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We study the existence of solutions of nonlinear discrete boundary value problems
Δ2u(t− 1) + μ1u(t) + g(t,u(t)) = h(t), t ∈ T, u(a) = u(b + 2) = 0, where T := {a+ 1, . . . ,
b+ 1}, h : T→ R, μ1 is the first eigenvalue of the linear problem Δ2u(t− 1) + μu(t) = 0,
t ∈ T, u(a) = u(b + 2) = 0, g : T×R→ R satisfies some “asymptotic nonuniform” reso-
nance conditions, and g(t,u)u≥ 0 for u∈R.
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1. Introduction

Let a,b ∈ N be two integers with b− a > 2. Let T := {a + 1, . . . ,b + 1} and ̂T := {a,a +
1, . . . ,b+ 1,b+ 2}.
Definition 1.1. Suppose that a function y : ̂T→ R. If y(t) = 0, then t is a zero of y. If
y(t)= 0 and Δy(t) �= 0, then t is a simple zero of y. If y(t)y(t+ 1) < 0, then y has a node at
the point s = (ty(t+ 1)− (t+ 1)y(t))/(y(t+ 1)− y(t)) ∈ (t, t + 1). The nodes and simple
zeros of y are called the simple generalized zeros of y.

Let μ is a real parameter. It is well known that the linear eigenvalue problem

Δ2y(t− 1) +μy(t)= 0, t ∈ T,

u(a)= u(b+ 2)= 0
(1.1)

has exactly N = b− a+ 1 eigenvalues

μ1 < μ2 < ··· < μN , (1.2)
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which are real and the eigenspace corresponding to any such eigenvalue is one dimen-
sional. The following lemma is crucial to the study of nonlinear perturbations of the
linear problem (1.1). The required results are somewhat scattered in [1, Chapters 6-7].

Lemma 1.2 [1]. Let (μi,ψi), i∈ {1, . . . ,N}, denote eigenvalue pairs of (1.1) with

b+1
∑

t=a+1

ψj(t)ψj(t)= 1, j ∈ {1, . . . ,N}. (1.3)

Then
(1) ψi has i− 1 simple generalized zeros in [a+ 1,b+ 1]; also if j �= k, then

b+1
∑

t=a+1

ψj(t)ψk(t)= 0; (1.4)

(2) if h : {a+ 1, . . . ,b+ 1} →R is given, then the problem

Δ2u(t− 1) + λ1u(t)= h(t), t ∈ T,

u(a)= u(b+ 2)= 0
(1.5)

has a solution if and only if
∑b+1

t=a+1h(t)ψ1(t)= 0.

In this paper, we study the existence of solutions of nonlinear discrete boundary value
problems

Δ2u(t− 1) +μ1u(t) + g
(

t,u(t)
)= h(t), t ∈ T,

u(a)= u(b+ 2)= 0,
(1.6)

where g : T×R→R is continuous.

Definition 1.3. By a solution of (1.6) we mean a function u : {a,a+ 1, . . . ,b+ 1,b+ 2} →R
which satisfies the difference equation and the boundary value conditions in (1.6).

Theorem 1.4. Let h : T→R be a given function, and let g(t,u) be continuous in u for each
t ∈ T. Assume that

g(t,u)u≥ 0 (1.7)

for all t ∈ T and all u ∈ R. Moreover, suppose that for all σ > 0, there exist a constant R =
R(σ) > 0 and a function b : {a+ 1, . . . ,b+ 1} →R such that

∣

∣g(t,u)
∣

∣≤ (Γ(t) + σ
)|u|+ b(t) (1.8)



Ruyun Ma 3

for all t ∈ T and all u∈R with |u| ≥ R, where Γ : T→R is a given function satisfying

0≤ Γ(t)≤ μ2−μ1, t ∈ T, (1.9)

Γ(τ) < μ2−μ1, for some τ ∈ T \ {̂t}, (1.10)

with ̂t is the unique simple generalized zero of ψ2 in [a+ 1,b+ 1].
Then (1.6) has a solution provided

b+1
∑

t=a+1

h(t)ψ1(t)= 0. (1.11)

The analogue of Theorem 1.4 was obtained for two-point BVPs of second-order or-
dinary differential equations by Iannacci and Nkashama [2]. Our paper is motivated by
[2]. However, as we will see, there are very big differences between the continuous case
and the discrete case. The main tool we use is the Leray-Schauder continuation theorem,
see [3].

