £ sup [— > pTW_(kH_kO)S(u(k):)/(k))}

K=ko, u(-) k=ko
(3.15)

K-1
= sup [_Zak“kﬂs(u(k),y(k))},

K=>ko, u(-) k=ko

where s: U XY — R defined as s(u, y) pTS(u, y) is the (scalar) supply rate for the
discrete-time large-scale nonlinear dynamical system 9. Clearly, v,(x) = 0 for all x € 9.
As in standard dissipativity theory, the available storage v,(x), x € %, denotes the maxi-
mum amount of (scaled) energy that can be extracted from the discrete-time large-scale
nonlinear dynamical system % at any instant K.

The following theorem relates vector storage functions and vector supply rates to scalar
storage functions and scalar supply rates of discrete-time large-scale dynamical systems.

Tueorewm 3.5. Consider the discrete-time large-scale nonlinear dynamical system G given by
(3.1), (3.2). Suppose 4 is vector dissipative (resp., geometrically vector dissipative) with re-
spect to the vector supply rate S: U x Y — RY and with vector storage function Vs : % — R,
Then there exists p € Ez, p#0, (resp., p € RrR? ) such that § is dissipative (resp., geometri-
cally dissipative) with respect to the scalar supply rate s(u,y) = p*S(u, y) and with storage
function vy(x) £ P Vi(x), x € 9. Moreover, in this case, va(x), x € D, is a storage function

for§ and

0<w(x) <v(x), x€D. (3.16)
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Proof. Suppose 4 is vector dissipative (resp., geometrically vector dissipative) with re-
spect to the vector supply rate S(u, y). Then there exist a nonsingular, nonnegative, and
semistable (resp., asymptotically stable) dissipation matrix W and a vector storage func-
tion V;: % — R? such that the dissipation inequality (3.4) holds. Furthermore, it follows
from Lemma 2.6 that there exist & > 1 (resp., & > 1) and a nonzero vector p € RY (resp.,
p € R?) satisfying (2.2). Hence, premultiplying (3.4) by pT and using (3.14), it follows
that

Vs (x(k)) < a=kko)y, Z(x C=1D5(u(i), y(i)), k=ko, ucMU,  (3.17)
i=ko

where v5(x) = pTVi(x), x € D, which implies dissipativity (resp., geometric dissipativ-
ity) of G with respect to the supply rate s(u, y) and with storage function vy(x), x € 9.
Moreover, since v5(0) = 0, it follows from (3.17) that for x(kq) = 0,

Z(x‘“ kos(u(i), y(i)) = 0, k= ko, u €A, (3.18)
i= k()

which, using (3.15), implies that v,(0) = 0. Now, it can easily be shown that v,(x), x € 9,
satisfies (3.17), and hence the available storage defined by (3.15) is a storage function for
. Finally, it follows from (3.17) that

vs(x(ko)) = a* Fovg (x(k)) — Za’“ “os (u(i), y(i)

k
= (3.19)

th’“ kos(u(i), y(0), k=ko, ucl,
i= ko

which implies that

w(xke)) > sup [ S a1 ui) ym)] nxk),  (3.20)

k>ko, u(-) i=ko

and hence (3.16) holds. O

Remark 3.6. It follows from Theorem 3.4 that if (3.6) holds for x(ky) = 0, then the vector
available storage V,(x), x € 9, is a vector storage function for . In this case, it follows
from Theorem 3.5 that there exists p € R , p # 0, such that ve(x) = pTVa(x) is a storage
function for % that satisfies (3.17), and hence, by (3.16), v,(x) < pTV (x), x € 9.

Remark 3.7. Tt is important to note that it follows from Theorem 3.5 that if % is vector
dissipative, then % can either be (scalar) dissipative or (scalar) geometrically dissipative.

The following theorem provides sufficient conditions guaranteeing that all scalar stor-
age functions defined in terms of vector storage functions, that is, vs(x) = pTV,(x), of a
given vector dissipative discrete-time large-scale nonlinear dynamical system are positive
definite.
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TueoreM 3.8. Consider the discrete-time large-scale nonlinear dynamical system § given
by (3.1), (3.2) and assume that G is zero-state observable. Furthermore, assume that § is
vector dissipative (resp., geometrically vector dissipative) with respect to the vector supply
rate S(u, y) and there exist « > 1 and p € R? such that (2.2) holds. In addition, assume that
there exist functions x; : Y; — UW; such that x;(0) = 0 and si(x;(yi), yi) <0, y; # 0, for all
i=1,...,q. Then, for all vector storage functions Vs : % — R, the storage function vy(x) £
PTVi(x), x €D, is positive definite; that is, vs(0) = 0 and vs(x) >0, x €D, x # 0.

Proof. Tt follows from Theorem 3.5 that v,(x), x € 9, is a storage function for ¢ that
satisfies (3.17). Next, suppose, ad absurdum, there exists x € 9 such that v,(x) = 0, x # 0.
Then it follows from the definition of v,(x), x € 9, that for x(k¢) = x,

K-1
> a1 ks (u(k), y(k)) =0, K =k, u €U, (3.21)
k=ko

However, for u; = ki(y;), we have s;(xi(yi),y:) <0, yi # 0, for all i = 1,...,q, and since
p>0, it follows that y;(k) = 0, k = ko, i = 1,...,q, which further implies that u;(k) = 0,
k= ko, i=1,...,q. Since 9§ is zero-state observable, it follows that x = 0 and hence v,(x) =
0 if and only if x = 0. The result now follows from (3.16). Finally, for the geometrically
vector dissipative case, it follows from Lemma 2.6 that p>0 with the rest of the proof
being identical as above. O

Next, we introduce the concept of vector required supply of a discrete-time large-scale
nonlinear dynamical system. Specifically, define the vector required supply of the discrete-
time large-scale dynamical system % by

ko—1

é : *(k+1*k0)
Ve(x0) KZiigfl’u(_)k:z_KW S(u(k), y(k)), (3.22)

where x(k), k > —K, is the solution to (3.1) with x(—K) = 0 and x(kg) = xo. Note that
since, with x(kg) = 0, the infimum in (3.22) is the zero vector, it follows that V,(0) = 0.
Moreover, since 4§ is completely reachable, it follows that V;(x) <o, x € 9. Using the
notion of the vector required supply, we present necessary and sufficient conditions for
dissipativity of a large-scale dynamical system with respect to a vector supply rate.

