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We first give conditions which guarantee that every solution of a first order linear delay
dynamic equation for isolated time scales vanishes at infinity. Several interesting examples
are given. In the last half of the paper, we give conditions under which the trivial solution
of a nonlinear delay dynamic equation is asymptotically stable, for arbitrary time scales.
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1. Preliminaries

The unification and extension of continuous calculus, discrete calculus, g-calculus, and
indeed arbitrary real-number calculus to time-scale calculus, where a time scale is sim-
ply any nonempty closed set of real numbers, were first accomplished by Hilger in [4].
Since then, time-scale calculus has made steady inroads in explaining the interconnec-
tions that exist among the various calculuses, and in extending our understanding to a
new, more general and overarching theory. The purpose of this work is to illustrate this
new understanding by extending some continuous and discrete delay equations to cer-
tain time scales. Examples will include specific cases in differential equations, difference
equations, g-difference equations, and harmonic-number equations. The definitions that
follow here will serve as a short primer on the time-scale calculus; they can be found in
[1, 2] and the references therein.

Definition 1.1. Define the forward (backward) jump operator o(¢) at t for t <sup T (resp.,
p(t) attfort >infT) by

o(t)=inf{r>t:7€T}, (p(t)=sup{r<t:TeT}), VieT. (1.1)

Also define o(sup T) = sup T, if sup T < oo, and p(inf T) = inf T, if inf T > — 0. Define the
graininess function g : T — R by u(t) = o(t) — t.
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2 Delay dynamic equations with stability

Throughout this work the assumption is made that T is unbounded above and has the
topology that it inherits from the standard topology on the real numbers R. Also assume
throughout that a < b are points in T and define the time scale interval [a,b]y = {t € T :
a <t < b}. Other time scale intervals are defined similarly. The jump operators ¢ and p
allow the classification of points in a time scale in the following way: if 6 (t) > ¢ then call
the point ¢ right-scattered; while if p(f) < t then we say t is left-scattered. If o(t) = t then
call the point ¢ right-dense; while if t > inf T and p(¢) = ¢ then we say ¢ is left-dense. We
next define the so-called delta derivative. The novice could skip this definition and look
at the results stated in Theorem 1.4. In particular in part (2) of Theorem 1.4 we see what
the delta derivative is at right-scattered points and in part (3) of Theorem 1.4 we see that
at right-dense points the derivative is similar to the definition given in calculus.

Definition 1.2. Fixt € T andlet y: T — R. Define y*(t) to be the number (if it exists) with
the property that given € > 0 there is a neighbourhood U of ¢ such that, for all s € U,

[[y(a(t) — y(s)] = y2(t)[a(t) —s]| <€|o(t)—s]. (1.2)

Call y2(t) the (delta) derivative of y(t) at t.
Definition 1.3. If FA(t) = f(t) then define the (Cauchy) delta integral by

[ 98s= Fy - Fa) (13)

The following theorem is due to Hilger [4].

THEOREM 1.4. Assume that f:T — Randlett € T.
(1) If f is differentiable at t, then f is continuous at t.
(2) If f is continuous at t and t is right-scattered, then f is differentiable at t with

fla(t) siO)

Mgy —
1o = e (1.4)
(3) If f is differentiable and t is right-dense, then
fA(t) :lslir}f(tiif(S) (1.5)

(4) If f is differentiable at t, then f(o(t)) = f(t) +u(t) f2(¢).

Next we define the important concept of right-dense continuity. An important fact
concerning right-dense continuity is that every right-dense continuous function has a
delta antiderivative [1, Theorem 1.74]. This implies that the delta definite integral of any
right-dense continuous function exists.

Definition 1.5. We say that f : T — R is right-dense continuous (and write f € C,4(T;R))
provided f is continuous at every right-dense point t € T, and lim,_.,- f(s) exists and is
finite at every left-dense point t € T.
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We say p is regressive provided 1+ u(t)p(t) £ 0, Vt € T. Let
R:={pe Ca(T;R): 1+u(t)p(t) #0, t € T}. (1.6)

Also, pe R* ifand only if p € R and 1 +u(t)p(t) >0, Vt € T. Thenif pe R, t, € T,
one can define the generalized exponential function e, (t,t) to be the unique solution of
the initial value problem

X = p(b)x, x(ty) = 1. (1.7)

We will use many of the properties of this generalized exponential function e, (t,1,) listed
in Theorem 1.6.