The existence of solution of discrete equations subjected to Sturm-Liouville bound-
ary conditions was studied by Rodriguez [4], in which the nonlinearity is required to
be bounded. For other related results, see Agarwal and O’Regan [5, 6], Bai and Xu [7],
Rachunkova and Tisdell [8], and the references therein. However, all of them do not ad-
dress the problem under the “asymptotic nonuniform resonance” conditions.

2. Preliminaries

Let

D := {(0,u(a+ 1), . . . ,u(b+ 1),0
) | u(t)∈R, t ∈ T}. (2.1)

Then D is a Hilbert space under the inner product

〈u,v〉 =
b+1
∑

t=a+1

u(t)v(t), (2.2)

and the corresponding norm is

‖u‖ :=
√

〈u,u〉 =
( b+1
∑

t=a+1

u(t)u(t)

)1/2

. (2.3)

We note that D is also a Hilbert space under the inner product

〈u,v〉1 =
b+1
∑

t=a
Δu(t)Δv(t), (2.4)

and the corresponding norm is

‖u‖1 :=
√

〈u,u〉1 =
(b+1
∑

t=a
Δu(t)Δu(t)

)1/2

. (2.5)
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For u∈D, let us write

u(t)= u(t) + ũ(t), (2.6)

where

u(t)= 〈u,ψ1
〉

ψ1(t),
〈

ũ,ψ1
〉= 0. (2.7)

Obviously, D =D⊕ ˜D with

D = span
{

ψ1
}

, ˜D = span
{

ψ2, . . . ,ψN
}

. (2.8)

Lemma 2.1. Let u,w ∈D. Then

b+1
∑

k=a+1

w(k)Δ2u(k− 1)=−
b+1
∑

k=a
Δu(k)Δw(k). (2.9)

Proof. Since w(a)=w(b+ 2)= 0, we have

b+1
∑

k=a+1

w(k)Δ2u(k− 1)=
b
∑

j=a
w( j + 1)Δ2u( j) (by setting j = k− 1)

=
b
∑

j=a
w( j + 1)

(

Δu( j + 1)−Δu( j)
)

=
b
∑

j=a
Δu( j + 1)w( j + 1)−

b
∑

j=a
Δu( j)w( j + 1)

=
b+1
∑

l=a+1

Δu(l)w(l)−
b
∑

j=a
Δu( j)w( j + 1) (by setting l = j + 1)

=
[

Δu(b+ 1)w(b+ 1) +
b
∑

l=a+1

Δu(l)w(l)

]

−
[

Δu(a)w(a+ 1) +
b
∑

j=a+1

Δu( j)w( j + 1)

]

= Δu(b+ 1)
[

w(b+ 1)−w(b+ 2)
]−

b
∑

l=a+1

Δu(l)Δw(l)

−Δu(a)
[

w(a+ 1)−w(a)
]=−

b+1
∑

l=a
Δu(l)Δ(l).

(2.10)
�
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Lemma 2.2. Let Γ : T→R be a given function satisfying

0≤ Γ(t)≤ μ2−μ1, t ∈ T,

Γ(τ) < μ2−μ1 for some τ ∈ T \ {̂t},
(2.11)

with ̂t is the unique simple generalized zero of ψ2 in [a+ 1,b+ 1].
Then there exists a constant δ = δ(Γ) > 0 such that for all u∈D, one has

b+1
∑

t=a+1

[

Δ2u(t− 1) +μ1u(t) +Γ(t)u(t)
](

u(t)− ũ(t)
)≥ δ‖ũ‖2

1. (2.12)

Proof. Let

u(t)=
N
∑

i=1

ciψi(t), t ∈ T. (2.13)

Then

Δ2u(t− 1)=−
N
∑

i=1

ciμiψi(t), (2.14)

u(t)= c1ψ1(t), ũ(t)=
N
∑

i=2

ciψi(t). (2.15)

