

# ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES

DOUGLAS R. ANDERSON

Received 30 January 2006; Revised 17 March 2006; Accepted 17 March 2006

We investigate the boundedness and asymptotic behavior of a first-order neutral delay dynamic equation on arbitrary time scales, extending some results from difference equations.

Copyright © 2006 Douglas R. Anderson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 1. Neutral delay dynamic equation

We consider, on arbitrary time scales, the neutral delay dynamic equation

$$[x(t) - p(t)x(k(t))]^{\Delta} + q(t)x(\ell(t)) = 0, \quad t \in [t_0, \infty)_{\mathbb{T}}, \quad (1.1)$$

where  $\mathbb{T}$  is a time scale unbounded above, the variable delays  $k, \ell : [t_0, \infty)_{\mathbb{T}} \rightarrow \mathbb{T}$  are nondecreasing with  $k(t), \ell(t) < t$  for all  $t \in [t_0, \infty)_{\mathbb{T}}$  such that  $\lim_{t \rightarrow \infty} k(t), \ell(t) = \infty$ . The coefficient functions  $p, q : \mathbb{T} \rightarrow \mathbb{R}$  are right-dense continuous with  $p$  bounded and  $q \geq 0$ . To clarify some notation, take  $\ell^{-1}(t) := \sup\{s : \ell(s) \leq t\}$ ,  $\ell^{-(n+1)}(t) = \ell^{-1}(\ell^{-n}(t))$  for  $t \in [\ell(t_0), \infty)_{\mathbb{T}}$ , and  $\ell^{n+1}(t) = \ell(\ell^n(t))$  for  $t \in [\ell^{-3}(t_0), \infty)_{\mathbb{T}}$ . For  $p$  and  $k$  above, let  $\Omega$  be the linear set of all functions given by

$$\Omega := \{x : \mathbb{T} \rightarrow \mathbb{R} : [x(t) - p(t)x(k(t))]^{\Delta} \in C_{rd}([t_0, \infty)_{\mathbb{T}}; \mathbb{R})\}; \quad (1.2)$$

solutions of (1.1) will belong to  $\Omega$ .

In the aftermath of Hilger's breakthrough paper [4], a rapidly diversifying body of literature has sought to unify, extend, and generalize ideas from discrete calculus, continuous calculus, and quantum calculus to arbitrary time-scale calculus, where a time scale is merely a nonempty closed set of real numbers. This paper illustrates this new understanding by extending some discrete results from difference equations to dynamic equations on time scales. In particular, (1.1) is studied in [6] with  $\mathbb{T} = \mathbb{Z}$  and  $p \equiv 0$ , and in [5] in the case when  $\mathbb{T} = \mathbb{Z}$  with variable  $p$ . Much of the organization of and motivation for this paper arise from [5, 6]. For more on delay dynamic equations, see, for

## 2 Neutral dynamic equations

example, [1]; for more on time scales, jump ahead to the appendix, or consult the recent texts [2, 3].

### 2. Vanishing of solutions at infinity

Recall that in this paper we consider only the case where the coefficient function  $p$  in (1.1) is nonconstant but bounded. Before stating the main results, we need the following lemma, which is a version of the integration-by-parts formula from continuous calculus, extended to arbitrary time scales; note the interesting dependence on the graininess function  $\mu$  in the last term.

LEMMA 2.1 (integration by parts). *For right-dense continuous functions  $q : \mathbb{T} \rightarrow \mathbb{R}$  and points  $a, t \in \mathbb{T}$ ,*

$$\int_a^t \left( q(s) \int_a^{\sigma(s)} q(z) \Delta z \right) \Delta s = \frac{1}{2} \left( \int_a^t q(s) \Delta s \right)^2 + \frac{1}{2} \int_a^t \mu(s) q^2(s) \Delta s. \quad (2.1)$$