TaEOREM 1.6 ([1, Theorem 2.36]). If p,q € R and s,t € T, then
(1) eo(t,s) = Land ey(t,t) = 1;
(2) ep(a(t),s) = (1+u(t)p(t))e,(t,s);
(3) 1/ep(t,s) = esp(t,s), where ©p := —p/(1+up);
(4) ep(t,s) = 1/ep(s,t) = ecp(s,t);
(5) ep(t,8)ep(s,r) = ep(t,r);
(6) ep(t,5)eq(t,s) = epeq(tss), where p ® q:= p+q+upq;
(7) ep(t,5)/e4(t,5) = epeg(t,s).

2. Introduction to a delay dynamic equation

Since we are interested in the asymptotic properties of solutions we assume as mentioned
earlier that our time scale T is unbounded above. Consider the delay dynamic equation

x2(t) = —a(t)x(8(2))64(t), t € [tg, )y, (2.1)

where the delay function § : [ty, 00)1 — [8(tp), o) is strictly increasing and delta differ-
entiable with &(t) < t for t € [ty, 00)1 and lim;_« §(¢) = co. For example, if T = [—m, c0),
and 6(t) := t —m, t € [0,00), where m >0, then (2.1) becomes the well-studied delay dif-
ferential equation

x'(t) = —a(t)x(t — m). (2.2)

IfT={-m-m+1,...,0,1,2,...},and §(¢) := t — m, t € Ny, where m is a positive integer,
then (2.1) becomes

Ax(t) = —a(t)x(t — m), (2.3)
where A is the forward difference operator defined by Ax(f) = x(t+1) — x(¢). If T = g™ U

{g7,972,....,q7™} where g™ := {1,9,¢%...}, ¢ > 1, and 8(¢) := (1/q™)t, t € g™, where
m € N, then (2.1) becomes the delay quantum equation

Dx(t) = —qima(t)x(qimt), (2.4)
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where

_ x(qt) —x(t)

(g—1)t (2:3)

Dyx(t):

is the so-called quantum derivative studied in Kac and Cheung [5]. More examples will
be given later. We will use the following three lemmas to prove Theorem 3.1.

LEmMa 2.1 (chain rule). Assume T is an isolated time scale, and g(o(t)) = o(g(t)) fort € T.
Ifg:T—-Tandh:T — R, then

g(t) A
([ oas) = ngmngto. (2.6)

fo

Proof. Since t is right-scattered,

8(1) A 1 8(a(1)) 80
( h(s)As) _ —(j h(s)As — h(s)As)
to (t) to to

1 Jg(ff(t))h( A
a (t) g(t) )88

| (ol
) L(t) hls)as (2.7)
1
= mh(g(t)) (o(g(t)) —g(1))

_ glo(r) —g(t)
= h(g(t))—y(t)
=h(g(t))g"(t). 0

LeEMMA 2.2. Assume T is an isolated time scale and the delay § satisfies § o 0 = 0 0 6, or
T = R. Then the delay equation (2.1) is equivalent to the delay equation

A

t
() = —a(871(6) x() + (Lma(a-l(s))x(sms) . (2.8)

Proof. Assume x is a solution of (2.8). Then using the chain rule (Lemma 2.1) for isolated
time scales or the regular chain rule for T = R,

t

A
XA(8) = —a(81(8)x(t) + (J a(a-l(s))x(s)As)

8(1)
1

=—a(87'(1)x(t) +a(87(1))x(t) — a(t)x (8(1)) 8*(¢)
= —a(H)x(8())82(p).

(2.9)

Hence x is a solution of (2.1). Reversing the above steps, we obtain the desired result.
O
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LEmMA 2.3. Ifx is a solution of (2.1) with initial function y, then

x(t) = e_qo-1y (K1) ¥ (f) + L(ﬂa(&”(s))x(s)As

—e_a6-1) (t,10) th )a(ﬁ’l(s))w(s)As (2.10)
toa(é'(n)
B Lo 1—u(r)a(6- (1)) ei“(‘sﬂ)(t’ﬂ(]&(r)

T

a(8*1(s))x(s)As) AT.

Proof. We use the variation of constants formula [1, page 77] for (2.8), to obtain

T

t Ar
x(t) = e_q5-1) (£, 10) x(to) +L e,a(gfl)(t,o(r))(L a(8*1(5))x(s)As) Ar.  (2.11)

(1)

Using integration by parts [1, page 28],

x(t) = e_qo-1y (H,t0) x (L) + €—a(s-1)(t,T) LT( )a(é‘_l(s))x(s)As 1%,
t ) ! (2.12)
- J; ef;(a,l)(t,r)(J a((S_l(s))x(s)As) At.