TueoreM 3.9. Consider the discrete-time large-scale nonlinear dynamical system § given

by (3.1), (3.2) and assume that G is completely reachable. Then § is vector dissipative (resp.,

geometrically vector dissipative) with respect to the vector supply rate S(u, y) if and only if
0<<Vi(x)<oo, x€9. (3.23)

Moreover, if (3.23) holds, then V,(x), x € D, is a vector storage function for ‘4. Finally, if the
vector available storage V,(x), x € D, is a vector storage function for 4, then

0<<V,(x)=<Vi(x)<oo, x€9. (3.24)
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Proof. Suppose (3.23) holds and let x(k), k € Z., satisfy (3.1) with admissible inputs
u(k) € WU, k € Z,, and x(kg) = xo. Then it follows from the definition of V,(-) that for
—-K<ki<ky—1landu(-) €U,

ko1
Vi(xo) << > WkH=kig(y(k), y(k))
k=—K
kot - (3.25)
= Z wE RIS (u(k), y(k)) + Z Wk RIS (u(k), y(k)),
k=—K k=k¢
and hence,
ke—1
ko—k¢ : —(k+1—kf)
Vi(xo)<<W Kz_igfl)u(.) [k_ZKW S(u(k)»}’(k))]
ko-1
+ > WkHkIg(y(k), y(k)) (3.26)
k=ks
ko—1
= WRRV (x(ke)) + D WRTES(u(k), y(K)),
k=k

which shows that V,(x), x € 9, is a vector storage function for % and hence 4 is vector
dissipative with respect to the vector supply rate S(u, y).

Conversely, suppose that § is vector dissipative with respect to the vector supply rate
S(u, y). Then there exists a nonnegative vector storage function Vi(x), x € 9, such that
V5(0) = 0. Since 9 is completely reachable, it follows that for x(ko) = xo, there exist
K > —kg and u(k), k € [—K, ko], such that x(—K) = 0. Hence, it follows from the vec-
tor dissipation inequality (3.4) that

ko—1
0<<Vi(x(ko)) = s Wr RV (x(=K)) + > WR=IkS(u(k), y(k)), (3.27)

k=-K

which implies that for all K > —ko + 1 and u € U,

ko—1
0<< > W EIRIS(u(k), y(k)) (3.28)
k=-K
or, equivalently,
ko*l
0<< inf > wkHkIS(u(k), y(k)) = Vi(xo). (3.29)
Kz—kyﬂ,ub)k:_K

Since, by complete reachability, V;(x) <o, x € 9, it follows that (3.23) holds.
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Finally, suppose that V,(x), x € 9, is a vector storage function. Then, for x(—K) =
x(ko) = x9, and u € AU, it follows that

ko—1
Va(x(ko)) =s WKV, (x(=K)) + > WR™I58(u(k), y(k)), (3.30)
k=—K
which implies that
ko—1
0<<V,(x(ko))<< inf > wkkIs(u(k), y(k)) = Vi(x(ko)), x€D.
K>7k”+1’u(')k=—1<

(3.31)

Since x(ko) = xo € D is arbitrary and, by complete reachability, V. (x) < oo, x € %, (3.31)
implies (3.24). O

The next result is a direct consequence of Theorems 3.4 and 3.9.

PropositioN 3.10. Consider the discrete-time large-scale nonlinear dynamical system §
given by (3.1), (3.2). Let M = diag[u1,...,uq] besuch that 0 <y; < 1,i=1,...,q. If V,(x)
x € D, and Vi(x), x € D, are vector storage functions for 4, then

Vi(x) = MVy(x) + (I; - M) Vi(x), x€9D, (3.32)

is a vector storage function for .

Proof. First note that M>>0 and I; — M>>0 if and only if M = diag[u,,...,u4] and
ui € [0,1],i=1,...,q. Now, the result is a direct consequence of the vector dissipation in-
equality (3.4) by noting that if V,,(x) and V. (x) satisfy (3.4), then Vi(x) satisfies (3.4). [

Next, recall that if 4§ is vector dissipative (resp., geometrically vector dissipative), then
there exist p € Ez, p#0,and a =1 (resp., p € R? and a > 1) such that (2.2) and (3.14)
hold. Now, define the (scalar) required supply for the large-scale nonlinear dynamical
system 4§ by

k(] 1
o) & nt 3 pTW IS ), 0)
ot (3.33)
k+1— ko
T, 2 R, s,

where s(u, y) = pTS(u, y) and x(k), k > —K, is the solution to (3.1) with x(—K) = 0 and
x(ko) = xo. It follows from (3.33) that the required supply of a discrete-time large-scale
nonlinear dynamical system is the minimum amount of generalized energy which can be
delivered to the discrete-time large-scale system in order to transfer it from an initial state
x(—K) = 0 to a given state x(ko) = xo. Using the same arguments as in case of the vector
required supply, it follows that v,(0) = 0 and v;(x) < o0, x € 9.
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Next, using the notion of required supply, we show that all storage functions of the
form vs(x) = pTVi(x), where p € R? + P # 0,are bounded from above by the required sup-
ply and bounded from below by the available storage. Hence, a dissipative discrete-time
large-scale nonlinear dynamical system can only deliver to its surroundings a fraction of
all of its stored subsystem energies and can only store a fraction of the work done to all of
its subsystems.

CoRrOLLARY 3.11. Consider the discrete-time large-scale nonlinear dynamical system § given
by (3.1), (3.2). Assume that § is vector dissipative with respect to a vector supply rate S(u, y)
and with vector storage function Vy : % — R, Then v,(x), x € 9@, is a storage function for 6.
Moreover, if vy(x) £ pTVi(x), x € D, where p € RY, p 0, then

0 <va(x) <vs(x) <ve(x) <00, x€D. (3.34)

Proof. It follows from Theorem 3.5 that if 9§ is vector dissipative with respect to the vector
supply rate S(u, y) and with a vector storage function V; : % — RY, then there exists p €

R?, p # 0, such that G is dissipative with respect to the supply rate s(u, y) = pTS(u, y)
and with storage function vs(x) = pTV,(x), x € @. Hence, it follows from (3.17), with
x(—K) = 0 and x(ko) = xo, that

ko—1
Z k= kos (k), y( )) 0, K= -ko,uci, (3.35)

which implies that v;(xp) > 0, xo € 9. Furthermore, it is easy to see from the definition
of a required supply that v,(x), x € 9, satisfies the dissipation inequality (3.17). Hence,
vi(x), x € ¥, is a storage function for 9. Moreover, it follows from the dissipation in-
equality (3.17), with x(—K) = 0, x(ko) = x0, and u € U, that

ko1
ov(x(ko)) < a Xvi(x(=K)) + D " 's(u(k), y(k))

k=-K
foel (3.36)

_ Z “k+1 (k)),

which implies that
ko—1

v(x(k)) = inf 2 o1k (u(k), y(k)) = ve(x(ko)). (3.37)

Finally, it follows from Theorem 3.5 that v,(x), x € 9, is a storage function for %, and
hence, using (3.16) and (3.37), (3.34) holds. O

Remark 3.12. Tt follows from Theorem 3.9 that if % is vector dissipative with respect to
the vector supply rate S(u, y), then Vi(x), x € 9, is a vector storage function for % and,
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by Theorem 3.5, there exists p € Kz, p # 0, such that vs(x) £ PTVi(x), x € D, is a storage
function for 9 satisfying (3.17). Hence, it follows from Corollary 3.11 that pTV,(x) <
ve(x), x € 9D.

