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We provide a maximum norm analysis of an overlapping Schwarz method on nonmatch-
ing grids for second-order elliptic obstacle problem. We consider a domain which is the
union of two overlapping subdomains where each subdomain has its own independently
generated grid. The grid points on the subdomain boundaries need not match the grid
points from the other subdomain. Under a discrete maximum principle, we show that
the discretization on each subdomain converges quasi-optimally in the L* norm.
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uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

The Schwarz alternating method can be used to solve elliptic boundary value problems
on domains which consists of two or more overlapping subdomains. The solution is ap-
proximated by an infinite sequence of functions which results from solving a sequence of
elliptic boundary value problems in each of the subdomain.

Extensive analysis of Schwarz alternating method for continuous obstacle problem can
be found in [8, 9]. For convergence of discrete Schwarz algorithms of either additive or
multiplicative types, see for example, [1, 6, 7, 11].

In this paper, we are interested in the error analysis in the maximum norm for the
obstacle problem in the context of overlapping nonmatching grids: we consider a domain
Q which is the union of two overlapping subdomains where each subdomain has its own
triangulation. This kind of discretizations is very interesting as they can be applied to
solving many practical problems which cannot be handled by global discretizations. They
are earning particular attention of computational experts and engineers as they allow
the choice of different mesh sizes and different orders of approximate polynomials in
different subdomains according to the different properties of the solution and different
requirements of the practical problems.
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To prove the main result, we develop an approach which combines a geometrical con-
vergence result due to Lions [9] and a lemma which consists of estimating the error in
the L* norm between the continuous and discrete Schwarz iterates. The convergence or-
der is then derived making use of standard finite element L% -error estimate for elliptic
variational inequalities.

Quite a few works on maximum error analysis of overlapping nonmatching grid meth-
ods are known in the literature (cf,, e.g., [2, 3, 10]). However, to the best of our knowledge,
this is the first paper that provides an L*-error analysis for overlapping nonmatching
grids for variational inequalities.

Now we give an outline of the paper. In Section 2. we state the continuous alternating
Schwarz sequences for the obstacle problem, and define their respective finite element
counterparts in the context of nonmatching overlapping grids. Section 3. is devoted to
the L®-error analysis of the method.

2. The Schwarz method for the obstacle problem
We begin by laying down some definitions and classical results related to elliptic varia-

tional inequalities.

2.1. Elliptic obstacle problem. Let Q be a convex domain in R? with sufficiently smooth
boundary 0Q). We consider the bilinear form

alwy) = | (Vu-Tv)dx, (2.1)
the linear form
(fn) = | F) - v, (22)
the right-hand side
fel*(Q), (2.3)
the obstacle
v € W>*(Q) such that y > 0 on 9Q, (2.4)
and the nonempty convex set
K, ={veH' (Q):v=gonodQ, v <yonQ}, (2.5)

where g is a regular function defined on 9Q.
We consider the obstacle problem: find u € K such that

a(u,v—u) = (f,v—u), VveKkK,. (2.6)
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Let V), be the space of finite elements consisting of continuous piecewise linear functions.
The discrete counterpart of (2.6) consists of finding u;, € Kgp, such that

a(up,v—up) = (f,v—un) VveKg, (2.7)
where

Koy = {ve Vi:v =mg on 0Q, v < rpy on Q} (2.8)

7T, is an interpolation operator on 9(), and ry, is the usual finite element restriction oper-
ator on Q.

The lemma below establishes a monotonicity property of the solution of (2.6) with
respect to the obstacle and the boundary condition.

Lemma 2.1. Let (v,g); (¥,g) be a pair of data, and u = o(y,g); ti = o(§,§) the corre-
sponding solutions to (2.6). If y > ¥ and g > g, then o(y,g) = o(V,¢).

Proof. Let v = min(0,u — u). In the region where v is negative (v < 0), we have
U<U<y <y (2.9)

which means that the obstacle is not active for u. So, for that v, we have

a(u,v) = (f,v), (2.10)
utv=y (2.11)

SO
a(i,v) = (f,v). (2.12)

Subtracting (2.10) and (2.12) from each other, we obtain

a(ti—u,v) = 0. (2.13)
But,
alv,v) =a(u—1u,v) = —a(i—u,v) <0 (2.14)
$O
V=0 (2.15)
and consequently,
u=1u (2.16)
which completes the proof. O