0 8(7)

It follows from Theorem 1.6 that
t
x(t) = e_q6-1) (t,t0) x(to) + L(r) a(67'(s))x(s)As
to
—e—a01)(tt0) L(t )0(5’1(5))X(S)As

t T
- L) €S (o) (o) ( Lm a(5’1(5))x(S)AS) AT .
t 2.13
=e_q5-1)(t,t0)x(to) + L(t) a(871(s))x(s)As

—e_a6-1) (t,t0) L:: )61(6*1 (s))x(s)As

T

- L: o(—a(d7"))(1)es(—a1)(11) (J

a(8_1(s))x(s)As) At.
(1)

Finally, using Theorem 1.6 once again and x(¢) = y(¢) for t € [(t),t0],

x(t) = e_ao-1) (t,10) ¥ (to) + Js(t)a(8_l(s))x(s)As

to

e wo(bh) LO (e @) yas (2.14)

t -1 p
o Jt 1— :((ga((g_)z(_[)) e—ﬂ(571)(ta T) ( ,[6(1) a(a_l (5))X(S)AS> AT.
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3. Asymptotic properties of the delay equation

The results in this section generalize some of the results by Raffoul in [9]. Let v : [8(¢),
fo]t — R be rd-continuous and let x(#) := x(t, %y, ) be the solution of (2.1) on [fy, o)y
with x(t) = w(f) on [8(f),to]v. Let [[§ll = sup [¢(¢)| for t € [§(y), )7, and define the
Banach space B = {¢ € C([0(ty),c0)1: ¢(t) — 0ast — co}, with

S:={p € B:g(t) = y(t) vt € [8(to).to]  }. (3.1)
In the following we assume
eq-1)(6t0) — 0 ast— oo, (3.2)

and take D : [ty, )1 — R to be the function

t (‘ a(6~'(1))

D(t)::I 1—p(r)a(s-?

to

7| e @Dl [ a7 @) as)ar
(3.3)

+Jt [a(871(s)) | As.

(1)
To enable the use of the contraction mapping theorem, we in fact assume there exists
a € (0,1) such that
D(t)<a, t€ [ty,)y. (3.4)
THEOREM 3.1. Assume T = R or T is an isolated time scale. If (3.2) and (3.4) hold and
000 =000, then every solution of (2.1) goes to zero at infinity.

Proof. Assume T is an isolated time scale. Fix v : [6(#), %] — R and define P: S — B by
(Pp)(t) :=y(t) for t <ty and for t = £,

t

(PO = ylto)e-as 1 (10) + | a(67(9)(5)As

()

e o (B10) L:t (e @)yas (3.5)

t 871 T
- L ( 1- :((T)a((gzz(r)) e-ao(57) L(r) a(S_I(S))¢(S)AS) A.

Then by Lemma 2.3, it suffices to show that P has a fixed point. We will use the contrac-
tion mapping theorem to show P has a fixed point. To show that (P¢)(t) — 0 as t — o,
note that the first and third terms on the right-hand side of (P¢)(t) go to zero by (3.2).
From (3.3) and (3.4) and the fact that ¢(¢) — 0 as t — co, we have that

t
9] |, la(67 @) 4= [9(0]a—0, 1 — . (3.6)
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Let € > 0 be given and choose t* € T so that
€
allgll |e—a-1 (8, T) | < > Vit >t (3.7)
for some large t* > T. For the same T it is possible to make

all o),y < (3.8)

oM

where [|¢l{5(1),00)r = supil¢p(t)], t € [6(T),00)7}. By (2.10) and (3.2), fort = T,
Jf (’ a(8~(r))

o \|1—u(m)a(d-1(1))
T ot )

“;+L>O1—mﬂa6W))

X LT(T) [a(671(s))¢(s) | As) AT

_JT< a(8-'(r))
~ e \ 1 =p(0)a(8-1(1))

X LT(T) [a(671(s))¢(s) | As) AT

+Li< | e—a@-1)( tT)|J )¢(s)|As>AT

< |e—a@-1(t,T) |||¢HJ ( (T)a((T))(T))