Taking into account the orthogonality of u and ũ in D, we have

b+1
∑

t=a+1

[

Δ2u(t− 1) +μ1u(t) +Γ(t)u(t)
](

u(t)− ũ(t)
)

=
b+1
∑

t=a+1

(

−
N
∑

i=1

ciμiψi(t) +
N
∑

i=1

ciμ1ψi(t) +Γ(t)u(t)

)(

c1ψ1(t)−
N
∑

i=2

ciψi(t)

)

=
b+1
∑

t=a+1

(

Γ(t)c2
1ψ

2
1 (t) +

N
∑

i=2

c2
i μiψ

2
i (t)−

N
∑

i=2

c2
i μ1ψ

2
i (t)−Γ(t)

N
∑

i=2

c2
i ψ

2
i (t)

)

=
b+1
∑

t=a+1

[ N
∑

i=2

c2
i μiψ

2
i (t)− (μ1 +Γ(t)

)

N
∑

i=2

c2
i ψ

2
i (t)

]

+
b+1
∑

t=a+1

Γ(t)c2
1ψ

2
1 (t)

≥
b+1
∑

t=a+1

[ N
∑

i=2

c2
i μiψ

2
i (t)− (μ1 +Γ(t)

)

N
∑

i=2

c2
i ψ

2
i (t)

]

=
b+1
∑

t=a+1

[ N
∑

i=2

c2
i ψi(t)

(−Δ2ψi(t− 1)
)− (μ1 +Γ(t)

)

N
∑

i=2

c2
i ψ

2
i (t)

]

=
N
∑

i=2

b+1
∑

t=a+1

c2
i ψi(t)

(−Δ2ψi(t− 1)
)

+
b+1
∑

t=a+1

[

− (μ1 +Γ(t)
)

N
∑

i=2

c2
i ψ

2
i (t)

]
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=
N
∑

i=2

b+1
∑

t=a
c2
i

[

Δψi(t)
]2

+
b+1
∑

t=a+1

[

− (μ1 +Γ(t)
)

N
∑

i=2

c2
i ψ

2
i (t)

]

=
b+1
∑

t=a

[(

Δũ(t)
)2− (μ1 +Γ(t)

)(

ũ(t)
)2]

.

(2.16)

Set

ΛΓ(ũ) := ‖ũ‖2
1−

b+1
∑

t=a

(

μ1 +Γ(t)
)(

ũ(t)
)2
. (2.17)

We claim that ΛΓ(ũ)≥ 0 with the equality only if ũ= Aψ2 for some A∈R.
In fact, we have from (1.9), (1.3), (1.4), and Lemma 2.1 that

ΛΓ(ũ)=
b+1
∑

t=a

[

Δũ(t)
]2−

b+1
∑

t=a+1

(

μ1 +Γ(t)
)[

ũ(t)
]2

=−
b+1
∑

t=a+1

ũ(t)Δ2ũ(t− 1)−
b+1
∑

t=a+1

(

μ1 +Γ(t)
)(

ũ(t)
)2

=
b+1
∑

t=a+1

N
∑

i=2

ciψi(t)
N
∑

i=2

ciμiψi(t)−
b+1
∑

t=a+1

(

μ1 +Γ(t)
)

( N
∑

i=2

ciψi(t)

)2

≥
b+1
∑

t=a+1

N
∑

i=2

ciψi(t)
N
∑

j=2

cjμjψj(t)−
b+1
∑

t=a+1

μ2

( N
∑

i=2

ciψi(t)

)( N
∑

j=2

cjψj(t)

)

=
N
∑

i=2

N
∑

j=2

cic jμj

b+1
∑

t=a+1

ψi(t)ψj(t)−
N
∑

i=2

N
∑

j=2

cic jμ2

b+1
∑

t=a+1

ψi(t)ψj(t)

=
N
∑

j=2

c2
j

(

μj −μ2
)≥ 0.