*Proof.* Let

$$Q(t) := \frac{1}{2} \left( \int_a^t q(s) \Delta s \right)^2 + \frac{1}{2} \int_a^t \mu(s) q^2(s) \Delta s - \int_a^t \left( q(s) \int_a^{\sigma(s)} q(z) \Delta z \right) \Delta s. \quad (2.2)$$

Then  $Q(a) = 0$ , and

$$Q^\Delta(t) = \frac{1}{2} q(t) \left( \int_a^t q(s) \Delta s - \int_a^{\sigma(t)} q(s) \Delta s + \mu(t) q(t) \right). \quad (2.3)$$

Since  $\int_a^{\sigma(t)} = \int_a^t + \int_t^{\sigma(t)}$  and  $\int_t^{\sigma(t)} q(s) \Delta s = \mu(t) q(t)$  using [2, Theorem 1.75],  $Q^\Delta(t) \equiv 0$ . By the uniqueness of solutions to initial value problems,  $Q(t) \equiv 0$  and the conclusion follows.  $\square$

For example, if  $\mathbb{T} = \mathbb{R}$ , then the graininess is zero and the simple formula is

$$\int_a^t q(s) \left( \int_a^s q(z) dz \right) ds = \frac{1}{2} \left( \int_a^t q(s) ds \right)^2; \quad (2.4)$$

when  $\mathbb{T} = \mathbb{Z}$ , we have  $\mu(t) \equiv 1$  and

$$\sum_{k=a}^{t-1} \sum_{j=a}^k q_k q_j = \frac{1}{2} \left( \sum_{k=a}^{t-1} q_k \right)^2 + \frac{1}{2} \sum_{k=a}^{t-1} q_k^2. \quad (2.5)$$

On a quantum time scale,  $\mathbb{T} = \{1, r, r^2, r^3, \dots\}$  for some  $r > 1$ , so that the graininess is increasing. Interpret the points  $a$  and  $t$  as  $r^a$  and  $r^t$  for positive integers  $a$  and  $t$  with  $t > a$ . Then we have

$$\sum_{k=a}^{t-1} \sum_{j=a}^k r^{k+j} q(r^k) q(r^j) = \frac{1}{2} \left( \sum_{k=a}^{t-1} r^k q(r^k) \right)^2 + \frac{1}{2} \sum_{k=a}^{t-1} \left( r^k q(r^k) \right)^2. \quad (2.6)$$

As a final example, we consider the time scale  $\mathbb{T} = \{\sum_{n=1}^k 1/n : k \in \mathbb{N}\}$  of harmonic numbers, where the graininess is decreasing; the result may then be viewed as

$$\begin{aligned} & \sum_{k=a}^{t-1} \sum_{j=a}^k \frac{1}{(k+1)(j+1)} q \left( \sum_{n=1}^k \frac{1}{n} \right) q \left( \sum_{n=1}^j \frac{1}{n} \right) \\ &= \frac{1}{2} \left( \sum_{k=a}^{t-1} \frac{1}{k+1} q \left( \sum_{n=1}^k \frac{1}{n} \right) \right)^2 + \frac{1}{2} \sum_{k=a}^{t-1} \left( \frac{1}{k+1} q \left( \sum_{n=1}^k \frac{1}{n} \right) \right)^2 \end{aligned} \quad (2.7)$$

for positive integers  $a$  and  $t$  with  $t > a$ .

**THEOREM 2.2.** *Suppose there exists a constant  $\bar{p} \in (0, 1/2]$  such that  $|p(t)| \leq \bar{p}$  for all  $t \in \mathbb{T}$ , and that for large  $t \in \mathbb{T}$ ,*

$$0 < \bar{p} < \frac{1}{4}, \quad \int_{\ell(t)}^{\sigma(t)} q(s) \Delta s \leq \frac{3}{2} - 2\bar{p} \quad (2.8)$$

or

$$\frac{1}{2} \leq \bar{p} \leq \frac{1}{2}, \quad \int_{\ell(t)}^{\sigma(t)} q(s) \Delta s \leq \sqrt{2(1 - 2\bar{p})}. \quad (2.9)$$

Then every solution  $x \in \Omega$  of (1.1) is bounded.