X LT(T) |a(87(s)) |As> At

! -1
+ 1ol 16(T),00)5 L (‘ - (( - ((T)1(T

<ale_aqs-(ET) | 1IPI+ alldll(5(T),00)

le—ae1)(t,7)| LT(T) [a(67"(s))¢(s) | AS) At

|e (8- 1)(t T)|

le_a@1)(t, T)e—as-1)(T,7) |

a(8-\(z
1—u(r)a(d- 1(‘r)

le_as-1)(T,7) |

le—aa1(t, T)|J 1(s))|As>Ar

<S4+f_¢
2 2 7
(3.9
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Hence (P¢)(t) — 0 as t — oo and therefore, P maps S into S. It remains to show that Pis a
contraction under the sup norm. Let x, y € S. Then

| (Px)(t) — (Py)(2)]

t
= LO (' 1—;4(1' 6 1(7)

+] 1a@ ) () - y(o) s
o(t)

le_ao-1)(t,7) |J 1(s))||x(s)—y(s)|As)A‘r

<lx—yll U{;t) [a(671(s)) | As

t a(6='(1)
+L0 (‘ - u(r)a(6- T)

< allx— yll.

|e_a(o-1)(t,T) |J 1(5))|A5>AT]

(3.10)

Therefore, by the contraction mapping principle [6, page 300], P has a unique fixed point
in S. This completes the proof in the isolated time scale case. See Raffoul [9] for the proof
of the T = Z case and a reference for a proof of the continuous case. O

Example 3.2. For any real number g > 1 and positive integer m, define

T={q¢"q ™. ..,q " 1,9.4%...}. (3.11)

We show if 0 < ¢ < q"/2m(q — 1), then for any initial function w(t), t € [g~™, 1]y, the
solution of the delay initial value problem

qu(t)=—qim§x<imt), te 1,007, (3.12)
x(t)=y(t), telqg™lly (3.13)

goes to zero as t — oo,

To obtain (3.12) from (2.1), take a(t) = ¢/t and 8(¢t) = g™t which implies a(6~!(¢)) =
c/q™t and 6%(t) = g~™. To use Theorem 3.1, we verify that conditions (3.2) and (3.4)
hold. Note that

e—as-1y(t,1) = 1_[ [1-s(g—1)a(g™s)] = (1—q ™c(qg—1))" (3.14)

se[L,t)r

for t = q". If ¢ € (0,q™/2m(q — 1)), then ¢ € (0,29™/(q— 1)) so that 1 — g ™c(q—1) €
(-1,1) and

lim e—a6-1)(£:1) =3g§c(1—q*mc(q—1))” =0. (3.15)
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Thus, (3.2) is satisfied. Now consider D(t) as defined in (3.3). We seek « € (0, 1) such that
D(t) <a, Vt € [1,00)7. Here we have ¢y = 1, u(t) = (¢ — 1)t, and

e o n(6T) = (1-q"c(q—1)"" (3.16)
for t = q", T = ¢* with k < n. For the second integral in D(t), note that
qu
[ @180 = qu-w s, (.17)

whence

quﬂt qim”t t c
[ e L)
q-mt quﬂt q—lt qu

[ty ™)a o

Jt a(67(s))As = (

mc
= _( - 1))
q" 1

which is independent of ¢. It follows that

mc me to¢ 1
D(t) = q—m(q — 1)+ q—m(q — I)J1 <qm—‘[ . T (q— I)Tc/que_a(gl)(t,T))AT

n—1

mc mc c
-2 g- 1+ (g 1)
g g %q’"q"—q"(q—l)c

(1-q™c(g-1)" " (q-1)g*

_me o pme e@mt e

= 1)+qu§)qm—(q—1)c(l q "e(q-1)

_me o omEq (g1’ 1-q"eq =) e
_qm(q 1)+ 7 —a=1) —q7(q-T) ((1—gmc(q-1))"-1)

_mc(g=1)  mcqg"(g—1)
= +
qm 1—cq™g-1)

(1-g"c(q-1)(1-(1-g"c(g—1))").

(3.19)
Consequently,
D(t) = %[2— (1-g"c(q-1)"] < %’ Vi=gq"e[l,00)r. (3.20)

Since 0 < ¢ < ¢"/2m(q — 1), by taking & := 2mc(q — 1)/q™ condition (3.4) is satisfied by
D(t)<a<1, Vte[l,oo)7. (3.21)

Thus (3.2) and (3.4) are met, so that by Theorem 3.1, the solution of the IVP (3.12),
(3.13) goes to zero as t — co.
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Example 3.3. Consider the time scale of harmonic numbers
T = {H H-ms1,...,Ho, Hi,...} (3.22)

for some m € N, where Hy := 0, H, := Z;Ll(l/j) and H_, := —H,, for n € N. We will
show that if