The next result relates vector (resp., scalar) available storage and vector (resp., scalar)
required supply for vector lossless discrete-time large-scale dynamical systems.

Tueorem 3.13. Consider the discrete-time large-scale nonlinear dynamical system § given
by (3.1), (3.2). Assume that G is completely reachable to and from the origin. If § is vector
lossless with respect to the vector supply rate S(u, y) and V,(x), x € D, is a vector storage
function, then V,(x) = Vi(x), x € D. Moreover, if Vi(x), x € D, is a vector storage function,
then all (scalar) storage functions of the form vy(x) = pTVi(x), x € B, where p e R, p # 0,
are given by

K-1

vy (x0) = va(x0) = v (x0) = — > a1 Ros(u(k), y(k)) = Z of ks (u(k), y(k)),
k=ko

(3.38)

where x(k), k > ko, is the solution to (3.1) with u € U, x(—K) = 0, x(K) = 0, x(ko) = x0 €
%, and s(u,y) = p*S(u, y).

Proof. Suppose 4 is vector lossless with respect to the vector supply rate S(u, y). Since
% is completely reachable to and from the origin, it follows that, for every xo = x(ko) €
99, there exist K > ko, —K_ < ko, and u(k) € U, k € [-K_,K,], such that x(-K_) =0,
x(K4) =0, and x(ko) = x0. Now, it follows from the dissipation inequality (3.4) which is
satisfied as an equality that

Ki-1
S, WIS (ulk), y(k)), (3:39)
k=—K_

or, equivalently,

K. -1
Z Wk =k) g (4 (k), y(k))
k=—K_
ko-1 K.—1
Z Wf(k+lfko)s(u(k),y(k))+ Z W’(k“*k")s(u(k),)’(k))
k=K. k=ko
k-1 K-1
Zzb,érifl , Z w1k § (4 (k), y(k)) + >}(nf Z Wk 1=k §(3y(k), y(k))
=rlorhul )y "k Oy

= Vr(xO) - Va(xO))
(3.40)

which implies that V,(xp) <<V,(x0), x0 € 9. However, it follows from Theorem 3.9 that if
4 is vector dissipative and V,(x), x € 9, is a vector storage function, then V,(x)<<V,(x),
x € 9, which along with (3.40) implies that V,(x) = V.(x), x € 9. Furthermore, since %
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is vector lossless, there exist a nonzero vector p € R and a scalar a > 0 satisfying (2.2).
Now, it follows from (3.39) that

Ki—1 Ki—1

Z pTW—(kH ko ( k) y k) Z (xk+1 kgs k) y(k))
k=—K_

ko—1 Ki—-1

‘Xk+1 kOS (xkﬂ koS y(k))
Z kaO (3.41)
ko—1
k+1—ko k+1— ko
z 110n+f1 u()k_ZKa s(u(k), y(k) K>1{]1fu )kzk o s(u(k), y(k))

= ve(x0) — va(x0), %0 €D,

which along with (3.34) implies that for any (scalar) storage function of the form v(x) =
PTVi(x), x € D, the equality v,(x) = vs(x) = v (x), x € D, holds. Moreover, since ¢ is
vector lossless, the inequalities (3.17) and (3.36) are satisfied as equalities and

ko—1

K-1
== > a1 s (uk),y(k) = D> o Fos(u(k), y(k)), (3.42)

k=ko k=—K

where x(k), k > ko, is the solution to (3.1) with u € U, x(=K) = 0, x(K) = 0, and x(ko) =
X0 € 9. O

The next proposition presents a characterization for vector dissipativity of discrete-
time large-scale nonlinear dynamical systems.

ProrosritioN 3.14. Consider the discrete-time large-scale nonlinear dynamical system 4
given by (3.1), (3.2) and assume Vs = [vq,... ,vsq]T 19— Ez is a continuous vector storage
function for 4. Then G is vector dissipative with respect to the vector supply rate S(u, y) if
and only if

Vi (x(k+1)) << WV (x(k) + S(u(k), y(k)), k= ko, u €U (3.43)

Proof. The proof is immediate from (3.4) and hence is omitted. O

As a special case of vector dissipativity theory, we can analyze the stability of discrete-
time large-scale nonlinear dynamical systems. Specifically, assume that the discrete-time
large-scale dynamical system 9 is vector dissipative (resp., geometrically vector dissipa-
tive) with respect to the vector supply rate S(u, y) and with a continuous vector storage
function V : @ — R?. Moreover, assume that the conditions of Theorem 3.8 are satisfied.
Then it follows from Proposition 3.14, with u(k) = 0 and y(k) = 0, that

Ve(x(k+ 1) <<WVs(x(k)), k= ko, (3.44)

where x(k), k > kg, is a solution to (3.1) with x(ko) = xo and u(k) = 0. Now, it follows
from Theorem 2.7, with w(r) = Wr, that the zero solution x(k) = 0 to (3.1), with u(k) =
0, is Lyapunov (resp., asymptotically) stable.
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More generally, the problem of control system design for discrete-time large-scale non-
linear dynamical systems can be addressed within the framework of vector dissipativity
theory. In particular, suppose that there exists a continuous vector function V;: % — R?
such that V(0) = 0 and

Ve(x(k+ 1) <<F (Vs (x(k), u(k)), k= ko, ucl, (3.45)

where & : R? x R — R4 and %(0,0) = 0. Then the control system design problem for
a discrete-time large-scale dynamical system reduces to constructing an energy feedback
control law ¢ : R? — QL of the form

u= (Vi) 2 [¢F (Vo). ¢F (Vi)]', x €3, (3.46)

where ¢; : Kz - AU;, ¢i(0) =0, i=1,...,q, such that the zero solution r(k) = 0 to the
comparison system

r(k+1)=w(r(k)), r(ko) = Vi(x(ko)), k= ko, (3.47)

is rendered asymptotically stable, where w(r) = F(r,¢(r)) is of class W'. In this case, if
there exists p € R? such that vi(x) £ PpTVi(x), x € D, is positive definite, then it fol-
lows from Theorem 2.7 that the zero solution x(k) = 0 to (3.1), with u given by (3.46), is
asymptotically stable.