*Proof.* Find  $t_1 \in \mathbb{T}$  large enough, say  $t_1 > k^{-1}(\ell^{-1}(t_0))$ , such that

$$\int_{\ell(t)}^{\sigma(t)} q(s) \Delta s \leq \begin{cases} A = \frac{3}{2} - 2\bar{p} : 0 < \bar{p} < \frac{1}{4}, \\ B = \sqrt{2(1 - 2\bar{p})} : \frac{1}{4} \leq \bar{p} \leq \frac{1}{2}, \end{cases} \quad t \in [t_1, \infty)_{\mathbb{T}}. \quad (2.10)$$

Suppose that, contrary to the asserted conclusion,  $x$  is an unbounded solution of (1.1). Set

$$z(t) := x(t) - p(t)x(k(t)), \quad t \in [t_0, \infty)_{\mathbb{T}}. \quad (2.11)$$

Then there exists  $t^* \in (k^{-1}(\ell^{-2}(t_1)), \infty)_{\mathbb{T}}$  large enough such that

$$|x(t^*)| > \frac{|z(\ell^{-2}(t_1))|}{2(1 - \bar{p})}, \quad |x(t^*)| > \sup \{ |x(t)| : t \in [t_0, t^*)_{\mathbb{T}} \}. \quad (2.12)$$

Then

$$|z(t^*)| = |x(t^*) - p(t^*)x(k(t^*))| > (1 - \bar{p})|x(t^*)| > \frac{1}{2}|z(\ell^{-2}(t_1))|. \quad (2.13)$$

Without loss of generality, assume that  $z(t^*) > 0$ . Then by (2.13), there exist points  $T \in \mathbb{T}$  and  $t^\dagger \in [\ell(T), T]_{\mathbb{T}}$  such that

$$z(T) = \max \{z(t) : t \in [\ell^{-2}(t_1), t^*]_{\mathbb{T}}\}, \quad z^\Delta(t^\dagger) > 0. \quad (2.14)$$

## 4 Neutral dynamic equations

Set

$$y(t) := z(t) - \bar{p} |x(t^*)| \quad \text{for } t \in [\ell(t_1), \infty)_{\mathbb{T}}. \quad (2.15)$$

It follows that

$$x(\ell(t)) = z(\ell(t)) + p(\ell(t))x(\ell(k(t))) \geq z(\ell(t)) - \bar{p} |x(t^*)| = y(\ell(t)), \quad t \in [t_1, T]_{\mathbb{T}} \quad (2.16)$$

(actually  $t \in [t_1, k^{-1}(\ell^{-1}(t^*))]_{\mathbb{T}}$ ) so that

$$y^{\Delta}(t) = z^{\Delta}(t) = -q(t)x(\ell(t)) \leq -q(t)y(\ell(t)), \quad t \in [t_1, T]_{\mathbb{T}}, \quad (2.17)$$

using (1.1), (2.11), and (2.13). Since  $\bar{p} \in (0, 1/2]$ ,

$$y(T) \geq z(t^*) - \bar{p} |x(t^*)| > (1 - 2\bar{p}) |x(t^*)| \geq 0, \quad (2.18)$$

but by the selection of  $t^{\dagger}$ , by (1.1), and (2.15),

$$0 < z^{\Delta}(t^{\dagger}) = -q(t^{\dagger})x(\ell(t^{\dagger})) \leq -q(t^{\dagger})y(\ell(t^{\dagger})), \quad z^{\Delta}(t^{\dagger}) = y^{\Delta}(t^{\dagger}). \quad (2.19)$$

