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We consider the following system of Lyness-type difference equations: x;(n + 1) =
(akxk(n) + bi)/xk-1(n — 1), xo(n + 1) = (a1x1(n) + b1)/xx(n — 1), xi(n + 1) =
(aic1xi1(n) + bimy)/xi—2(n—1),i = 3,4,...,k, where a;, b;, i = 1,2,..., k, are positive con-
stants, k > 3 is an integer, and the initial values are positive real numbers. We study the
existence of invariants, the boundedness, the persistence, and the periodicity of the posi-
tive solutions of this system.

Copyright © 2007 G. Papaschinopoulos et al. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Difference equations and systems of difference equations have many applications in bi-
ology, economy, and other sciences. So there exist many papers concerning systems of
difference equations (see [1-10] and the references cited therein).

In [11], Koci¢ and Ladas investigated the existence of invariants, the boundedness,
the persistence, the periodicity, and the oscillation of the positive solutions of the Lyness
difference equation

+A
anrl:xn > n:(),l,...) (1.1)

where A is a positive constant and the initial conditions x_;, y_1, X9, Yo are positive real
numbers.



2 Advances in Difference Equations

In [6-8], the authors studied the behavior of the positive solutions of the system of
two Lyness difference equations

by,+c dx,+e
Xn+1 = i’n > Yntl = Z , n=0,1,..., (1.2)

n—1 n—1

where b, ¢, d, e are positive constants and the initial conditions x_;, y_1, xo, ¥o are positive
numbers.
Now in this paper, we consider the system of difference equations:

arxr(n) + by

+1 = >
)= -
x(n+1) = 7a1x1(n)+b1’ (1.3)
xe(n—1)
xi(n+1)zm’ i=3,4,...k

xia(n—1)

where aj, b;, i = 1,2,...,k, are positive constant numbers, k > 3 is an integer, and the
initial values x;(—1), x;(0), i = 1,2,...,k, are positive real numbers. For simplicity, system
(1.3) can be written as follows:

ai—1xi-1(n) + bi4

xi(n+1)= X1

, i=1,2,..,k, (1.4)

where
ao = dy, by = by, xj(n) = x1j(n), j=-1,0,n=-1,0,.... (1.5)

We study the existence of invariants, the boundedness, the persistence, and the periodicity
of the positive solutions of the system (1.3).

2. Boundedness and persistence

In this section, we study the boundedness and the persistence of the positive solutions of
(1.3). For this goal, we show the following proposition in which we find conditions so
that system (1.3) has an invariant.

ProrosITION 2.1. Let k = 3 and
Ak+i:Ai’ IE {_2)_13031)213)4})
Ak+i = Qi i€ {_3)_2)_1)071}) (21)
bk+i = bi) IE {_2)_130}

Assume that the system of 2k equations, with k unknowns A1,As,..., Ak of the form

Aipabic1 +Aisaiaios = Aisobiss +Aissai—saios, i€ {1,2,...,k},

Aiva@in bi = Aisyaiabioy, i€ {1,2,...,k}, (22)
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has a nontrivial solution Ay,A,,...Ax. Then system (1.3) has an invariant of the form

I - ZA1+2x1 T’l) +ZA1+2x1 n-— 1)

= i=1

'M” L

1

k
1
Ab, +AZ a;—1a;— + )L,'b,‘_ +Ai_ ai_1Qj—2) ——<
1:1( 1 14i-1 Z)x,(n) z=z1( 1 18i-1 z)xi(n—l)
. . (2.3)
1 xi-1(n—1)
+ A,_ i b,‘_ —_———— + A,‘ -l
izzl M M (n = 1) ,=Zl b xi(n)
k
xi(n)
+ > Aipzai——————.
i; 34 xi-i(n—1)
Proof. From (1.5), (1.4), (2.1), (2.2), and (2.3), we have
Xi— 1( 1
I = Z/LJrZaz 1. . +z/\1+2b1 17+ZA1+2X:1(”
xian—1) & 2= 1)
k
+Z(Aibi—1+)ti—lai—1ai—2 +Ais1ai2bi ! +/\iai—1xi—1(n))
-1 xi-1(n)
Xi-a(n—1)
ai-1xi-1(n) +bi—
d 1 1
+IZI Aibiy+Aisaisiai x,(n)+ZAI+3aal 1m
d 1
' ;Aiﬂaibi_lxifl(”)xifz(n -1 (24)