(2.18)

Obviously, ΛΓ(ũ) = 0 implies that c3 = ···=cN = 0, and accordingly ũ = Aψ2 for some
A∈R. But then we get

0=ΛΓ(ũ)=A2
b+1
∑

t=a

(

μ2−μ1−Γ(t)
)

ψ2
2 (t)= A2

b+1
∑

t=a+1

(

μ2−μ1−Γ(t)
)

ψ2
2 (t) (2.19)

so that by our assumption, A= 0 and hence ũ= 0.
We claim that there is a constant δ = δ(Γ) > 0 such that

ΛΓ(ũ)≥ δ‖ũ‖2
1. (2.20)
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Assume that the claim is not true. Then we can find a sequence {ũn} ⊂D and ũ∈D,
such that, by passing to a subsequence if necessary,

0≤ΛΓ
(

ũn
)≤ 1

n
,

∥

∥ũn
∥

∥

1 = 1, (2.21)

∥

∥ũn− ũ
∥

∥−→ 0, n−→∞. (2.22)

From (2.22) and the fact that ũn(a)= ũ(a)= 0= ũn(b+ 2)= ũ(b+ 2), it follows that

∣

∣

∣

∣

∣

b+1
∑

t=a

[

Δũn(t)
]2−

b+1
∑

t=a

[

Δũ(t)
]2

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

b+1
∑

t=a

[

ũn(t+ 1)− ũn(t)
]2−

b+1
∑

t=a

[

ũ(t+ 1)− ũ(t)
]2

∣

∣

∣

∣

∣

≤
b+1
∑

t=a

∣

∣ũ2
n(t+ 1)− ũ2(t+ 1)

∣

∣+
b+1
∑

t=a

∣

∣ũ2
n(t)− ũ2(t)

∣

∣

+ 2
b+1
∑

t=a

(∣

∣ũn(t)
∣

∣

∣

∣ũn(t+ 1)− ũ(t+ 1)
∣

∣

+
∣

∣ũ(t+ 1)
∣

∣

∣

∣ũn(t)− ũ(t)
∣

∣

)−→ 0.
(2.23)

By (2.17), (2.21), and (2.22), we obtain, for n→∞,

b+1
∑

t=a

[

Δũn(t)
]2 −→

b+1
∑

t=a

(

μ1 +Γ(t)
)[

ũ(t)
]2

, (2.24)

and hence

b+1
∑

t=a

[

Δũ(t)
]2 ≤

b+1
∑

t=a

(

μ1 +Γ(t)
)[

ũ(t)
]2

, (2.25)

that is,

ΛΓ(ũ)≤ 0. (2.26)

By the first part of the proof, ũ= 0, so that, by (2.24),
∑b+1

t=a[Δũn(t)]2 → 0, a contradiction
with the second equality in (2.21), and the proof is complete. �

Lemma 2.3. Let Γ be like in Lemma 2.2 and let δ > 0 be associated with Γ by that lemma.
Let σ > 0. Then, for all function p : T→R satisfying

0≤ p(x)≤ Γ(x) + σ (2.27)

and all u∈D,

b+1
∑

t=a+1

[

Δ2u(t− 1) +μ1u(t) + p(t)u(t)
](

u(t)− ũ(t)
)≥

(

δ− σ

μ2

)

‖ũ‖2
1. (2.28)
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Proof. Using the computations of Lemma 2.2, we obtain

b+1
∑

t=a+1

[

Δ2u(t− 1) +μ1u(t) + p(t)u(t)
](

u(t)− ũ(t)
)

≥
b+1
∑

t=a

[(

Δũ(t)
)2− (μ1 + p(t)

)(

ũ(t)
)2]=: Λp(ũ).

(2.29)

Therefore, by the second inequality in (2.27), we get

Λp(ũ)≥ΛΓ(ũ)− σ
b+1
∑

t=a

(

ũ(t)
)2
. (2.30)

So that, using (2.13)-(2.14), the relation ũ(t) =∑N
i=2 ciψi(t), and Lemma 2.2, it follows

that

Λp(ũ)≥
(

δ− σ

μ2

)

‖ũ‖2
1, (2.31)

and the proof is complete. �

3. Proof of the main result

Let δ > 0 be associated to the function Γ by Lemma 2.2. Then, by assumption (1.8), there
exist R(δ) > 0 and b : T→R, such that

∣

∣g(t,u)
∣

∣≤
(

Γ(t) +
μ2δ

4

)

|u|+ b(t) (3.1)

for all t ∈ T and all u ∈ R with |u| ≥ R. Without loss of generality, we can choose R so
that b(t)/|u| < (μ2δ)/4 and all u∈R with u≥ R.