The proof for the discrete case is similar.
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ProrosriTioN 2.2. Under the notations and conditions of the preceding lemma, we have

lu— il < llv =Vl + 1§ — gllL=a0)- (2.17)
Proof. Setting
O =y -Vl + g — &l (2.18)
we have
Wwa—WNsm%Iw—WI51/7+|Iw—¢llmm 219
U+l =Vl +g—glli~@a)
hence
Vv<y+O. (2.20)
On the other hand, we have
g=8+g-8g=g+Ig-¢l sg:+ g = &llz~o0) (221)
<g+lg—gli=@a) + lv — ¥l
$O
g <5+ (2.22)
Now, making use of Lemma 2.1, we obtain
o(y,g) <a(U+0,8+P)=0(y,g)+D (2.23)
or
o(y.g) —o(y,g) < ®. (2.24)
Similarly, interchanging the roles of the couples (y,g) and (¥,¢), we obtain
o(y,8)—o(y,g) <. (2.25)
The proof for the discrete case is similar. O
Remark 2.3. If y = ¥, then (2.17) becomes
=l < g — gllL=@0)- (2.26)

THEOREM 2.4 (cf. [5]). Under conditions (2.3) and (2.4), there exists a constant C indepen-
dent of h such that

| = up|| .~ (o) < CH?|Inh|?. (2.27)
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2.2. The continuous Schwarz sequences. Consider the model obstacle problem: find
u € Ky (g = 0) such that

a(u,v—u) = (f,v—u) VveKkK,. (2.28)
We decompose Q) into two overlapping polygonal subdomains Q; and Q, such that
Q=0,U, (2.29)
and u satisfies the local regularity condition
u/Q; € W2P(Q;); 2<p<oco. (2.30)

We denote by 0Q); the boundary of Q;, and I'; = dQ2; N ;. The intersection of T; and fj;
i # jis assumed to be empty.

Choosing u’ = v, we respectively define the alternating Schwarz sequences (u]*!) on
Q such that u*! € K solves

a (u v —u) > (f,v—ul) VveKk,

W' =u} onT,v=ujonT (2.31)
and (15*!) on O, such that u4*! € K solves
a (it v —udt) > (Hhv—udtl) Vvek,
uit' =ul*t onTy v=u/""onT,, (2.32)
where
fi=flon  alwy) = J(Vqu)dx. (2.33)
Qi

The following geometrical convergence is due to Lions [9].

2.3. Geometrical convergence.

THEOREM 2.5 (cf. [9]). The sequences (uf™); (uf*'); n = 0 produced by the Schwarz alter-
nating method converge geometrically to the solution u of the obstacle problem (2.28). More
precisely, there exist two constants ky, ky € (0,1) such that for alln = 0,

llr = e, < KR = il oy (2.34)
||u2 - u’21+1||L°°(Qz) = k?+1k3||uo - u||L°°(r2)’ '

where u; = u/Q;, i =1,2.

2.4. The discretization. For i = 1,2, let 7" be a standard regular and quasi-uniform fi-
nite element triangulation in Q;; h;, being the meshsize. We assume that the two trian-
gulations are mutually independent on Q; N Q; in the sense that a triangle belonging to
one triangulation does not necessarily belong to the other.
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Let Vy,, = V},(Q;) be the space of continuous piecewise linear functions on 7/ which
vanish on 9Q N 9Q;. For w € C(T;) we define

W) = {ve Vi :v=00n0Q;nadQ; v =m,(w) onT;}, (2.35)

where 7, denotes the interpolation operator on T;.

We also assume that the respective matrices resulting from the discretizations of prob-
lems (2.31) and (2.32), are M-matrices. (see [4]).

We now define the discrete counterparts of the continuous Schwarz sequences defined

in (2.31) and (2.32), respectively by: u};' € V;,?g") such that

ar (i v =) = (fov—ulf')  Vve Vi,

(2.36)
ultt <y, V<Y
and u5;! € V( ) such that
n+1 > n+1 \Vi V(M;';l)
a (uzh v—uht) = (fo, v —ulft) ve vy, (2.37)
ustt <y, V< 1y

Remark 2.6. As the two meshes ' and 7" are independent over the overlapping subdo-
mains, it is impossible to formulate a global approximate problem which would be the
direct discrete counterpart of problem (2.28).

3. L*-error analysis

This section is devoted to the proof of the main result of the present paper. To that end we

begin by introducing two discrete auxiliary sequences and prove a fundamental lemma.

3.1. Definition of two auxiliary sequences. For @), = ul), = rpy; i = 1,2, we define the
sequences (') such that 0! € Vh ! solves

a (@5 vy — o) = (iv -0 Vve V(uZ),

" (3.1)
iy <y, V<Y
n+l
and (wj;!) such that 0} € V;(l:" ) solves
n+l n+l (”fﬂ)
ar (@i v — i) = (fo,v — W) Vve Vv, (32)

wg‘;{l <y, v < .