Consequently  $y(\ell(t^{\dagger})) < 0$  and  $y(T) > 0$ , so that by the intermediate value theorem [2, Theorem 1.115], there exists  $t_2 \in [\ell(t^{\dagger}), T]_{\mathbb{T}}$  such that either  $y(t_2) < 0 < y^{\sigma}(t_2)$  or  $y(t_2) = 0$ . Either way,  $y(t_2)y^{\sigma}(t_2) \leq 0$ , hence there exists a real number  $\xi \in (0, 1]$  such that

$$y^{\sigma}(t_2) - \xi[y^{\sigma}(t_2) - y(t_2)] = y(t_2) + (1 - \xi)[y^{\sigma}(t_2) - y(t_2)] = 0. \quad (2.20)$$

From (2.17), we have  $y^{\Delta}(s) \leq q(s)|x(t^*)|$  for  $s \in [t_1, T]_{\mathbb{T}}$ ; integrating this from  $\ell(t)$  to  $t_2$  and using (2.20) and Theorem A.4, we obtain for  $t \in [t_2, T]_{\mathbb{T}}$  that

$$\begin{aligned} -y(\ell(t)) &= \int_{\ell(t)}^{t_2} y^{\Delta}(s) \Delta s + (1 - \xi)\mu(t_2)y^{\Delta}(t_2) \\ &\leq |x(t^*)| \left( \int_{\ell(t)}^{\sigma(t_2)} q(s) \Delta s - \xi\mu(t_2)q(t_2) \right). \end{aligned} \quad (2.21)$$

Combine this with (2.17) to get

$$y^{\Delta}(t) \leq |x(t^*)|q(t) \left( \int_{\ell(t)}^{\sigma(t_2)} q(s) \Delta s - \xi\mu(t_2)q(t_2) \right), \quad t \in [t_2, T]_{\mathbb{T}}. \quad (2.22)$$

In order to contradict (2.18), we now show that  $y(T) \leq (1 - 2\bar{p})|x(t^*)|$  in the following three cases.

Case 1. Assume that  $0 < \bar{p} < 1/4$  and  $\int_{\sigma(t_2)}^T q(s)\Delta s + \xi\mu(t_2)q(t_2) \leq 1$ . Then

$$\begin{aligned}
 y(T) &\stackrel{\text{FTC}}{=} \int_{\sigma(t_2)}^T y^\Delta(s)\Delta s + y^\sigma(t_2) \\
 &\stackrel{(2.20)}{=} \int_{\sigma(t_2)}^T y^\Delta(s)\Delta s + \xi\mu(t_2)y^\Delta(t_2) \\
 &\stackrel{(2.22)}{\leq} |x(t^*)| \left\{ \int_{\sigma(t_2)}^T q(s) \left( \int_{\ell(s)}^{\sigma(t_2)} q(z)\Delta z - \xi\mu(t_2)q(t_2) \right) \Delta s \right. \\
 &\quad \left. + \xi\mu(t_2)q(t_2) \left( \int_{\ell(t_2)}^{\sigma(t_2)} q(s)\Delta s - \xi\mu(t_2)q(t_2) \right) \right\}. \tag{2.23}
 \end{aligned}$$

By the property of delta integrals  $\int_a^b + \int_b^c = \int_a^c$ ,

$$\begin{aligned}
 y(T) &\leq |x(t^*)| \left\{ \int_{\sigma(t_2)}^T q(s) \left( \int_{\ell(s)}^{\sigma(s)} q(z)\Delta z - \int_{\sigma(t_2)}^{\sigma(s)} q(z)\Delta z - \xi\mu(t_2)q(t_2) \right) \Delta s \right. \\
 &\quad \left. + \xi\mu(t_2)q(t_2) \left( \int_{\ell(t_2)}^{\sigma(t_2)} q(s)\Delta s - \xi\mu(t_2)q(t_2) \right) \right\}. \tag{2.24}
 \end{aligned}$$

