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We study the existence of solutions of nonlinear discrete boundary value problems
Au(t—1) +uu(t) +g(tu(t)) = h(t), t €T, u(a) = u(b+2) =0, where T := {a+1,...,
b+1}, h: T — R, y, is the first eigenvalue of the linear problem Alu(t—1)+ pu(t) =0,
teT,u(a)=ulb+2)=0,g:TxR — R satisfies some “asymptotic nonuniform” reso-
nance conditions, and g(t,u)u = 0 for u € R.
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1. Introduction

Let a,b € N be two integers with b —a >2. Let T:={a+1,...,b+ 1} and T:={aa+
1,...,b+1,b+2}.

Definition 1.1. Suppose that a function y: T — R. If y(t) = 0, then ¢ is a zero of y. If
y(t) = 0and Ay(t) # 0, then t is a simple zero of y. If y(t) y(t+ 1) <0, then y has a node at
the point s = (ty(t+1) — (t+1)y(¢))/(y(t+1) — y(t)) € (t,t +1). The nodes and simple
zeros of y are called the simple generalized zeros of y.

Let u is a real parameter. It is well known that the linear eigenvalue problem

Azy(t— D+uy(t)=0, teT,

ula) =u(b+2)=0 (1.1)

has exactly N = b — a+ 1 eigenvalues

U1 <pp<---<UN, (1.2)
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which are real and the eigenspace corresponding to any such eigenvalue is one dimen-
sional. The following lemma is crucial to the study of nonlinear perturbations of the
linear problem (1.1). The required results are somewhat scattered in [1, Chapters 6-7].

Lemma 1.2 [1]. Let (pi, vi), i € {1,...,N}, denote eigenvalue pairs of (1.1) with

b+1

> yityi() =1, je{l,...,N} (1.3)

t=a+1

Then
(1) y; has i — 1 simple generalized zeros in [a+ 1,b+ 1]; also if j # k, then

b+1

> wiOyk(t) =0; (1.4)

t=a+l1

(2) ifh:{a+1,...,b+ 1} — R is given, then the problem

Au(t—1)+Mu(t) =h(t), teT,
(1.5)
u(a)=ub+2)=0

has a solution if and only ifzfiiﬂ h(t)y,(t) = 0.

In this paper, we study the existence of solutions of nonlinear discrete boundary value
problems

Au(t—1) +uu(t) +g(tu(t)) =h(t), teT,
1.6
u(a) =u(b+2)=0, (16)

where g: T X R — R is continuous.

Definition 1.3. By a solution of (1.6) we mean a function u : {a,a+1,...,b+1,b+2} - R
which satisfies the difference equation and the boundary value conditions in (1.6).

TaEOREM 1.4. Let h: T — R be a given function, and let g(t,u) be continuous in u for each
t € T. Assume that

gt u)u=>0 (1.7)

forallt € T and all u € R. Moreover, suppose that for all ¢ > 0, there exist a constant R =
R(o) >0 and a functionb: {a+1,...,b+ 1} — R such that

lg(t,u)| < (T(t)+a)lul +b(t) (1.8)
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forallt € T and all u € R with |u| = R, where I : T — R is a given function satisfying
0<T(t)<up—pm, teT, (1.9)
I'(7) < 2 — 1, forsomere?\{?}, (1.10)

with t is the unique simple generalized zero of v, in [a+1,b+1].
Then (1.6) has a solution provided

b+1

> h(t)yi(t) = 0. (1.11)

t=a+1

The analogue of Theorem 1.4 was obtained for two-point BVPs of second-order or-
dinary differential equations by Iannacci and Nkashama [2]. Our paper is motivated by
[2]. However, as we will see, there are very big differences between the continuous case
and the discrete case. The main tool we use is the Leray-Schauder continuation theorem,
see [3].

The existence of solution of discrete equations subjected to Sturm-Liouville bound-
ary conditions was studied by Rodriguez [4], in which the nonlinearity is required to
be bounded. For other related results, see Agarwal and O’Regan [5, 6], Bai and Xu [7],
Rachunkova and Tisdell [8], and the references therein. However, all of them do not ad-
dress the problem under the “asymptotic nonuniform resonance” conditions.