As can be seen from the above discussion, using an energy feedback control architec-
ture and exploiting the comparison system within the control design for discrete-time
large-scale nonlinear dynamical systems can significantly reduce the dimensionality of a
control synthesis problem in terms of a number of states that need to be stabilized. It
should be noted however that, for stability analysis of discrete-time large-scale dynamical
systems, the comparison system need not be linear as implied by (3.44). A discrete-time
nonlinear comparison system would still guarantee stability of a discrete-time large-scale
dynamical system provided that the conditions of Theorem 2.7 are satisfied.

4. Extended Kalman-Yakubovich-Popov conditions for discrete-time large-scale non-
linear dynamical systems

In this section, we show that vector dissipativeness (resp., geometric vector dissipative-
ness) of a discrete-time large-scale nonlinear dynamical system % of the form (3.1), (3.2)
can be characterized in terms of the local subsystem functions fi(-), Gi(-), hi(+), and
Ji(+), along with the interconnection structures %;(-) for i = 1,...,q. For the results in this
section, we consider the special case of dissipative systems with quadratic vector supply
rates and set @ = R”, AU; = R™, and Y, = R4, Specifically, let R; € S™, S; € R, and
Q; € S" be given and assume S(u, y) is such that s;(u;, yi) = yF Qiyi + 2yL Siu; + ul Riwy, i =

L,...,q. For the statement of the next result, recall that x = [xlT,...,qu]T, u=1lul,..., ug’,

y= [le,...,qu]T, x €ER"M u; €R™, yieRY, i=1,...,q, XL ni=n, 1 m =m, and
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Z?:lli = [. Furthermore, for (3.1), (3.2), define & : R" - R", G:R" - R™™ h:R" —
RY and J : R" — RX" by F(x) = [9?(3:),...,@5(36)]1 where F;(x) £ fi(x;) + $i(x), i =
L,...,q, G(x) £ diag[Gi(x1),...,Gyl(xq)], h(x) = [h?(xl),...,hg(xq)]T, and J(x) £
diag[J1(x1),...,J4(x4)]. In addition, for all i = 1,...,q, define R, e S™, §; € R*m and
Q; € S’ such that each of these matrices consists of zero blocks except, respectively, for
the matrix blocks R; € S™, S; € R"™i, and Q; € S" on (i,i) position. Finally, we intro-
duce a more general definition of vector dissipativity involving an underlying nonlinear
comparison system.

Definition 4.1. The discrete-time large-scale nonlinear dynamical system % given by (3.1),
(3.2) is vector dissipative (resp., geometrically vector dissipative) with respect to the vector
supply rate S(u, y) if there exist a continuous, nonnegative definite vector function Vy =
[vsl,...,vsq]T 19 — EZ, called a vector storage function, and a class W' function w : @3 —
R4 such that V,(0) = 0, w(0) = 0, the zero solution r(k) = 0 to the comparison system

r(k+1) =w(r(k)), r(ko)=ry, k=ko, (4.1)
is Lyapunov (resp., asymptotically) stable, and the vector dissipation inequality
V(e + 1)) < <w(Vy (k) + S(u(k), y(), k= ko, (42)

is satisfied, where x(k), k > ko, is the solution to (3.1) with u € AU. The discrete-time large-
scale nonlinear dynamical system % given by (3.1), (3.2) is vector lossless with respect to
the vector supply rate S(u, y) if the vector dissipation inequality is satisfied as an equality
with the zero solution r(k) = 0 to (4.1) being Lyapunov stable.

Remark 4.2. If in Definition 4.1 the function w : RZ — R1 is such that w(r) = Wr, where
W € R7*4, then W is nonnegative and Definition 4.1 collapses to Definition 3.2.

Tueorem 4.3. Consider the discrete-time large-scale nonlinear dynamical system § given
by (3.1), (3.2). Let R, € S™, §; € Ri*mi and Q; € St i = 1,...,q. If there exist functions
Vs = [VstrenrVsq] T R — RL, P :R" — R>™, Py i R" — NM, w = (Wi,...,wg]" R -
RY, € : R" — RS, and %; : R" — R™, such that v(-) is continuous, v5;(0) = 0,i=1,...,q,
we W, w(0) =0,

Vi (F(x) + G(x)u) = v (F(x)) + Pri(x)u+u'Py(x)u, x€R", ucR™, (4.3)

the zero solution r(k) = 0 to (4.1) is Lyapunov (resp., asymptotically) stable, and, for all
xeR'andi=1,...,q,

0 = vsi(F(x)) — hT(x) Qih(x) — w;(Vi(x)) + €] (x)€i(x),
0= 2Pu() ~ K1) 8+ Q) + £ (%), (44)
0= Ri+77(x)Si + STT(x) +JT (%) Qif (x) — Pai(x) — T (x)%i(x),
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then G is vector dissipative (resp., geometrically vector dissipative) with respect to the vector
quadratic supply rate S(u, y), where s;(u;, y;) = ul Riu; + 2y,-TSiui + y,-TQiy,-, i=1,...,q

Proof. Suppose that there exist functions vy : R" — R, ¢ :R" — RS, %,; : R" — Rsxm,
w: Ei — R4, Py; : R" — R and P,; : R* — N™, such that v(+) is continuous and
nonnegative-definite, v5;(0) =0, i = 1,...,q, w(0) = 0, w € W, the zero solution r(k) =0
to (4.1) is Lyapunov (resp., asymptotically) stable, and (4.3) and (4.4) are satisfied. Then
foranyu € Wand x € R",i=1,...,q, it follows from (4.3) and (4.4) that

si(ui, yi) = u" R+ 2y Su+ yTQ;y
= hT(x)Qih(x) + 20" (x) ($; + Qi (x)) u
+uT (T ()QT () +T ()8 + 81T (x) + Ry)u
= v (F(x)) — wi(Vi(x)) + Pri(ox)u+ €5 (x)€;(x) + 265 ()% (x)u (4.5)
+ uT Py () u + uT% T (x)%(x)u
= v (F(0) + Gw) + [6:00) + Fi()u] [6(x) + %i(x)u] - wi(Vy(x))