k

k
= > divaxi(n) + > Aixia(n— 1)

i=1 i=1

k k
1
g Aibi1 +Ai-1ai-1ai-2) x,(n ; Ais2bi 1+Ai+3aiﬂi—1)m
k k
1 xi-2(n—1)
+ A b ZimeA 7/
,-; i i1 (m)xia(n—1) g‘ i xi-1(n)

k
xi-1(n)
S Aisay
i:z; i+2ai 1x,;2(n—1) n

This completes the proof of the proposition.
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CoROLLARY 2.2. Let k = 3. Then system (1.3) for k = 3 has the following invariant:
L, = bix1(n) + baxa(n) + baxs(n) + byxi(n— 1)+ bax,(n— 1)

1 1
+ b3X3(1’l — 1) + (bzbs + b1a2a3) m + (b3b1 + b2a3a1) %

1 1
+ (b1by + bsaay) o) + (babs + blaza3)m

+(b3b1+b2a3a1) + (b1b2+b3a1a2)

1
x(n—1) x3(n—1) (2.5)

1 1

b -1 T - 1)

1 +bza3x3(nfl)+b3alxl(nfl)

x3(n)x2(n—1) x1(n) x2(n)

+b3a2 Xz(l’l) +b1a3 x;giz(ﬁ)l)

x3(n—1) x1(n—1)

+ b3alb2

Xz(l’l—l)+b . x1(n)
xs(n)

+b1a2

PTOOf From (2.1) and (2.2), we get Arby = A1b3, Asbs = A,by, A by = A3by. We set A; = b,
A2 = bs, A3 = by. Then from (2.3), the proof follows immediately. ([l
COROLLARY 2.3. Let k = 4. Suppose that

by =by=bs;=by=0. (2.6)

Then system (1.3) for k = 4 has an invariant of the form

I, = aix1(n) + axx2(n) + asxs(n) + asxs(n) + arx1(n — 1)

1
+arxo(n—1)+asx3(n—1)+asxs(n—1)+ (a3b+a4a2a3)x ™
1
+ (asb +agasa;) ! + (a1b+ asa1a) !
4 adsm) oy 1 ama) s
+ (a2b+a3a1a2) ! + (a3b+a4a2a3) ! + (a4b+a4a3a1) !
x4(n) xi(n—-1) x(n-1)
+ (a1b+asa1az) ! +(ah+aaa)¥
1 4am) e 2 3Mmaz) T
1 1
+azab———— +azasb

x1(n)xg(n—1) x2(n)x(n—1)
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+aa b; +aa b;
T mxm-1) T x(n)xs(n— 1)
+a1a4xl(n — 1) +a1a2x2(n — 1) +a3a2x3(n — 1) +a3a4x74(n — 1)
x2(n) x3(n) x4(n) x1(n)
x4(n) x3(n) x2(n) x1(n)
+a1a4x3(n — 1) +a3a4x2(n — 1) +a3a2x71(n — 1) +a1a2x4(n — 1).
(2.7)
Proof. From (2.1), (2.2), and (2.6), we obtain
/\2b+13a4a3 = A2b+A1a4a1,
/\119+)L2a2a3 = /llb+)t4a4a3,
/\3b+)t4a4a1 = /13b+A2a2611,
/\4b+/11a2a1 =/\4b+)t3a2a3,
(2.8)

Masb = dasb,
Ararb = Azaub,
Aaxb = Aya1 b,
Aazb = Masb.

We set in (2.8) Ay = a3, Ay = a4, A3 = a;, Ay = ay. Then from (2.3), the proof follows
immediately. U

CoroLLARY 2.4. Consider system (1.3), where k = 5. Suppose that

asas = b,
asa, = bs,
asa; = bs, (2.9)
asaz = by,
aja) = b4.