H
0<c< ﬁ, (3.23)

then for any initial function y(t), t € [H_,,,0]y, the solution of the delay initial value
problem

—m+1
Anx(H,) = —(”HL)%(HH_,”)A"H"_W ne N, (3.24)
m
x(Hﬂ) ZW(HVI)) n:())_l)---)_m) (325)

goes to zero as f — oo,

To get (3.24) from (2.1), take

a(t) = a(Hn) = (71—11:In7+1)c’ S(t) = 6(Hn) =Hy-m. (3-26)

It follows that

e a1 (Hp,0) = (1 - Hi> for n € N,. (3.27)

m

If we restrict ¢ € (0,2H,,),

n
. . Cc
lime_q(s-1(5,0) = lim (1 - H—) —o, (3.28)

m

satisfying (3.2). Simplifying (3.3),

- He ((741)c 1 e\ (s+1)c
D(t)_Jo ( Hp 1—(T+1)c/(r+1)Hm<1_H7) J,m Hy, AS>AT

Hi (s+1)¢
+ As
J'anm Hm
_om  cm 1 ’”(1_C>’”
“H, H, H,—c H, (3.29)
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forallt = H, € [0,)7. By choosing ¢ € (0,H,,/2m), D(t) < a:= 2cm/H,, < 1,Vt = H, €
[0, c0)T, satisfying (3.4). Thus by Theorem 3.1, for any given initial function v, the solu-
tion of the IVP (2.1), (3.25) goes to zero as t = H,, goes to infinity.

Example 3.4. Let T = {—mbh,...,—h,0,h,2h,...} where m € N, then (2.1) becomes
Apx(t) = —cx(t —hm), t€ hN, (3.30)

where Apx(t) := (x(t+h) — x(t))/h. Our results give that if

1
O0<c< —, 3.31
¢ 2mh ( )

then all solutions go to zero as t — co.

In this case, a(t) = ¢, 8(t) = t — mh, and § ' (t) = t + mh. It can be shown that
e a5 (t,0) = (1 —ch)"". (3.32)
Note for 0 < ch < 2, condition (3.2) is satisfied because
e_as1)(£,0) — 0 (3.33)
as t — co. It also can be shown that
D(t) = mhc +mhe(1 — |1 — ch|"™) < 2mhc (3.34)

if 0 < ch < 1. Hence (3.4) holds if 0 < ¢ < 1/2mh. Therefore, we use Theorem 3.1 to con-
clude that all solutions of (3.30) go to zero as t — co. It can be shown that if ¢ < 0, then
there is A > 1 such that x(¢) = A" is a solution of (3.30). However, x(t) does not approach
zero as t — co. Hence our lower estimate for ¢ is sharp. If m = 1, then it can be shown
that all solutions of (3.30) go to zero if 0 < ¢ < 1/h. If m = 2, our example shows that
if 0 < ¢ < 1/4h all solutions go to zero as t — co. It can be shown that if ¢ = 1/2h, then
there is a solution that does not go to zero as t — o. Next we give an elementary example
where T is the real interval [ —m, co), m > 0. Delay differential equations have been studied
extensively; for example, see [8].

Example 3.5. Let T = [—m, c0). For the delay differential equation
x'(t) = —cx(t —m), te[0,0), (3.35)
if 0 < ¢ < 1/2m, then all solutions x(¢) approach zero as t — co.

Note that (2.1) reduces to (3.35) if a(t) = ¢, §(t) =t —m,and T = [—m, o). It can be
shown that

e_aqo)(t,7) = <), D(t) =cm(2—e ). (3.36)

Note that ¢ > 0 implies e_,5-1(£,0) — 0 as £ — o0 and D(t) < 2cm < 1 if ¢ < 1/2m. Our
result follows from Theorem 3.1. Also note that if ¢ = 77/2m, then x(¢) = sin((7/2m)t) is
a solution that does not approach zero as t — 0. It is well known that if 0 < ¢ < 77/2m,
then all solutions of (3.35) approach zero as t — .
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4. Asymptotic stability of a nonlinear delay dynamic equation

In this section we consider, on arbitrary time scales, the nonlinear delay dynamic equa-
tion

xA(t) = _Jé(t) <izlﬁ(t>x(5)))As) te [t0>o°)1p (41)

where fi(t,x) for each fixed t € T is continuous with respect to x. In addition, we always
suppose