Proof of Theorem 1.4. Let us define γ : T×R→R by

γ(t,u)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u−1g(t,u), |u| ≥ R,

R−1g(t,R)
(

u

R

)

+
(

1− u

R

)

Γ(t), 0≤ u≤ R,

R−1g(t,−R)
(

u

R

)

+
(

1 +
u

R

)

Γ(t), −R≤ u≤ 0.

(3.2)

Then by assumption (1.7) and the relations (3.1), we have that

0≤ γ(t,u)≤ Γ(t) +
μ2δ

2
, t ∈ T, u∈R. (3.3)

Define f : T×R→R by

f (t,u)= g(t,u)− γ(t,u)u. (3.4)
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Then

∣

∣ f (t,u)
∣

∣≤ ν(t), t ∈ T, (3.5)

for some function ν : T→R.
To prove that (1.6) has at least one solution, it suffices, according to the Leray-Schauder

continuation method [3], to show that the possible solutions of the family of equations

Δ2u(t− 1) +μ1u(t) + (1−η)qu(t) +ηγ
(

t,u(t)
)

u(t) +η f
(

t,u(t)
)= ηh(t), t ∈ T,

u(a)= u(b+ 2)= 0
(3.6)

(in which η ∈ (0,1), q ∈ (0,μ2−μ1) with q < (μ2δ)/2, q fixed) are a priori bounded in D,
independent of η ∈ [0,1). Notice that, by (3.3), we have

0≤ (1−η)q+ηγ(t,u)≤ Γ(t) +
μ2δ

2
, t ∈ T, u∈R. (3.7)

It is clear that for η = 0, (3.6) has only the trivial solution. Now if u∈D is a solution
of (3.6) for some η ∈ (0,1), using Lemma 2.3 and Cauchy inequality, we get

0=
b+1
∑

t=a

(

u(t)− ũ(t)
)(

Δ2u(t− 1) +μ1u(t) +
[

(1−η)q+ηγ
(

t,u(t)
)]

u(t)
)

+
b+1
∑

t=a+1

(

u(t)− ũ(t)
)(

η f (t,u(t)
)−ηh(t)

)

≥ (δ/2)
b+1
∑

t=a

[

˜Δu(t)
]2− (‖u‖+‖ũ‖)(b− a+ 1)1/2(‖ν‖+‖h‖),

(3.8)

so that by the relation
∑b+1

t=aΔ[w(t)]2 ≥ μ1‖w‖2, w ∈D, we deduce

0≥
(

δ

2

)

‖ũ‖2
1−β

(‖ũ‖1 +‖u‖1
)

(3.9)

for some constant β > 0, dependent only on γ and h (but not on u or μ). Taking α= βδ−1,
we get

‖ũ‖1 ≤ α+
(

α2 + 2α‖u‖1
)1/2

. (3.10)

We claim that there exists ρ > 0, independent of u and μ, such that for all possible
solutions of (3.6),

‖u‖1 < ρ. (3.11)
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Suppose on the contrary that the claim is false, then there exists {(ηn,un)} ⊂ (0,1)×D
with ‖un‖1 ≥ n and for all n∈N,

Δ2un(t− 1) +μ1un(t) +
(

1−ηn
)

qun(t) +ηng
(

t,un(t)
)= ηnh(t), t ∈ T,

u(a)= u(b+ 2)= 0.
(3.12)

Set vn = (un/‖un‖1), we have

Δ2vn(t− 1) +μ1vn(t) + qvn(t)

= ηn
(

h
∥

∥un
∥

∥

1

)

+ηnqvn(t)−ηn
((

g
(

t,
un(t)
∥

∥un
∥

∥

1

)))

, t ∈ T,

vn(a)= vn(b+ 2)= 0.