Multiplying terms, rearranging them, then using (2.10) and Lemma 2.1 yield

$$\begin{aligned}
 y(T) &\leq |x(t^*)| \left\{ A \int_{\sigma(t_2)}^T q(s)\Delta s - \frac{1}{2} \left( \int_{\sigma(t_2)}^T q(s)\Delta s \right)^2 - \frac{1}{2} \int_{\sigma(t_2)}^T \mu(s)q^2(s)\Delta s \right. \\
 &\quad \left. + \xi\mu(t_2)q(t_2) \left( A - \int_{\sigma(t_2)}^T q(s)\Delta s - \xi\mu(t_2)q(t_2) \right) \right\} \\
 &= |x(t^*)| \left\{ A \left[ \int_{\sigma(t_2)}^T q(s)\Delta s + \xi\mu(t_2)q(t_2) \right] - \frac{1}{2} \left( \int_{\sigma(t_2)}^T q(s)\Delta s + \xi\mu(t_2)q(t_2) \right)^2 \right. \\
 &\quad \left. - \frac{1}{2} \left( \int_{\sigma(t_2)}^T \mu(s)q^2(s)\Delta s + [\xi\mu(t_2)q(t_2)]^2 \right) \right\} \\
 &\leq |x(t^*)| \left( A \left[ \int_{\sigma(t_2)}^T q(s)\Delta s + \xi\mu(t_2)q(t_2) \right] - \frac{1}{2} \left( \int_{\sigma(t_2)}^T q(s)\Delta s + \xi\mu(t_2)q(t_2) \right)^2 \right). \tag{2.25}
 \end{aligned}$$

Let  $w(z) := Az - (1/2)z^2$ , where  $z = \int_{\sigma(t_2)}^T q(s)\Delta s + \xi\mu(t_2)q(t_2) \leq 1$ . Then  $w'(1) > 0$  by the choice of  $A$  and the fact that in this case  $\bar{p} < 1/4$ . As a result,

$$y(T) \leq |x(t^*)| \left( A - \frac{1}{2} \right) = |x(t^*)| (1 - 2\bar{p}). \tag{2.26}$$

## 6 Neutral dynamic equations

*Case 2.* Assume that  $0 < \bar{p} < 1/4$  and  $\int_{\sigma(t_2)}^T q(s) \Delta s + \xi \mu(t_2) q(t_2) > 1$ . Actually, from  $\xi \leq 1$ , we have in this case that  $\int_{t_2}^T q(s) \Delta s > 1$ . Note that

$$g(t) := \int_t^T q(s) \Delta s - 1, \quad t \in [t_2, T]_{\mathbb{T}}, \quad (2.27)$$

is a delta-differentiable and decreasing function, so that  $g$  is continuous [2, Theorem 1.16(i)] on  $t \in [t_2, T]_{\mathbb{T}}$ . Since  $g(t_2) > 0$  and  $g(T) = -1 < 0$ , by the intermediate value theorem [2, Theorem 1.115], there exists  $t_3 \in [t_2, T]_{\mathbb{T}}$  such that either  $g(t_3) = 0$  or  $g(t_3) > 0 > g^\sigma(t_3)$ . Either way,

$$\int_{\sigma(t_3)}^T q(s) \Delta s < 1 \leq \int_{t_3}^T q(s) \Delta s = \mu(t_3) q(t_3) + \int_{\sigma(t_3)}^T q(s) \Delta s, \quad (2.28)$$

therefore there exists a real number  $\eta \in (0, 1]$  such that

$$\int_{\sigma(t_3)}^T q(s) \Delta s + \eta \mu(t_3) q(t_3) = 1. \quad (2.29)$$

Recall from (2.17) that

$$y^\Delta(s) \leq q(s) |x(t^*)| \quad \text{for } s \in [t_1, T]_{\mathbb{T}}; \quad (2.30)$$