(H1) xfi(t,x) = 0and 2.\, fi(£,x) =0 © x =0, t € [ty, )T,

(H2) §: T — T is continuous and nondecreasing, with §(¢) < t and lim;_ §(f) = .
The initial condition associated with (4.1) takes the form

x(t) =y(t), te€[d(t),to], v is rd-continuous on [8(ty), o] (4.2)

Equation (4.1) is studied extensively in [7] in the case when T = R; indeed many of our
techniques in this section are motivated by those in [7]. See also a related discussion in
(3].
THEOREM 4.1. Assume there exists M > 0 such that for |c| < M,
() [5) Sr (/0 fitr,0)(x = 8()AT < E< 1, ¢ 40, for t € [t1,00)7;
(i) [ S 1 fi(m,0) (1 = 8(7))AT = oo;
(iii) |27, fi(r,0)l < XL ai(1)|c| where the a; are rd-continuous and nonnegative for
T > ty;

(iv) 1 25 filn, ) < XL filz,y) for |xl < y < M, 7 € [8(to), ).
Then for any 0 < € < M, thereis an y(€) > 0 such that for any rd-continuous initial function
v with w501, < H(€E), the solution x of (4.1), (4.2) satisfies

|x(t)| <e Vie[d(f), )y, }Ll‘{l”x(t) =0. (4.3)

In other words, the trivial solution of (4.1) is asymptotically stable.

Proof. Let € € (0,M] and t; € [ty, o)y be given. Also let p(f) := XiL  ai(t)(t — 8(¢)); by
(H2) and (iii), p € R*. Define n(€) := €/e,(t1,ty) and take an initial function y with
Il scto).t01r < H(€). Integrating (4.1) from t, to t € [to, 1 ]7, we get

t T n
x(t) = x(to) — L (Lm > ﬁ(f,x(s))As) Az, (4.4)

i=1

Taking absolute values,

S f(r.x(9)

i=1

01 = 1w+

to

T
J&(‘r)

As) At. (4.5)
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By property (iii),

|x(t)] < |x(to) |+J (J za, S)|AS>A‘[. (4.6)

Let X(¢) := max{|x(s)| : s € [8(to),t]}. Then rewriting (4.6), we have
%(t) < X(to) +J 2(0) S ai(1) (7 - 8(1))Ar. (4.7)
fo i=1
By Gronwall’s inequality [1, page 257],
x(t) <X(to)ey(t,t0), Vte [to, ). (4.8)

Therefore by the definition of 7(€) and the choice of v, it follows that X(¢,) < r(€) and
|x(t)] < X(t) < € for t € [ty,t1]7. Suppose there exists t* > f; such that x(¢*) = € and
x2(t*) = 0. Note the case when x(t*) = —€ and x2(¢*) < 0 is similar. By (4.1), there exists
t e [8(t*),t*)r such that x(¢) < 0. Integrating (4.1) from ¢ to t*, we obtain

B t* T n
€—x(f) = ‘J— (L( )Zﬁ(T,x(S))AS)AT. (4.9)
f 7)i=1
Since x(#) <0,
€= Lu*) (Lm l_zlf,»(r,x(s)) AS) Ar. (4.10)

By (H1) and (iv),

= J&(t*) (L(ﬂi_zl |fi(T’e)|AS> A (4.11)

so that

1slr (r—8(r)) if(r,e)Ar, (4.12)

€ Jo(tr)

which is a contradiction of (i). Therefore no such t* exists. Now suppose there exists
t* € [t1, )7 such that t* is right scattered, |x(¢)| < € for all t € [§(t),t*)7, and x(t*) €
(—€,€) but [x(o(t*))| = €. Without loss of generality, assume

x(o(t*)) = €. (4.13)

By (4.1),

Jt* (iﬁ(t*,x(s)))As<0. (4.14)
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Therefore by (H1) and (4.1), there exists £ € [8(¢t*),t* )y such that x(f) < 0. Integrate
(4.1) from f to o(t*) and use (4.13) to see that

o(t*)
€ <x(o(t*)) sx(a(t*))—x(f)Z—J, (

t

JT ifi(f,x(S))AS>AT. (4.15)

8() ;5

Thus, comparing the extremities,
a(t*) T
S0
8(t*) (1)

division by € yields

n o(t*) n
S fi(n,x(s) ’m) At < L( S f(ne)(r—6(0)Ar;  (4.16)

i=1 ) i=1

o(t*) n
<1 Y fme-sm)ar (4.17)
1

8(tv) <

which also contradicts (i) and provides the desired result. Now we show the limit of x(¢)
goes to zero as t — oo,