2. Preliminaries
Let
D:={(0,u(a+1),...,u(b+1),0) |u(t) R, t€T}. (2.1)

Then D is a Hilbert space under the inner product

b+1
()= > u(t)v(t), (2.2)
t=a+l1
and the corresponding norm is
b+l 172
luall == ) =< > u(t)u(t)) : (2.3)
t=a+l
We note that D is also a Hilbert space under the inner product
b+1
(w,v)1 = >, Au(t)Av(1), (2.4)
t=a

and the corresponding norm is

b+1 1/2
llully ==/ {u,u)y = (ZAu(t)Au(t)) . (2.5)
t=a
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For u € D, let us write

u(t) =u(t) +u(t), (2.6)
where
ﬁ(t) = (u,l//1>1//1(t), <ﬂ,l//1> =0. (27)
Obviously, D=D & D with
D = span {y1}, D = span {ys,...,yn}. (2.8)
Lemma 2.1. Let u,w € D. Then
b+1 b+1
> wk)Au(k—1) = = > Au(k)Aw(k). (2.9)
k=a+1 k=a
Proof. Since w(a) = w(b+2) = 0, we have
b+1 b
> wlk)A?u(k—1) = > w(j+1)A%u(j) (bysetting j =k—1)
k=a+1 j=a
b
= > w(j+1)(Au(j +1) - Au(j))
j=a
b b
= > Au(G+Dw(i+1) = > Au(j)w(j+1)
j=a j=a
b+1 b
= > Au(l)w Z w(j+1) (bysettingl=j+1)
I=a+1 j=a
= [Au(b+1)w(b+1)+ > Au(l)w(l)}
I=a+1
b
- [Au(a)w(a+ 1)+ Z Au(j)w(j+ 1)]
j=a+l
=Au(b+1)[w(b+1) - w(b+2)] - Z Au(l)Aw(])
I=a+1
b+1
—Au(a)[w(a+1) - = > Au(DA(D).
o (2.10)
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LEMMA 2.2. LetT: T — R be a given function satisfying
OSr(t)S‘blz—‘u], teT,

(2.11)
I(t) <y —p  forsomet €T\ {7},
with t is the unique simple generalized zero of v, in [a+1,b+1].
Then there exists a constant § = §(I') > 0 such that for all u € D, one has
b+1
> [A%u(t— 1) +pu(t) + T(Ou®)] (wt) - u(r) = Sl17l3. (2.12)
t=a+1
Proof. Let
t)=> cyi(t), teT. (2.13)
Then
N
Au(t—1) == cuivi(t), (2.14)
i=1
N
u(t) = ay (1), () = cyilo). (2.15)

Taking into account the orthogonality of % and % in D, we have

b+1

>0 [A%u(t — 1)+ pyu(t) + T()u(t)] (u(t) — (1))
t=a+1
b+1 N
= Z ( Zcz[/lzv/l + ZQ#IWI + r(t)u(t)) (CIV/I(t) - ZCini(t)>
t=a+1 i=1 i=1 i=2
b+1 N
= > (F(t)clwl +Zc uiyE(t) - Zc Wy (t) - t)ZCfV/fU))
t=a+1 i=2 i=2 i=2
b+1 N N b+1
= > Zc%w?(t)—(m+r(t))Zc%w?(t)]+ > T(t)ctyi(t)
t=a+1 Li=2 i=2 t=a+1
b+1 N
=) chl — ( +T()) > s (t)]
t=a+1 Li=2 i=2
b+l N N
= > | 2wt (= Ayt —1)) — (m +T(t Z cyi( f)}
t=a+1 Li=2 i=2

N b+l b+1 N
=D S Gut) (- Ayt -1) + [—(wr(t))zc%w?(t)]

i=2 t=a+1 t=a+1 i=2
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N b+l 5 b+1
= Dalapm] + > [ i +T(t) Zc vA(1) ]
i=2 t=a t=a+1
b+1 5 5
= 2 [(A8()" = (u +T(1) (@(0))°].
t=a
(2.16)
Set
b+1 5
Ar(@) = 1717 = 3 ( +T(8)) (3(0)". (2.17)
t=a
We claim that Ar(#) > 0 with the equality only if 2 = Ay, for some A € R
In fact, we have from (1.9), (1.3), (1.4), and Lemma 2.1 that
b+1 5 b+1 5
Ar(@) = D [AUD] = D (w+T(1) [E(n)]
t=a t=a+1
b+1 b+1 5
== D> UHAM(t—1)— > (u +T(1) (1))
t=a+1 t=a+1
b+1 N b+l N 2
= z ZQW: ZCiHiV/i(t) - Z (w1 +T(1)) (Z (t))
t=a+1 i=2 i=2 t=a+1 i=2
b+1 b+1 N (2'18)
= S S a0~ 5w Sewn)(Sewo)
t=a+1 i=2 j=2 t=a+1 i=2 j=2
N N b+1 N N b+1
=2 Daciy D, vy =30 > aicipn Y. wilt)y;(t)
i=2 j=2 t=a+1 i=2 j=2 t=atl
N
=> G uj—m) =
j=2
Obviously, Ar(%) = 0 implies that ¢ = - - - =cy = 0, and accordingly # = Ay, for some
A € R. But then we get
b+1 b+1
0=Ar(il) =AY (o — 1 ~T(O)y3(t) = A> D (2 — 1 —T(1)) y3(t) (2.19)
t=a t=a+1

so that by our assumption, A = 0 and hence % = 0.