then

$$\begin{aligned} y(T) &\stackrel{(2.20)}{=} \int_{\sigma(t_2)}^T y^\Delta(s) \Delta s + \xi \mu(t_2) y^\Delta(t_2) \\ &\stackrel{\text{Theorem A.4}}{=} \xi \mu(t_2) y^\Delta(t_2) + \int_{\sigma(t_2)}^{t_3} y^\Delta(s) \Delta s + (1 - \eta) \mu(t_3) y^\Delta(t_3) \\ &\quad + \eta \mu(t_3) y^\Delta(t_3) + \int_{\sigma(t_3)}^T y^\Delta(s) \Delta s \\ &\stackrel{(2.22), (2.30)}{\leq} |x(t^*)| \left[ \xi \mu(t_2) q(t_2) + \int_{\sigma(t_2)}^{t_3} q(s) \Delta s + (1 - \eta) \mu(t_3) q(t_3) \right. \\ &\quad \left. + \eta \mu(t_3) q(t_3) \left( \int_{\ell(t_3)}^{\sigma(t_2)} q(s) \Delta s - \xi \mu(t_2) q(t_2) \right) \right. \\ &\quad \left. + \int_{\sigma(t_3)}^T q(s) \left( \int_{\ell(s)}^{\sigma(t_2)} q(z) \Delta z - \xi \mu(t_2) q(t_2) \right) \Delta s \right] \\ &= |x(t^*)| \left[ 1 \cdot \left( \int_{\sigma(t_2)}^{\sigma(t_3)} q(s) \Delta s - \eta \mu(t_3) q(t_3) \right) \right. \\ &\quad \left. + \int_{\sigma(t_3)}^T q(s) \left( \int_{\ell(s)}^{\sigma(t_2)} q(z) \Delta z \right) \Delta s + \eta \mu(t_3) q(t_3) \int_{\ell(t_3)}^{\sigma(t_2)} q(s) \Delta s \right]. \end{aligned} \quad (2.31)$$

Replace the number 1 above using (2.29) and simplify to get

$$\begin{aligned} y(T) &\leq |x(t^*)| \left[ \int_{\sigma(t_3)}^T q(s) \left( \int_{\ell(s)}^{\sigma(t_3)} q(z) \Delta z - \eta \mu(t_3) q(t_3) \right) \Delta s \right. \\ &\quad \left. + \eta \mu(t_3) q(t_3) \left( \int_{\ell(t_3)}^{\sigma(t_3)} q(s) \Delta s - \eta \mu(t_3) q(t_3) \right) \right]. \end{aligned} \quad (2.32)$$

Use the fact that  $\int_{\ell(s)}^{\sigma(t_3)} = \int_{\ell(s)}^{\sigma(s)} - \int_{\sigma(t_3)}^{\sigma(s)}$  and Lemma 2.1 to obtain

$$\begin{aligned} y(T) &\leq |x(t^*)| \left[ A \left( \int_{\sigma(t_3)}^T q(s) \Delta s + \eta \mu(t_3) q(t_3) \right) - \frac{1}{2} \left( \int_{\sigma(t_3)}^T q(s) \Delta s \right)^2 \right. \\ &\quad \left. - \frac{1}{2} \int_{\sigma(t_3)}^T \mu(s) q^2(s) \Delta s - \eta \mu(t_3) q(t_3) \int_{\sigma(t_3)}^T q(s) \Delta s - (\eta \mu(t_3) q(t_3))^2 \right] \\ &\stackrel{(2.29)}{\leq} |x(t^*)| \left( A - \frac{1}{2} \right) \stackrel{(2.10)}{\leq} |x(t^*)| (1 - 2\bar{p}). \end{aligned} \quad (2.33)$$