= v (F(x) + G(x)u) — wi(Vi(x)),

where x(k), k > ko, satisfies (3.1). Now, the result follows from (4.5) with vector storage
function Vi(x) = [vs1(x),...,v5q(x)]T, x € R™. O

Using (4.4), it follows that for k = kg and i = 1,...,q,

si(ui(k), yi(k)) + [wi(Vs(x(k))) — vsi(x(k)) ]

(4.6)
= Av (x(k)) + [€:(x(K) + i (x(R)) () ] [ (x(k)) + 25 () (k)]

where Vi(x) = [vsl(x),...,vsq(x)]T, x € R", which can be interpreted as a generalized en-
ergy balance equation for the ith subsystem of § where Avg;(x(k)) is the change in energy
between consecutive discrete times, the two discrete terms on the left are, respectively,
the external supplied energy to the ith subsystem and the energy gained by the ith sub-
system from the net energy flow between all subsystems due to subsystem coupling, and
the second discrete term on the right corresponds to the dissipated energy from the ith
subsystem.

Remark 4.4. Note that if G with u(k) = 0 is vector dissipative (resp., geometrically vector
dissipative) with respect to the vector quadratic supply rate where Q; < 0,i = 1,...,q, then
it follows from the vector dissipation inequality that

Vi(x(k+1)) < <w(Vi(x(k)) + S0, y(k)) =<w (Vi (x(K))), k=koy  (4.7)
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where S(0, y) = [sl(O,yl),...,sq(O,yq)]T,si(O,yi(k)) =y,-T(k)Qiyi(k) <0,k=kopi=1,...,q,
and x(k), k = ko, is the solution to (3.1) with u(k) = 0. If, in addition, there exists p € RrR?
such that pTV,(x), x € R", is positive definite, then it follows from Theorem 2.7 that the
undisturbed (u(k) = 0) large-scale nonlinear dynamical system (3.1) is Lyapunov (resp.,
asymptotically) stable.

Next, we extend the notions of passivity and nonexpansivity to vector passivity and
vector nonexpansivity.

Definition 4.5. The discrete-time large-scale nonlinear dynamical system % given by (3.1),
(3.2) with m; = I;, i = 1,...,4, is vector passive (resp., geometrically vector passive) if it is
vector dissipative (resp., geometrically vector dissipative) with respect to the vector supply
rate S(u, y), where s;(u;, yi) = ZyiTu,-, i=1,..,q.

Definition 4.6. The discrete-time large-scale nonlinear dynamical system % given by (3.1),
(3.2) is vector nonexpansive (resp., geometrically vector nonexpansive) if it is vector dissipa-
tive (resp., geometrically vector dissipative) with respect to the vector supply rate S(u, y),
where s;(uj, yi) = yfu?ui - y,-Tyl-, i=1,..,q,and y; >0,i=1,...,q, are given.

Remark 4.7. Note that a mixed vector passive nonexpansive formulation of % can also
be considered. Specifically, one can consider discrete-time large-scale nonlinear dynam-
ical systems 9§ which are vector dissipative with respect to vector supply rate S(u,y),
where s;(u;, yi) = 2yl ui, i € Zy, si(ujy;) = y]zu]Tuj - y]Tyj, yj >0, j € Zne, and Z U
Zne = {1,...,q}. Furthermore, vector supply rates for vector input strict passivity, vector
output strict passivity, and vector input-output strict passivity, generalizing the passivity
notions given in [10], can also be considered. However, for simplicity of exposition, we
do not do so here.

The next result presents constructive sufficient conditions guaranteeing vector dissipa-
tivity of %G with respect to a vector quadratic supply rate for the case where the vector stor-
age function Vi(x), x € R", is component decoupled; that is, Vi(x) = [vs1 (x1),..., vsq(xq)]T,
x e R"

TueoreM 4.8. Consider the discrete-time large-scale nonlinear dynamical system § given
by (3.1), (3.2). Assume that there exist functions Vi = [vsl,...,vsq]T :R" — Ez, Pii:R" —
R>™, Py : R" — N™i, w = [wy,...,wq]T :Ri — R4, ¢ :R" = R%, and %; : R" — Rs>m
such that vg(+) is continuous, v5;(0) =0, i = 1,...,q, w € W, w(0) = 0, the zero solution
r(k) =0 to (4.1) is Lyapunov (resp., asymptotically) stable, and, for all x € R" and i =
...,

] (4.8)
0= EPu(x) — i () (Si+ Qi (xi)) + &5 (xi) % (xi),

0 < Ri+JF (x:)Si + STT: (o) + T (2:) Qi (%) — Paix) — T (i) %i ().
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Then § is vector dissipative (resp., geometrically vector dissipative) with respect to the vector
supply rate S(u, y), where s;(u;, y;) = ul Riu; + 2yiTSiui + y,-TQiy,-, i=1,..,q

Proof. For any admissible input u = [u?,...,u?]T such that u; e R™, k € Z,, and i =
1,...,q, it follows from (4.8) that

si (i), yi(K)) = ul (o) Riuss () + 27 () Syui (k) + yF (k) Qiyi(k)
= hF (x:(0)) Qibi (x:(J) + 21 (xi(K)) (Si + Qi (xi(F) )i (k)
] () (77 (6 (k) Qi (e (K)) + 77 (i (K)) Si ST (xi(K)) + R )i (k)
= v (Fi (x(K)) ) + Pri (k) i (k) + €] (xi(K)) & (i (k)
+ 261 (xi(I)) % (xi () s ) + 1] (k) Py (x (k) ()
o+ ul (02T (xi (k) 2 (i) i) — wi (Vi (x(K)) )
= vy (i + 1)) + 6 (xi(K)) + 2 (xi(K)) wi(k) |
x [6(xi (k) + % (i) wi(k)] = wi (Vi (x(K)))

> vsi(x,-(k+ 1)) - Wi(Vs(x(k)))r
(4.9)

where x(k), k > ko, satisfies (3.1). Now, the result follows from (4.9) with vector storage
function Vi(x) = [ve1(x1),...,vsq(x4)]T, x € R™. O

Finally, we provide necessary and sufficient conditions for the case where the discrete-
time large-scale nonlinear dynamical system % is vector lossless with respect to a vector
quadratic supply rate.