We claim that there is a constant & = §(I') > 0 such that

Ar(2) = 811711 (2.20)
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Assume that the claim is not true. Then we can find a sequence {#i,} C D and & € D,
such that, by passing to a subsequence if necessary,

0<Ar(u,) <—, 2], = 1, (2.21)

S |

=l — 0, 0 — s, (2.22)

From (2.22) and the fact that %,,(a) = ti(a) = 0 = u,(b+2) = u(b +2), it follows that

b+1 b+1 b+1 b+1
S [AT] = SO = | D [t +1) — 8u(6)])* = > [E(+1) - (1))
b+1 b+1
< SR+ D) -2+ 1)+ [32(1) - 22 (1) |
b+1
+2 2 (| ()| |8 (t+1) = 8t +1) |
t=a

+ e+ 1)| | (t) - ut)]) — 0.

(2.23)
By (2.17), (2.21), and (2.22), we obtain, for n — o,
b+1 5 b+1 5
> [AU] — D (u+T)[H@®)], (2.24)
t=a t=a
and hence
b+1 5 b+1 5
2 AuD] < X (i +T0) [E0)] (2.25)
t=a t=a
that is,
Ar(ii) <0, (2.26)
By the first part of the proof, & = 0, so that, by (2.24), Xf;ll [A%,(¢)]? — 0, a contradiction
with the second equality in (2.21), and the proof is complete. O

LeEmMMA 2.3. Let T be like in Lemma 2.2 and let § > 0 be associated with T by that lemma.
Let 0 > 0. Then, for all function p: T — R satisfying

0<px)<T(x)+o (2.27)
and all u € D,
b+1 .
ST [A2u(t— 1)+ pult) + p(tyu(t) @(t) — (1)) = (6 - —) 1312, (2.28)

t=a+1 2
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Proof. Using the computations of Lemma 2.2, we obtain

b+1
>0 [A%u(t = 1) +pyu(t) + p(Hu(e)] (u(t) — (t))
t=a+l b (229)
+1
= 3 L(AGH(D)" = ( +p(8) (5(D)*] =2 A, (@),
t=a
Therefore, by the second inequality in (2.27), we get
b+1 5
Ap(@) = Ar() — o > (H(1))". (2.30)
t=a

So that, using (2.13)-(2.14), the relation (¢) = Z,Iiz ciyi(t), and Lemma 2.2, it follows
that

Ap(i) = (8— g)nan%, (2.31)

1253

and the proof is complete. O

3. Proof of the main result

Let § > 0 be associated to the function I' by Lemma 2.2. Then, by assumption (1.8), there
exist R(6) >0and b: T — R, such that

()| < (r(t)+%)|u|+b(t) (3.1)

for all t € T and all u € R with |u| = R. Without loss of generality, we can choose R so
that b(t)/|u| < (u26)/4and all u € R with u = R.

Proof of Theorem 1.4. Let us definey: T X R — R by
u'g(t,u), lul = R,
RgtR(Z)+(1-2)rr), o0<u<R
y(t,u) = EWLII\ R R ] =u=x (3.2)
R‘lg(t,—R)(%) + (1 + %)F(t), “R<u<0.
Then by assumption (1.7) and the relations (3.1), we have that
20
Osy(t,u)sl"(t)+7, teT,ueR. (3.3)
Define f : T xR — R by

f(tu) = g(t,u) — y(t,u)u (3.4)
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Then
| f(tbu)| <»(t), teT, (3.5)
for some function v: T — R.

To prove that (1.6) has at least one solution, it suffices, according to the Leray-Schauder
continuation method [3], to show that the possible solutions of the family of equations

A u(t = 1) +put) + (1= n)qu(t) +ny(t,u(®))u(t) +nf (tLu(t)) = nh(t), teT,

u(a)=u(b+2)=0
(3.6)

(in which # € (0,1), g € (0,u2 — p1) with g < (426)/2, q fixed) are a priori bounded in D,
independent of 7 € [0,1). Notice that, by (3.3), we have

0s(1—q)q+qy(t,u)sr(t)+@, teT, uek. (3.7)