*Case 3.* Assume that  $1/4 \leq \bar{p} \leq 1/2$  and  $\int_{\sigma(t_2)}^T q(s) \Delta s + \xi \mu(t_2) q(t_2) \leq B$  for  $t \in \mathbb{T}$ . Then, starting as in Case 1,

$$\begin{aligned} y(T) &\leq |x(t^*)| \left\{ \int_{\sigma(t_2)}^T q(s) \left( \int_{\ell(s)}^{\sigma(t_2)} q(z) \Delta z - \xi \mu(t_2) q(t_2) \right) \Delta s \right. \\ &\quad \left. + \xi \mu(t_2) q(t_2) \left( \int_{\ell(t_2)}^{\sigma(t_2)} q(s) \Delta s - \xi \mu(t_2) q(t_2) \right) \right\} \\ &\stackrel{(2.10)}{\leq} |x(t^*)| \left\{ B \int_{\sigma(t_2)}^T q(s) \Delta s - \frac{1}{2} \left( \int_{\sigma(t_2)}^T q(s) \Delta s \right)^2 - \frac{1}{2} \int_{\sigma(t_2)}^T \mu(s) q^2(s) \Delta s \right. \\ &\quad \left. + \xi \mu(t_2) q(t_2) \left( B - \int_{\sigma(t_2)}^T q(s) \Delta s - \xi \mu(t_2) q(t_2) \right) \right\} \\ &\leq |x(t^*)| \left( B \left[ \int_{\sigma(t_2)}^T q(s) \Delta s + \xi \mu(t_2) q(t_2) \right] \right. \\ &\quad \left. - \frac{1}{2} \left[ \int_{\sigma(t_2)}^T q(s) \Delta s + \xi \mu(t_2) q(t_2) \right]^2 \right) \\ &\leq |x(t^*)| \frac{B^2}{2} = (1 - 2\bar{p}) |x(t^*)|. \end{aligned} \quad (2.34)$$

## 8 Neutral dynamic equations

As all three cases lead to the same contradiction, solutions  $x \in \Omega$  of (1.1) must be bounded.  $\square$

**THEOREM 2.3.** *Suppose there exists a constant  $\bar{p} \in [0, 1/2)$  such that  $|p(t)| \leq \bar{p}$  for all  $t \in \mathbb{T}$ , and*

$$\int_{t_0}^{\infty} q(s) \Delta s = \infty. \quad (2.35)$$

If

$$0 \leq \bar{p} < \frac{1}{4}, \quad \limsup_{t \rightarrow \infty} \int_{\ell(t)}^{\sigma(t)} q(s) \Delta s \leq \frac{3}{2} - 2\bar{p} \quad (2.36)$$

or

$$\frac{1}{4} \leq \bar{p} < \frac{1}{2}, \quad \limsup_{t \rightarrow \infty} \int_{\ell(t)}^{\sigma(t)} q(s) \Delta s \leq \sqrt{2(1 - 2\bar{p})}, \quad (2.37)$$

then every solution  $x \in \Omega$  of (1.1) goes to zero as  $t \rightarrow \infty$ .

*Proof.* Let  $x \in \Omega$  be a solution of (1.1). If  $x$  is nonoscillatory, assume that  $x$  is eventually positive. Again select  $z$  as in (2.11); then  $z$  is eventually nonincreasing using (1.1). If  $\bar{z} := \lim_{t \rightarrow \infty} z(t)$ , then  $\bar{z}$  is bounded by Theorem 2.2 and

$$\limsup_{t \rightarrow \infty} x(t) = \bar{z} + \limsup_{t \rightarrow \infty} p(t)x(k(t)) \leq \bar{z} + \bar{p} \limsup_{t \rightarrow \infty} x(t), \quad (2.38)$$

so that

$$0 \leq \limsup_{t \rightarrow \infty} x(t) \leq \frac{\bar{z}}{1 - \bar{p}} \implies \bar{z} \geq 0. \quad (2.39)$$

But from (1.1), we have

$$\int_{t_0}^{\infty} q(t)x(\ell(t)) \Delta t = z(t_0) - \bar{z} < \infty, \quad (2.40)$$

which in view of (2.35) means that

$$0 = \liminf_{t \rightarrow \infty} x(t) = \bar{z} + \liminf_{t \rightarrow \infty} (p(t)x(k(t))) \geq \bar{z} - \bar{p} \limsup_{t \rightarrow \infty} x(t) \geq \frac{1 - 2\bar{p}}{1 - \bar{p}} \bar{z} \geq 0. \quad (2.41)$$

Thus  $\bar{z} = 0$  and  $\lim_{t \rightarrow \infty} x(t) = 0$ .