Then system (1.3), with k = 5, has an invariant of the form
L, = Asx1 (1) + Aaxa(n) + Asxz(n) + A1 xa(n) + Aax5(n)
+Asxi(n—1)+Ax(n—1)+Asxz(n—1)
+Ahixs(n—1)+Axs(n—1)

1
x2(n)

+ (A1a2a3 +/\5a4a5) + (A2a3a4 +/11a5a1)

1
x1(n)
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1 1
+ (A3a4a5 +/\2(/11(Ilz) M + (A4a1a5 +)L3a2a3) m
1 1
+ (Asalaz +/\4a3a4) X5(1’l) + (Ala2a3 +/15a4a5) m
1 1
+ (A2a3a4 +/\1a5a1) m + (A3a4a5 +/\2a1a2) m
1 1
+ (A4a1a5 +/\3a2a3) m + (/15&11&2 +A4a3a4) m
+Aaaa;+)taaa;
T (mxs(n—1) T P i (n)x (n = 1)
+Aaaa;+laaa;
B -1 T PP () (n—1)
1
+/\1&5x75(n — 1) +Aa; Xl(l’l — 1) +/\3a2x2(n — 1)
x1(n) x2(n) x3(n)
a2y =D
x4(n) x5(n)

s(n—1) " T x(n—1) 2(n—1)
x4(n) x5(n)
+A +A ,
i1 P xn-1)
(2.10)
where A, i = 1,2,3,4,5, are real numbers.
Proof. Using (2.1), (2.2), and (2.9), we get
)L](l]tZS +)L2a4a3 = /12(13(14 +)L1a5a1,
Azazal +)L3a4a5 = /13@405 +A2a1a2,
)L5a4a5 +/11a3a2 = Ala2a3 +Asa4€ls,
13{,13612 +/14a1a5 = /14611615 +)L3a2a3,
A4a4a3 +)L5a2a1 = /156!102 +A4a3a4,
(2.11)

Masagas = Mazasas,
Aasasa; = hasasay,
Asasaia; = Asasaiay,
Marazas = Mya aza;,

Asazazas = Asarazay,
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which are satisfied for any real numbers A;, i = 1,2,3,4,5. Then from (2.3), the corollary

is proved.

3. Periodicity

O

We study the periodicity of the positive solutions of (1.3) by investigating three cases:
k=3,k=4,and k € {5,6,...}. For the first case, we show the following proposition.

ProrositioN 3.1. Consider system (1.3) for k = 3. If
ar=a, =as=a,
bi=b,=bs=b,
a’=b,
then every positive solution of system (1.3) is periodic of period 15.
Proof. We have

x1(n+5) =

axs(n+4)+a*  a((axz(n+3)+a*)/x1(n+2))+a’

xn+3) x2(n+3)

a’x;(n+3)+ad+atx;(n+2)
x1(n+2)x(n+3)

a*((axi(n+2)+a*)/xs(n+1)) +a®+a’x;(n+2)

x1(n+2)((ax;(n+2)+a?)/x3(n+1))

Bxin+2)+at+adxs(n+ 1) +a*x(n+2)xs(n+1)

x1(n+2)[ax1(n+2)+a?]

_[axi(n+2)+a*][axs(n+1) +a*]
B x1(n+2)[ax;(n+2)+a?]

_axz(n+1)+a?
x1(n+2)

= XZ(H).

Working in a similar way, we can prove that

Thus,
x1(n+15) =x(n+10) = x3(n+5) = x1(n).
Similarly,

x(n+15) = x2(n),
x3(n+15) = x3(n),

and the proof of the proposition is complete.

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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In the sequel, we prove the following proposition which concerns the case k = 4.
ProrosITION 3.2. Consider system (1.3) for k = 4. If
ay=d; =4ds=da4=a,
by =by=bs;=bs=b, (3.6)
a’=b,
then every positive solution of system (1.3) is periodic of period 20.
Proof. We have

(n15) = axs(n+4)+a>  a((axs(n+3)+a?)/x,(n+2)) +a*
i T oxi(n+3) x3(n+3)

a?x3(n+3)+a+ato(n+2)
X (n+2)x3(n+3)

a*((axa(n+2)+a?)/xi(n+1)) +a® +a’xy(n+2)
x(n+2)(axs(n+2)+a?)/x1(n+1))

(3.7)
Bxy(n+2)+at+adxi(n+1)+atx;(n+1)x(n+2)

x(n+2)[axy(n+2)+a?]