It is clear that for 7 = 0, (3.6) has only the trivial solution. Now if u € D is a solution
of (3.6) for some # € (0,1), using Lemma 2.3 and Cauchy inequality, we get

b+1
0=> (u(t) — () (A*u(t — 1) +pru(t) + [(1 — n)q+ny(t,u(®) Ju(t))
b+1
+ > (a(t) - u®) (nf (tu(®) —nh(t)) (3.8)
t=a+1
b+1 N 5
> (6/2) > [Au(®)]” = (lull + 1111 (b — a+ D2 (vIl + ||All),
t=a

so that by the relation zf:; Alw()]? = u llwll?, w € D, we deduce

0= @) 13211 = Bl + Izl ) 32

for some constant 3 > 0, dependent only on y and h (but not on u or p). Taking a = 61,
we get

)1/2

2]l < o+ (o +2al7ll (3.10)

We claim that there exists p > 0, independent of u and y, such that for all possible
solutions of (3.6),

llully <p. (3.11)
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Suppose on the contrary that the claim is false, then there exists {(#,,u,)} C (0,1) x D
with ||u,ll; = nand foralln € N,

Auy(t = 1) + () + (1= 1) qua(t) + 1ug (Lua(t)) = n4h(t), teT,
u(a)=u(b+2)=0.

(3.12)

Set Vn = (un/”un”l)a we have

Ay (t= 1)+ va(t) + qva(t)

- ”<||uh||1> - (a6 ﬁ;:ﬁ)l ). tem. (3.13)
va(a) =vy(b+2) =0.

Define an operator L: D — D by

(Lw)(t) := A*w(t— 1) +uw(t) +qw(t), teT,
3.14
(Lw)(a):=0, (Lw)(b+2):=0. G-19)

Then L~! : D — D is completely continuous since D is finite-dimensional. Now, (3.13) is
equivalent to

vﬂ(t)=L‘1[f7n< hC) >+17nqvn(-)—;7n<g<-, ”"('))>](t), teT. (3.15)

[lunll, [luall,

By (3.1) and (3.15), it follows that {(g(-,u,(-))/lluxll1} is bounded. Using (3.15) again,
we may assume that (taking a subsequence and relabelling if necessary) v, — v in (D,
I-11), vl =1,and v(a) = v(b+2) = 0.
On the other hand, using (3.10), we deduce immediately that
[[Vall; — 0, n— oo. (3.16)
Therefore, v € D, that is,

v(t) =By, (t), teT. (3.17)

Since [|v||; = 1, we follows that B = +4;"? and

v(t) = =y (1), teT. (3.18)
In what follows, we will suppose that
v(t) =my (), teT. (3.19)

The case v(t) = —p1 2y (t) can be treated in a similar way.
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Now, using the facts that v,,(a) = v(b+2) = 0 and v,,(¢t) — v(¢) for t € T and v(t) >0
for t € T, we have that there exists ny € N such that

v(t) >0, teT, n=ny. (3.20)

Writing v, = ¥, + ¥, we have that v,,(t) = K,,(t)y1(¢) with K,, — 1 as n — co.
Let us come back to (3.12). Taking the inner product in (D, || - I|) of (3.12) with #,,
noticing that 7, € (0,1), and considering the assumption (1.11), we deduce that

b+1

(na/lunl|,) > g (£ (1)) Vu(t) < O (3.21)

t=a
for all n sufficiently large, so th:al g(t,u,(t))v,(t) < 0. This is a contradiction, since by
(3.21) and (1.7), g(t,u,(t))v,(¢) = 0 for t € T and n = ny, and the proof is complete. [J
4. An example

From [1, Example 4.1], we know that the linear eigenvalues and the eigenfunctions of the
problem

Azy(t— D+uy(t)=0, teT,;:={1,2,3},

(4.1)
u(0)=u(4)=0
are as follows:
B =2-2, 1//1(t)=sin(%t), teTy,
_ . (7
Uy =2, 72163 :sm(zt), teT Ty, (4.2)

‘173:2+ﬁ, 1//3(t):sin(%1t>, teT.

Obviously,
{treTlyit)=0} =0, {te Tl ya(t) =0} = {2}, {teTilys(t) =0} = 2.
(4.3)
Example 4.1. Let us consider the discrete boundary value problem
Ay(t—1D)+py(t) +g(6y() =h(t), teT, "

u(0) =u(4) =0,

where

g(t,s) = (i, — @) sin (%t) (s+ %52), (t,s) € Ty xR. (4.5)
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It is easy to verify that g, satisfies all conditions of Theorem 1.4 with

r(t) = (.’72 _ﬁ1)

sin <%t> ‘ (4.6)

Therefore, (4.4) has at least one solution for every h: T; — R with

b+1

> hwysin(F =0 (4.7)

t=a+1
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