TueoreM 4.9. Consider the discrete-time large-scale nonlinear dynamical system § given
by (3.1), (3.2). Let R, € S™, S; € RW*™i, and Q; € Sk, i = 1,...,q. Then 4 is vector lossless
with respect to the vector quadratic supply rate S(u, y), where si(u;, i) = uiTRiui +2 yiTSiui +
yiQiyi i = 1,...,q, if and only if there exist functions Vs = [Vy1,...,vsq]T : R — RL Py
R" — R>m Py R" = N™ and w = [wl,...,wq]T : @3 — R such that v;(-) is continuous,
v5i(0) =0, i = 1,...,q, w € W, w(0) = 0, the zero solution r(k) = 0 to (4.1) is Lyapunov
stable, and, forallx e R", i =1,...,q, (4.3) holds and

0 = v5i(F(x)) — hT(x) Qih(x) — wi(Vi(x)),
0= %P”(x) —hT(x)(§i+Oi](x))> (4‘10)
0= Ri+77(x)Si + STT(x) +JT (%) Qi (x) — Pai(x).

Proof. Sufficiency follows as in the proof of Theorem 4.3. To show necessity, suppose that
G is lossless with respect to the vector quadratic supply rate S(u, y). Then, there exist
continuous functions Vs = [vq1,...,v] T : R" — R and w = (Wi, wq T :R? - R4 such
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that V(0) = 0, the zero solution r(k) = 0 to (4.1) is Lyapunov stable, and

Vi (F () + G(x)u) = wi(Vi(x)) + i (ui, yi)
(Vo(x)) + u"Riuu+ 2y " Siu+ yTQ;y
(Vs(x)) + hT (x)Qih(x) + 20" (x) (QiJ (x) + $;) u

W (Ri+STT(x)+ T ()8 + T (%) Qi (x))u, x€R", uecR™
(4.11)

Wi
Wi
+

Since the right-hand side of (4.11) is quadratic in u, it follows that vy;(F(x) + G(x)u) is
quadratic in u and hence there exist Py; : R" — R and P,; : R" — N such that

Vi (F(x) + G(x)u) = vi (F(x)) + Pri(x)u+u'Pyi(x)u, x€R", uecR™ (4.12)
Now, using (4.12) and equating coefficients of equal powers in (4.11) yield (4.10). |

5. Specialization to discrete-time large-scale linear dynamical systems

In this section, we specialize the results of Section 4 to the case of discrete-time large-scale
linear dynamical systems. Specifically, we assume that w € W' is linear so that w(r) =
Wr, where W € R9%1 is nonnegative, and consider the discrete-time large-scale linear
dynamical system 9 given by

x(k+1) = Ax(k) + Bu(k), x(ko) = x0, k= ko,

y(k) = Cx(k) + Du(k), (5.1)

where A € R™" and A is partitioned as A £ [Aij], i, j = 1,...,9, Ajj € R", z?zl n; =
n, B = block —diag[By,...,By], C = block - diag[C;,...,Cy], D = block — diag[Dy,...,Dyl,
B; € Rm*mi, C; € Ri*™, and D; € R¥™mi, i = 1,...,q.

TueoreM 5.1. Consider the discrete-time large-scale linear dynamical system 9 given by
(5.1). Let R; € S™, §; € Rl>mi qnd Q; € Sty i=1,... ,q. Then G is vector dissipative (resp.,
geometrically vector dissipative) with respect to the vector supply rate S(u, y), where s;(u;, y;)
= uiTRiui + ZyiTSiui + yiTQiyi, i=1,...,q, and with a three-times continuously differentiable
vector storage function if and only if there exist W € R, P; e N", L; € R%*", and Z; €
Rs*m j=1,...,q, such that W is nonnegative and semistable (resp., asymptotically stable),
and, foralli=1,...,q,

q
0=ATPA-C'Q:iC- > WP +L]L;,
j=1
0=A"PB—-C"($;+Q,D) +LZ, (52)

0=R+D"$;+8'D+D"Q,D - B'P,B - Z!'Z,.
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Proof. Sufficiency follows from Theorem 4.3 with % (x) = Ax, G(x) = B, h(x) = Cx, J(x) =
D, Pyi(x) = 2xTATP;B, P,;(x) = BYP;B, w(r) = Wr, €;(x) = Lix, %:(x) = Z;, and v,i(x) =
x"Pix, i = 1,...,9. To show necessity, suppose % is vector dissipative with respect to the
vector supply rate S(u, y), where s;(u;, y;) = uf Riti + 2yF Siuii + ¥ Qiyi, i = 1,...,q. Then,
with w(r) = Wr, there exists Vs : R" — Rz such that W is nonnegative and semistable
(resp., asymptotically stable), Vi(x) £ [vsl(x),...,vsq(x)]T, x € R", V4(0) = 0, and for all
xeR", ue R,

Vs(Ax +Bu) — WV (x)<<S(u, y). (5.3)

Next, it follows from (5.3) that there exists a three-times continuously differentiable vec-
tor function d = [dl,...,dq]T :R” x R™ — R4 such that d(x,u)>>0, d(0,0) = 0, and

0= Vi(Ax+Bu) — WVs(x) — S(u, Cx + Du) + d(x, u). (5.4)
Now, expanding vs;(-) and d;(-, -) via Taylor series expansion about x = 0, u = 0, and us-
ing the fact that v;(-) and d;(+, -) are nonnegative and v;(0) = 0, d;(0,0) = 0,i = 1,...,q,
it follows that there exist P; € N, L; € R%*", and Z; € R%*™ i = 1,...,q, such that

vsi(x) = xTPix + vgri(x),
. ‘ (55)
di(x,u) = (Lix+ Zu) (Lix+ Zu) +dr(x,u), x€R", ueR™ i=1,..,q,

where vy : R” - Rand d;; : R” X R™ — R contain the higher-order terms of v (- ), d;(-, -),
respectively. Using the above expressions, (5.4) can be written componentwise as

q
= (Ax+Bu)"P;(Ax + Bu) — Z

R A R . 5.6
— (xTCTQ;Cx + 2xTCTQiDu +u"'DYQiDu+2x"C ' S;u+2u" D S+ u" Riu) (56)
+ (Lix + Z,‘M)T (Lix + Ziu) + 8(36, u),
where §(x,u) is such that
d(x,
[dGewl (5.7)

P2+l =0 |12 + [ ul|?

Now, viewing (5.6) as the componentwise Taylor series expansion of (5.4) about x =0
and u = 0, it follows that for all x € R” and u € R™,

q
0=xT (ATP,‘A — 2 W(i,j)Pj - CTQI'C-FL;FL{)X
j=1
+2xT(ATPB—C'S; = C'QiD+ LI Z))u
+u" (2] Z;—~D'Q:D ~D'S$; — STD — R;+B"PB)u, i=1,...,q.