Case 1. Let x be a nonoscillatory function. Assume & < 1 but there exists a solution x of
(4.1) such that

lim x(t) # 0. (4.18)

t—o0

Since x is nonoscillatory, there exists T} > fo such that x(#)x(Ty) >0 for all t € [T, ).
Without loss of generality, assume x(¢) >0 for all t € [Ty, c0)y. From (4.1) and (HI1),
x2(t) < 0. Hence there exists a constant x* > 0 such that

limx(t) = x* (4.19)

t—o0

and there exists T* € T such that for all t € [T}, )7, x(t) € [x*,3x*/2]. Integrate (4.1)
from §~1(T*) to t to obtain

t T n
x(87U(T*)) —x(t) = J&*'(T*) (L( )Zﬁ(‘r,x(s))As) At. (4.20)
T)i=1

For t = 86 1(T*),
x(071(T*)) —x(t) < % (4.21)

but

Jt (JT iﬁ(f,x(s))As)Aert (JT ifi(T)X*)AS)AT

s \ o) (5 a1y \Jon) (=
(4.22)

_ Jt (ﬁﬁ(f,x*)(r—a(r)))m,

sty \/ 5
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which goes to o as t — oo by (H1) and properties (ii) and (iv). This contradicts (4.20)
and (4.21), so when x is nonoscillatory, the limit of x(#) goes to zero as t — .

Case 2. Now assume x is oscillatory. Pick € € (0,M] and T > f, such that

¢ n
J <zlfi(r,c)(r—8(r)))AT<E (4.23)
o \j= €
for0< |c| <€ and Vt € [T, ). Assume
x:=limsup | x(¢)| # 0. (4.24)
t— o0

Without loss of generality, we will assume

limsupx(t) =x # 0. (4.25)

t—00

Since the solution is oscillatory, there exists a sequence {t; }le in T such that lim; . t; =
oo, [x(a(tj))| — % < € as j — oo, and x*(¢;) = 0. Let f:= (%/2)(1 — &) and T5 > T, such
that |x(t)| < B+ X for t € [T3, 00). Further assume the t; were chosen such that §(¢;) > T3
and x(o(t;)) > % — 8. From (4.1) and the choice of ¢;, we see that

0=<x2(t;) = - LZ@) (izlf,-(tj,x(s))>As. (4.26)

By (H1), there exists t* € [§(¢j),t;]r such that x(t*) < 0. Then

2—B<x(o(t) =x(o(t;)) —x(t*) = jm’ (L(T S fi(r.x(s )

x—ﬁ<L )(J

Zfrx<s ‘ )

o(ty) 1
I jZf (1,84 %) (1 8(1)) At (427)

t) n

J > filr,p+x)(r - 8(1)) AT

8 5

<(B+x)¢
by (i). But then 8 > (1 —&)/(1+&))x, a contradiction of our selection of 3. Therefore
X = 0, in other words, the solution goes to zero as t — . 0

Example 4.2. Let T = Z, the set of integers, the delay function §(¢) := ¢ — m for some pos-
itive integer m, n = 1 and fi(¢,x) := kx for some constant k. Then the four conditions of
Theorem 4.1 are met if 0 < k < &/m(m+ 1) for any & € (0,1), whereby the trivial solution
of (4.1) is asymptotically stable.
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For T = Z and f; as above, (4.1) becomes the (delay) difference equation

x(t+1) =x(t) — i kx(s), ted. (4.28)

s=t—m

Fix¢ € (0,1),me N,and 0 < k < &/m(m+1). To check (i), note that
Lol
Z zkc('r —(t-m))=km(m+1)<é<1, tel. (4.29)
T=t—m

In (ii), > toklclm = oo. For (iii), | fi(7,c)| = klcl, so we take a;(7) = k > 0, which is rd-
continuous. Finally, (iv) is met as | fi(7,x)| = k|x| < ky = fi(7,y) for |x| < y < M with
T € [ty, ). Therefore the trivial solution of (4.1) is asymptotically stable by Theorem
4.1.

LEMMA 4.3. Assume x is a global solution for (4.1), (4.2). Then either x is bounded or x is
oscillatory.