_[axy(n+2) +a*][axi(n+1) +a?]
B x(n+2)[axy(n+2) +a2]

axi(n+1) +a?

= ————F— =x(n).
x(n+2) xa(n)

Arguing as above, we can show that

x2(n+5) =x(n),
x3(n+5) = x2(n), (3.8)
x4(n+5) =x3(n).

So,
x1(n+20) =x4(n+15) = x3(n+10) = x2(n+5) = x1(n). (3.9
Similarly,

X (n+20) = x(n),
x3(n+20) = x3(n), (3.10)
x4(n+20) = x4(n),

and the proof of the proposition is complete. O



Finally, we study the case k € {5,6,
lowing lemma.

LEmMa 3.3. Letk = 5. If
A =ay=---

=aqi =ad,

then

xi(n+5) = x_
xi(n+5) =x;_

Proof. From (1.3), we have

+4)+a?
xl(n+5):axk(n J+a
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... }. To this end, we have at first to prove the fol-

(3.11)

ie{l,2,...,5},
i€{6,7,...,k}.

5+i(n))

), (3.12)

a((axx_1(n+3)+a®)/xx_2(n+2)) + a?

Xp_1(n+3) -

Xe_1(n+3)

a’xe_1(n+3)+a®+a*x_(n+2)

Xk—2(n+2)xk-1(n+3)

a*((axk_r(n+2)+a®)/x_3(n+1)) +a® + a’xp_r(n+2)

Xp2(n+2)((axg_2(n+2) +a?)/xx_3(n+1))

(3.13)

ABxey(n+2)tat +adxs(n+ 1) +a?x(n+2)x_3(n+1)

xp_2(n+2)(axk_2(n+2)+a?)

_ (axk_2(n+2)+a?) (axx_3(n+1) +a*)

Xk—2(n+2)(axk_2(n+2)+a?)

Then since, from (1.3),

Xk-a(n) =

it follows that

x1(n+5) = xx-4(n).

Similarly, we can prove that

xi(n+5) = xr_

axe_3(n+1) +a?

Xka(n+2) (3.14)

(3.15)

s+i(n), i€{2,3,... (3.16)
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Letie {6,7,...,k}. Then

x(n+5) = axi-i(n+4)+a>  a((axi2(n+3)+a*)/x;3(n+2)) +a?
'  xia(n+3) Xi—2(n+3)

_ d*xi(n+3)+a’ +atxi3(n+2)
B Xi—2(n+3)xi_3(n+2)

a*((axi_s(n+2)+a®)/xi_4(n+1)) +a’+a’x;_3(n+2)

- xi—3(n+2) ((axi—3(n+2) + a2)/xi—s(n+1)) (3.17)
_ Bxisn+2)+at+@xi_s(n+1)+a’xi3(n+2)xi_4(n+1)
xi_3(n+2)(axi_s(n+2)+a2)
_ (ax;i3(n+2)+a?) (ax;_4(n+1)+a?)
xi_3(n+2)(ax;_3(n+2)+a?)
Then since, from (1.3),
xi-s(n) = % (3.18)
it follows that
xi(n+5)=x;_s5(n), i€ {6,7,...,k}. (3.19)
Now we can show the following proposition. g

ProrositioN 3.4. Consider system (1.3), where k = 5. Assume that relations (3.11) hold.
Then the following statements are true.
(i) Every positive solution of system (1.3) is periodic of period k if k = 5r, r = 1,2,....
(ii) Every positive solution of system (1.3) is periodic of period 5k if k + 5r, r = 1,2,....

Proof. Consider an arbitrary solution (x;(n),...,xx(n)) of (1.3).
(i) Suppose that k = 57, r = 1,2,.... Then from (3.12), we have

xi(n+5) :x5775+i(n)) i€ {1)2)---)5})

3.20
xi(n+5) =x;_5(n), i€ {6,7,...,5r}. ( )

We claim that fori = 1,2,...,5,
xi(n+5s) = x5, _554i(n), s=1,2,...,1. (3.21)

From (3.20), it is obvious that (3.21) is true for s = 1. Suppose that for i = 1,2,...,5,
relation (3.21) is true for s = 1,2,...,r — 1. Then since 6 < 5r — 5s+i < 5r, from (3.20)
and (3.21), we get fori = 1,2,...,5,