(5.8)

Now, equating coefficients of equal powers in (5.8) yields (5.2). O
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Remark 5.2. Note that the equations in (5.2) are equivalent to

A B L} }
[%T <@}“[gr] [Li Zi]=0, i=1...q, (5.9)

where, foralli=1,...,q,

q
i = ATPA - CTQ,C - > Wi )Pj,
j=1
%,‘ =ATP1'B_ CT(§i+QiD)> (5‘10)

;= —(R;+D"$;+8'D+D"Q,D - B'P;B).

Hence, vector dissipativity of discrete-time large-scale linear dynamical systems with re-
spect to vector quadratic supply rates can be characterized via (cascade) linear matrix
inequalities (LMIs) [5]. A similar remark holds for Theorem 5.3 below.

The next result presents sufficient conditions guaranteeing vector dissipativity of %
with respect to a vector quadratic supply rate in the case where the vector storage function
is component decoupled.

THEOREM 5.3. Consider the discrete-time large-scale linear dynamical system § given by
(5.1). Let R; € S™, S; € Ri>*™i and Q; € Sk, i = 1,...,q, be given. Assume there exist ma-
trices W € R1%4, P; € N", L; € R%i*"i 7. € RsixMi j = 1,...,q, L,‘j e R%™" and Z,‘j S
RS>, 4, =1,...,q, i # j, such that W is nonnegative and semistable (resp., asymptotically
stable), and, foralli=1,...,q,

q
0= A;EP,‘A,',' - C;I‘Q,C, — W(,',,‘)P,' +L};Lﬁ + z L;EL,‘]',
j=Lj#i
0=AlPB;— CIS;— C'QiD; + L} Z, (5.11)

0<R; +D;~FS,' + S;FD, +D;FQ,'D,‘ — B;FP,B, — Z;{Z,',‘,
andforj=1,...,q,1=1,...,q, j# i, 1 i1+ ],
0=AJP;B;,
0= A}PiAy,
T T
0= AiiPiAij +L,-]-Zij)
0<WijP;— Z};Zij —A;SPiAij-

(5.12)

Then G is vector dissipative (resp., geometrically vector dissipative) with respect to the vec-
tor supply rate S(u, y) £ [sl(ul,yl),...,sq(uq,yq)]T, where si(u;, y;) = uiTRiui + ZyiTSiui +
yiQiyini=1,...,q.

Proof. Since P; € N, the function vg;(x;) £ xiTPixi, x; € R™, is nonnegative definite and
v5i(0) = 0. Moreover, since v(-) is continuous, it follows from (5.11) and (5.12) that for
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allu; e R™i,i=1,...,q,and k > ko,

q T q
vi(xi(k+1)) = [ZAijxj(k)+Biui(k):| Pi|:ZAijxj(k)+Bi”i(k):|

j=1 j=1

Sx;‘r(k)[w(i,i)Pi"'CzTQiCi_L};‘Lii_ Z L z]:|-xz
j=1,j#i

q
> 2xF (kLY Zijx; (k) +2x] (k) CF Siuag(k) + 2] (k) CF QiDiuas (k)
j=1, j#i
q
=2 () LE Ziui(k) + > ] () [Wiy Py — Z55Zij ], (k)
j=L j#i

+ ul (k)Rius (k) + 2T (k) DY S;u;(k)

+uf (k)D QiDiui(k) — uf (k) Zji Zijui(k)
1
z G Vsj (%K) + uf (k) Riui(k) + 2y (K)Siui (k) + yi (k) Qiyi(k)

— [Liixi(k) + Ziiui(k)]T [Liixi(k) + Ziui(k)]

q
- > (Lijxi(k)+Zijxj(k))T(Lijxi(k)+Zijxj(k))
=1, j#i
q
si(ui(k), yi(k Z (i) vsj (x5 (k)
j=1
(5.13)
or, equivalently, in vector form,
Vi(x(k+1))<<WV(x(k)) +S(u, ), uecU, k= ko, (5.14)

where Vi(x) £ [vq(x1),... 3 Vsq (xq)]T, x € R". Now, it follows from Proposition 3.14 that
%G is vector dissipative (resp., geometrically vector dissipative) with respect to the vector
supply rate S(u, y) and with vector storage function Vi(x), x € R". O

6. Stability of feedback interconnections of discrete-time large-scale nonlinear
dynamical systems

In this section, we consider stability of feedback interconnections of discrete-time large-
scale nonlinear dynamical systems. Specifically, for the discrete-time large-scale dynam-
ical system % given by (3.1), (3.2), we consider either a dynamic or static discrete-time
large-scale feedback system %.. Then, by appropriately combining vector storage func-
tions for each system, we show stability of the feedback interconnection. We begin by
considering the discrete-time large-scale nonlinear dynamical system (3.1), (3.2) with
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e

Figure 6.1. Feedback interconnection of large-scale systems % and ..

the large-scale feedback system %, given by

xc(k+1) = Fe(xc(k),uc(k)),  xc(ko) =xc0, k= ko,

6.1
Je(k) = He (e (K), e (), (6.1)

where Fc : R x A — R, He : R™ X U = Y, Fe 2 [FYy,...,FLIT, He £ [HY,. .., HL T,
WU = R/, and Y. = R™. Moreover, foralli = 1,... ,q, we assume that

Fci(xo uci) = fci (xci) + ‘g)ci(xc) + Gci(xci)uci:

6.2
Hci(xcb uci) = hg (xci) +Jei (xci)ucb (62)

where ug; € U € RY, yoi & Hei(xeis thei) € Yi € R™, (ug, yei) is the input-output pair for
the ith subsystem of ¢4, f.; : R — R and $; : R" — R™i satisfy f.;(0) = 0 and $(0) =
0, Gej : R — Rraxli j . R — R™i satisfies hei(0) = 0, J; : R — R™>kiand Z?=1 Nei =
n.. Furthermore, we define the composite input and composite output for the system %4,
as uc 2 [uzl,...,ufq]T and y. = [ych,...,ych]T, respectively. In this case, U = WUy X - - - ¥
Uy and Yo =Yg X - - - X Y. Note that, with the feedback interconnection given in
Figure 6.1, uc = y and y. = —u. We assume that the negative feedback interconnection of
% and 4. is well posed; that is, det(IL, + Jei(xci)Ji(x;)) # 0 for all x; € R™, and x; € R™,
i=1,...,q. Furthermore, we assume that for the discrete-time large-scale systems %4 and
4., the conditions of Theorem 3.8 are satisfied; that is, if Vs(x), x € R", and V(x.), xc €
R", are vector storage functions for 9§ and 4, respectively, then there exist p € R? and
pe € RY such that the functions vs(x) = pTVi(x), x € R”, and ves(xc) = pl Ves(xe), xc €
R", are positive definite. The following result gives sufficient conditions for Lyapunov
and asymptotic stability of the feedback interconnection given in Figure 6.1.