Proof. 1f x is nonoscillatory, then there exists T > 0 such that for t > T, x does not change
sign. Without loss of generality, we suppose x(¢) >0 for t > T. By (H1), X7, fi(£,x(£)) >0
for t > T, which together with (4.1) yields that x*(¢) < 0 for large t. Therefore, x is strictly
decreasing on each interval, so by continuity, x is bounded. O

THEOREM 4.4. Assume there exists M >0 and t, > t such that for |c| = M,
(@) J5) S (V) filz,o)(r = 8()AT < E <1, for t € [t1,00)1;
(i) | 25, filt,o)| < X1y ai(7)|c| where the a; are rd-continuous and nonnegative for
T = to;
(i) | X7, filttu)| < 312, filtsy) for lul < y, t € [8(ty), o).
Then every solution x of (4.1), (4.2) for bounded initial function y is bounded and satisfies

limsup |x(£)| <M. (4.30)

{— o0

Proof. Appealing to assumption (ii), x(¢) exists and is finite for each t € [fy, %), so
that solutions of (4.1), (4.2) are global. Suppose x is an unbounded solution of (4.1),
(4.2) with bounded initial function y. By Lemma 4.3, x is also oscillatory. As in Case 2
of the proof of Theorem 4.1, without loss of generality there exists a sequence {t;}72; in
T such that lim; .« t; = 00, M < x(0(¢;)) with [x(s)| < x(o(¢;)) forall s € [62(t]) t]] and
x(0(tj)) — oo as j — co. Moreover there exist corresponding t;-" € [6(tj),tj]r satisfying
x(t]*) < 0. Then

a(tj) T n
x(a(tj)) =x(o(t;)) —x(t]) = —Jﬁ (L(T)Zﬁ(r,x(s))M) AT, (4.31)
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so that by (iii) we have

if,'(‘r,x(s)) ’ As) AT

i=1

T
I 8(1)

) S (4.32)
= L(r,») L(T)i:zlﬁ(T’x(a(tj)))AsAT.
But then
a(tj) T—6(T) n
E<lix< j&(tj) X(O'(tj)) i:zlﬁ(T)x(g(tj)))AT, (4.33)

a contradiction of (i). Therefore x must be bounded. To prove the last assertion of the
theorem, suppose

limsup |x(t)| = M > M. (4.34)

t—oc0

As in the proof of Theorem 4.1 there are two cases to consider, nonoscillatory and os-
cillatory. Assuming the former leads to a contradiction; in the latter case, there exists a
sequence {f;}¥, as before, which would likewise lead to a contradiction, whereby the
conclusion of the theorem holds. O

Finally we consider the general nonlinear delay dynamic equation

K1) = - Lt( ) (iﬁ(t,x(s)))Asg(t,s), t € [t9, ), (4.35)
) \i=1

where for simplicity we define

b b
L F(t,9)Ag(Ls) = J F(t,9)g™ (£,5)As (4.36)

and assume for each fixed ¢ € T that f(t,5)g%(t,s) is rd-continuous. Then it is straight-
forward to generalize Theorem 4.1 to get the following result.

THEOREM 4.5. Assume there exists M > 0 such that for |c| < M,
() fo) S, (1/0) fi(2,0)(g(1,7) = g(1,8(0))AT < E< 1, ¢ £ 0, for t € [t1,00);
(i) f, S 1 fi(r,0l(g(1,7) — g(1,8(1))) AT = oo;
(iii) | X7, fi(r,0)| < XL ai(1)|c| where the a; are rd-continuous and nonnegative for
T > to;
(iv) 125 filr,x)| < XLy filr,y) for |x| < y <M, T € [8(), )15
(V) g(t)t) >g(t16(t))’ te [tO)OO)T-
Then the trivial solution of (4.35) is asymptotically stable.

Example 4.6. Equation (2.1) is a special case of (4.35) if T is an isolated time scale.
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If T is an isolated time scale, then the delay dynamic equation (4.35) with f,(t,x) =
a(t)0%(t)x and fi(t,x) =0, 2 < i < n becomes

(1) = — Jt( a0 (908 1), (4.37)

where 7(t) < §(t) < t are delay functions and g is (the Heaviside function) defined by

0, 7(t) <s<d(t),
»S) = 4.38
8(b3) {1, s>0(t). (438)
Then (the Dirac delta function)
L =8
g (t,s) = u(s)’ ' (4.39)
0, otherwise.
Using the above we obtain
t
B0 == ans (098809
A ' A
= —a(t)d <(t,5)A
a(£)85 (1) me(s)g (£,)As
a(5(t)
- —a(t)éA(t)J x(s)g™ (t,5)As (4.40)
8(t)
1
- _ A
= —a(t)d (t)x(5(t))y(6(t))#(5(t))
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