Xi(n+5+55) = x5,_564i(n+5) = X5,_5(s+1)4i (1), (3.22)
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and so (3.21) is true. Then from (3.21) for s = r, we have
xi(n+5r) =x;(n), i=1,2,...,5. (3.23)

Therefore the sequences xi(n), i = 1,2,...,5 are periodic of period 5. Then from (3.20),
all the sequences x;(n), i = 1,2,...,k, are periodic of period k.
(ii) Suppose that k # 57, r = 1,2,.... Let k = 5r + 1, r = 1,2,.... Then from (3.12), we
have
xi(n+5):x5r—4+i(n): i€ {1323-”35};

3.24
xi(n+5) =xi_5(n), i€ {6,7,...,5r+1}. ( )

Applying (3.24) and using the same argument to show (3.21), we can prove that for i =
1,2,...,5

Xi(n+5s) = X5r 56111 (1),  s=1,2,...,1. (3.25)
So from (3.24) and (3.25) fori =1, s = r, we get

x1(n+25r+5) =x(n+20r+5) =x3(n+15r +5) = x4(n+ 10r +5),

x5(n+5r+5) =x6(n+5) = x1(n). (3.26)

Therefore x,(n) is a periodic sequence of period 5(5+ + 1) = 5k. Hence by (3.24), all the
sequences x;(n), i = 1,2,...,k, are periodic of period 5k.
Let k = 5r + 2. Then from (3.12), we have
xi(n+5):x5r—3+i(n)a i€ {1323"'35})

3.27
xi(n+5) =x;i_5(n), i€ {6,7,...,5r+2}. ( )

Then from (3.27) and using the same argument to prove (3.21), we can prove that for
i=1,2,...,5,

xi(n+5s) = x5, _561i12(n),  s=1,2,...,1. (3.28)
Then from (3.27) and (3.28) fori =1, s = r, we get

x1(n+25r+10) = x3(n+20r+10) = x5(n+ 15r + 10)
=x7(n+10r+10) = x(n+ 10r +5) = x4(n+5r+5) (3.29)
= x¢(n+5) = x1(n),

which implies that x; (n) is a periodic sequence of period 5k. Then by relations (3.27), we
can prove that the sequences x;(n), i = 2,3,...,k, are periodic of period 5k.
Let k = 5r + 3. Then from (3.12), we have

xi(n+5):x5r72+i(n)> i€ {1)2')'--’5})

3.30
xi(n+5) =x;i_5(n), i€ {6,7,...,5r+3}. ( )
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Then from (3.30) and using the same argument to show (3.21), we can prove that for
i=1,2,...,5

Xi(n+58) = X5r_561i13(1),  s=1,2,...,7. (3.31)
Then from (3.30) and (3.31) fori =1, s = r, we get

x1(n+25r+15) = x4(n+20r+15) = x;(n+ 15r + 15)
=x(n+15r+10) = x5(n+ 10r + 10) (3.32)
=xg(n+5r+10) = x3(n+5r+5) =x5(n+5) = x1(n),

which implies that x;(n) is a periodic sequence of period 5(5r + 3) = 5k. Then from re-
lations (3.30), we can prove that the sequences x;(n), i = 1,2,...,k, are periodic of period
5k.

Let k = 5r +4. Then from (3.12), we have

Xi(n+5):.X5r71+i(n), i€ {1)21“-)5})

xi(n+5) =xi5(n), i€ 1{6,7,...,5r +4}. (3.33)

Then from (3.33) and using the same argument to show (3.21), we can prove that for
i=12,...,5,

Xi(n+5s) = x5, _561i+4(n),  s=1,2,...,1. (3.34)
Then from (3.33) and (3.34) fori=1, s = r, we get

x1(n+25r +20) = xs(n+20r +20) = x9(n+ 15r + 20)
= x4(n+15r+15) = xg(n+ 10r + 15) = x3(n+ 10r + 10) (3.35)
=x7;(n+5r+10) = x,(n+5r+5) = x6(n+5) = x1(n),

which implies that x;(n) is a periodic sequence of period 5(5r +4) = 5k. Then from re-
lations (3.33), we can prove that the sequences x;(n), i = 1,2,...,k, are periodic of period
5k. This completes the proof of the proposition. O
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