Note that /! is the finite element approximation of u/*! defined in (2.31), (2.32).
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Notation 1. From now on, we will adopt the following notations:

-l = 11 Nz m)» L+ l2 =11 llzs(my)»
-l =11 llze s -z =11 llzeus (3.3)
TTh, = Tih, = T
The following lemma will play a key role in proving the main result of this paper.
LemmMa 3.1.

n+l n
[ttt =il < D0 Mt = @hll + 2 1) = @iyl
p=1 p=0

(3.4)
n+l n+l
s =g, < D0 [ = gyl + D0 [uf = iyl
p=0 p=1

Proof. The proof will be carried out by induction. In order to simplify the notations, we
will take hy = hy = h.
Indeed, for n = 1, using the discrete version of Remark 2.3, we get
[t = winlly = [ = @il + Nl —wiplly < g — @iyl + [wssg = massy, |
< [fur = iyl + [ul =y |y = [ur = @iyl + (14— ugsllys
12 = ugplly = |3 = waplly + [z = aylly = | = wyplly + (s = many [, (3.5)
= [Juy = wplly + [ur = uiy |y < |y = @yl + [l = lly

<13 = @yl + ||y = @iyl + 11 — 3,1

SO

1 0

llut = uylly = D 1uf =@yl + 2 llud = w3yl
p=1 p=0

(3.6)

1 1
[y = syl < D0 |15 = @hylly + D Mfuf = @yl
p=0 p=1

For n = 2, using the discrete version of Remark 2.3, we have

(|t = utylly = [Jug = wyll, + [lwhy, — udyll, < [lug = @lyll; + [0y — mwuy, |
< |t = wiylly + [y = gy [ < Mt = @fy |l + |y = w1,
< lui = wiylly + |z — @yl + e — @iyl + (13 — w3, ]

|13 = ], < [[3 = @iyl |, +1|w3y — w3]l, < |13 — w3y lly + [nud — mauady, |
<3 = wlly + i —uiy |y <[5 — w3yl +[lud — uill,

< [[53 = w3yl + 1wt = @iyl [y + 142 = wiylly + g = @iplly + 1[5 = 3,1,
(3.7)
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So

1

g = udy |l < D Mlud —@hylly + D [ud — b1l
=0

(3.8)
163 =], = D 11uh — whll, + > Muf — @iyl
Let us now suppose that
n n
e =gl < D llg = wlyll, + > [[uf — whyl;- (3.9)
Then, using the discrete version of Remark 2.3 again, we get
™t = il = ™ =+ ot =y = ™ =+ o = |
<|fui*! - “’1;1”1 +|uf —uby, || < ||ui*! - ‘U?}Tlnl + [ —uyll,
n
<[l = @]y + D Mluh — @byl + Z || — iy,
(3.10)
and consequently,
n+l n
et =l < D Ml — wfylly + D lud — wby ], (3.11)
- -0
Likewise, using the above estimate, we get
g™ =it < (™! = ], + [lwh ' = ub ], < [lus™ = w3l
+ [t - 7'[}1”1Jrl |y <|[lu*! - wzfzrl”z + |t - ”1H |,
< [ = @i, + [ = wfi ) < [lus = W], (3.12)
n+l
+ >0 [Juf — bl + Z 5 — iyl
p=1 p=0
Hence,
n+l n+1
™t =g, < D [ub — whyll, + Z 1} — wpyll;. (3.13)
p=0 [l

3.2. L*-error estimate.

TaEOREM 3.2. Let h = max(hy,h,). Then, there exists a constant C independent of both h
and n such that

i = ] o () < CHPlloghl’; = 1,2. (3.14)
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Proof. Let us give the proof for i = 1. The case i = 2 is similar.
Indeed, let k = max(ki, k> ), then

ler = i = Hloa = ]+ (o = ]
< =y ™ =
n+l n (315)
< —ul 4 D uf = @fll + D [uh — w5l
p=1 p=0

<& u’ —u|, +2(n+1)Ch* logh|?

where we have used Theorem 2.5, Lemma 3.1, and Theorem 2.4, respectively.
Now setting

" < h?, (3.16)

we obtain
lur — ulit||, < Ch?|loghl®, (3.17)
which is the desired error estimate. |

3.3. The equation case. The analysis developed above remains valid for the equation
problem (y = o). Consequently, the error estimate (3.14) becomes

i — it 1o ) < CH? [logh|®; i=1,2. (3.18)

Remark 3.3. The reduction constant k can be quite close to one if the overlapping region
is thin. Therefore, to ensure a good accuracy of the approximation, this region must be
large enough.
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