THEOREM 6.1. Consider the discrete-time large-scale nonlinear dynamical systems G and 4.
givenby (3.1), (3.2), and (6.1), respectively. Assume that G and G are vector dissipative with
respect to the vector supply rates S(u, y) and Sc(uc, yc), and with continuous vector storage
functions Vs(-) and V(+) and dissipation matrices W € R7*1 and W, € RI*4, respectively.
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(i) If there exists T = diag[o1,...,04] > 0 such that S(u, y) + XS (uc, y.)<<0 and W e
R4 js semistable (resp., asymptotically stable), where W(; ;) £ max{ W j), (EWZ 1) j)}
=max{ W), (0i/0;))Weijt i, j = 1,...,q, then the negative feedback interconnection of 4
and Y. is Lyapunov (resp., asymptotically) stable.

(ii) Let Q; € Sh, S; € Ri*mi R, e S™i, Qg € S™i, S € R™*hi and R € Sk, and suppose
S(u, y) = [s1(u1, 915 8q(ttgs yg) 1T and Sc(uc, ye) = [sc1 (et Yer)s- .. »Sq(theg> Yeq) 1> where
si(ui, yi) = uf Rivi + 2y] Siui + yF Qiyi and sci(uci» yei) = uliReithei + 2y5EScithei + y5Qeiyeir i =
L,...,q. If there exists ¥ £ diag(o1,...,04] >0 such that foralli = 1,...,q,

Ox

2 [ Qi +oiRi _Si+0'iS;l;:| <0

~ST+0:Si  Ri+0Qi (6.3)

and W € R94 is semistable (resp., asymptotically stable), where W(; ;) = max{ W),
(ZWCZ’I)(,-,J-)} = max{ W ), (0i/0;)Weij}, i j = 1,...,q, then the negative feedback in-
terconnection of § and Y. is Lyapunov (resp., asymptotically) stable.

Proof. (i) Consider the vector Lyapunov function candidate V (x,x.) = Vi(x) + ZVs(xc),
(x,xc) € R" x R, and note that
Vix(k+1),x.(k+1)) = Vs(x(k+1)) + XV (xc(k+1))
<=<S(u(k),y(k)) + ZSc (uc(k), ye(k))
+ WV (x(k)) + ZW Ve (xc(k))
(6.4)
SSW(VS (x(k)) +2 Ve (xc(k)))

= WV (x(k),x.(k)), (x(k),x.(k)) € R"x R", k > k.

Next, since for Vi(x), x € R", and V(xc), xc € R™, there exist, by assumption, p € R?
and p. € R? such that the functions v,(x) = pTVi(x), x € R, and ves(x.) = pI Vs (xe),

.....

xc € R", is positive definite. Hence, the function v(x,x.) = pTV (x,xc), (x,x.) € R" X R,
is positive definite. Now, the result is a direct consequence of Theorem 2.7.
(ii) The proof follows from (i) by noting that, foralli = 1,...,q,

T
si(ui, yi) + 0isci(ei> yei) = BJ Qi [;j (6.5)

and hence S(u, y) + ZS(uc, y.)<=<0. O
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For the next result, note that if the discrete-time large-scale nonlinear dynamical sys-
tem 9 is vector dissipative with respect to the vector supply rate S(u, ), where s;(u;, y;) =
ZyiTu,-, i=1,...,q, then with x;(y;) = —x;y;, where x; >0, i = 1,...,q, it follows that
si(ki(yi), vi) = —Kkiyiy: <0, y; #0,i= 1,...,q. Alternatively, if G is vector dissipative with
respect to the vector supply rate S(u, y), where s;(u;, yi) = y7ulu; — yly;, where y; >0, i =
1,...,q, then with x;(y;) = 0, it follows that s;(k;(y:), ;) = =yl yi <0, yi £ 0,i = 1,...,q.
Hence, if § is zero-state observable and the dissipation matrix W is such that there exist
a=1land p € R? such that (2.2) holds, then it follows from Theorem 3.8 that (scalar)
storage functions of the form vy(x) = pTVi(x), x € R", where Vi(-) is a vector storage
function for 4, are positive definite. If ¢ is geometrically vector dissipative, then p is
positive.

CoROLLARY 6.2. Consider the discrete-time large-scale nonlinear dynamical systems G and
G, given by (3.1), (3.2) and (6.1), respectively. Assume that G and 9. are zero-state ob-
servable and the dissipation matrices W € R7*1 and W, € R7*1 are such that there exist,
respectively, x = 1, p € RL, ac>1,and pec € R? such that (2.2) is satisfied. Then the follow-
ing statements hold.

(i) If G and G. are vector passive and W € R4 is asymptotically stable, where W(; j) =
max{ W j), Weipt, i, j = 1,...,q, then the negative feedback interconnection of 4 and 4. is
asymptotically stable.

(i) If G and 4. are vector nonexpansive and W € R1*4 is asymptotically stable, where
Wii,j) = max{ W j), Weij}> iy j = L,...,q, then the negative feedback interconnection of §
and 4. is asymptotically stable.

Proof. The proof is a direct consequence of Theorem 6.1. Specifically, (i) follows from
Theorem 6.1 with R; =0, S; = I,y;, Qi =0,R;i =0, S¢i = I;n;, Qi = 0,i=1,...,q,and X =
I; while (ii) follows from Theorem 6.1 with R; = Yiln Si =0, Qi = —I;,, R = y4I;, Sci =
0,Qi=~In,i=1,...,q,and X = I. O

7. Conclusion

In this paper, we have extended the notion of dissipativity theory to vector dissipativity
theory. Specifically, using vector storage functions and vector supply rates, dissipativity
properties of aggregate large-scale discrete-time dynamical systems are shown to be de-
termined from the dissipativity properties of the individual subsystems and the nature
of their interconnections. In particular, extended Kalman-Yakubovich-Popov conditions,
in terms of the local subsystem dynamics and the subsystem interconnection constraints,
characterizing vector dissipativeness via vector storage functions are derived. In addition,
general stability criteria were given for feedback interconnections of discrete-time large-
scale nonlinear dynamical systems in terms of vector storage functions serving as vector
Lyapunov functions.
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