(3.13)

Define an operator L :D→D by

(Lw)(t) := Δ2w(t− 1) +μ1w(t) + qw(t), t ∈ T,

(Lw)(a) := 0, (Lw)(b+ 2) := 0.
(3.14)

Then L−1 : D→D is completely continuous since D is finite-dimensional. Now, (3.13) is
equivalent to

vn(t)= L−1
[

ηn

(

h(·)
∥

∥un
∥

∥

1

)

+ηnqvn(·)−ηn
(

g
(

·, un(·)
∥

∥un
∥

∥

1

))]

(t), t ∈ T. (3.15)

By (3.1) and (3.15), it follows that {(g(·,un(·))/‖un‖1} is bounded. Using (3.15) again,
we may assume that (taking a subsequence and relabelling if necessary) vn → v in (D,
‖ · ‖1), ‖v‖ = 1, and v(a)= v(b+ 2)= 0.

On the other hand, using (3.10), we deduce immediately that

∥

∥ṽn
∥

∥

1 −→ 0, n−→∞. (3.16)

Therefore, v ∈D, that is,

v(t)= Bψ1(t), t ∈ ̂T. (3.17)

Since ‖v‖1 = 1, we follows that B =±μ1
1/2 and

v(t)=±μ1
1/2ψ1(t), t ∈ ̂T. (3.18)

In what follows, we will suppose that

v(t)= μ1
1/2ψ1(t), t ∈ ̂T. (3.19)

The case v(t)=−μ1
1/2ψ1(t) can be treated in a similar way.
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Now, using the facts that vn(a) = v(b+ 2) = 0 and vn(t)→ v(t) for t ∈ T and v(t) > 0
for t ∈ T, we have that there exists n0 ∈N such that

vn(t) > 0, t ∈ T, n≥ n0. (3.20)

Writing vn = vn + ṽn, we have that vn(t)= Kn(t)ψ1(t) with Kn→ 1 as n→∞.
Let us come back to (3.12). Taking the inner product in (D,‖ · ‖) of (3.12) with un,

noticing that ηn ∈ (0,1), and considering the assumption (1.11), we deduce that

(

ηn/
∥

∥un
∥

∥

1

)

b+1
∑

t=a
g
(

t,un(t)
)

vn(t) < 0 (3.21)

for all n sufficiently large, so
∑b+1

t=a g(t,un(t))vn(t) < 0. This is a contradiction, since by
(3.21) and (1.7), g(t,un(t))vn(t)≥ 0 for t ∈ T and n≥ n0, and the proof is complete. �

4. An example

From [1, Example 4.1], we know that the linear eigenvalues and the eigenfunctions of the
problem

Δ2y(t− 1) +μy(t)= 0, t ∈ T1 := {1,2,3},
u(0)= u(4)= 0

(4.1)

are as follows:

μ1 = 2−√2, ψ1(t)= sin
(

π

4
t
)

, t ∈ T1,

μ2 = 2, ψ2(t)= sin
(

π

2
t
)

, t ∈ T1,

μ3 = 2 +
√

2, ψ3(t)= sin
(

3π
4
t
)

, t ∈ T1.

(4.2)

Obviously,

{

t ∈ T1 | ψ1(t)= 0
}=∅,

{

t ∈ T1 | ψ2(t)= 0
}= {2}, {

t ∈ T1 | ψ3(t)= 0
}=∅.

(4.3)

Example 4.1. Let us consider the discrete boundary value problem

Δ2y(t− 1) +μ1y(t) + g0
(

t, y(t)
)= h(t), t ∈ T1,

u(0)= u(4)= 0,
(4.4)

where

g0(t,s)= (μ2−μ1

)

sin
(

π

4
t
)(

s+
s

1 + s2

)

, (t,s)∈ T1×R. (4.5)
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It is easy to verify that g0 satisfies all conditions of Theorem 1.4 with

Γ(t)= (μ2−μ1

)

∣

∣

∣

∣
sin
(

π

4
t
)∣

∣

∣

∣
. (4.6)

Therefore, (4.4) has at least one solution for every h : T1 →R with

b+1
∑

t=a+1

h(t)sin
(

π

4

)

t = 0. (4.7)
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