If  $x$  is oscillatory, by Theorem 2.2  $x$  is also bounded. Set  $\bar{x} := \limsup_{t \rightarrow \infty} |x(t)|$ . Then  $0 \leq \bar{x} < \infty$  and  $\bar{z} = \limsup_{t \rightarrow \infty} |z(t)| \geq (1 - \bar{p})\bar{x}$ ; without loss of generality, assume that

$$\bar{z} := \limsup_{t \rightarrow \infty} z(t) \geq (1 - \bar{p})\bar{x}. \quad (2.42)$$

If  $\bar{x} > 0$ , then for any  $\epsilon \in (0, (1 - 2\bar{p})\bar{x})$ , there exist constants  $A \in (0, 3/2 - 2\bar{p})$  and  $B \in (0, \sqrt{2(1 - 2\bar{p})})$  and  $T \in \mathbb{T}$  such that  $|x(t)| < \bar{x} + \epsilon$  for  $t \in (k^{-1}(\ell^{-1}(T)), \infty)_{\mathbb{T}}$  and

$$\int_{\ell(t)}^{\sigma(t)} q(s) \Delta s \leq \begin{cases} A : 0 < \bar{p} < \frac{1}{4}, \\ B : \frac{1}{4} \leq \bar{p} < \frac{1}{2}, \end{cases} \quad t \in [T, \infty)_{\mathbb{T}}. \quad (2.43)$$

If

$$y(t) := z(t) - (\bar{x} + \epsilon)\bar{p} \quad \text{for } t \geq \ell(T), \quad (2.44)$$

then

$$-x(\ell(t)) = -z(\ell(t)) - p(\ell(t))x(k(\ell(t))) \leq -z(\ell(t)) + (\bar{x} + \epsilon)\bar{p} = -y(\ell(t)), \quad t \geq T. \quad (2.45)$$

Using (1.1) and (2.44), we have

$$y^{\Delta}(t) = z^{\Delta}(t) = -q(t)x(\ell(t)) \leq -q(t)y(\ell(t)), \quad t \geq T. \quad (2.46)$$

Since  $z^{\Delta}$  is oscillatory,  $y^{\Delta}$  is too, so there exists an increasing sequence  $\{t_n \in \mathbb{T}\}$  such that  $t_n > k^{-1}(\ell^{-2}(T))$ ,  $\lim_{n \rightarrow \infty} t_n = \infty$ ,  $y(\sigma(t_n)) \rightarrow \bar{z} - (\bar{x} + \epsilon)\bar{p} > 0$  as  $n \rightarrow \infty$  by (2.42) and (2.46), and  $y^{\Delta}(t_n) \geq 0$ . Consequently,  $0 \leq y^{\Delta}(t_n) \leq -q(t_n)y(\ell(t_n))$  so that

$$y(\ell(t_n)) \leq 0, \quad y^{\sigma}(t_n) > 0, \quad n \in \mathbb{N}. \quad (2.47)$$

Hence there exists  $t^{\dagger} \in [\ell(t_n), t_n]_{\mathbb{T}}$  such that either  $y(t^{\dagger}) < 0 < y^{\sigma}(t^{\dagger})$  or  $y(t^{\dagger}) = 0$ . Either way,  $y(t^{\dagger})y^{\sigma}(t^{\dagger}) \leq 0$ , and there exists a real number  $\xi \in (0, 1]$  such that

$$y^{\sigma}(t^{\dagger}) - \xi[y^{\sigma}(t^{\dagger}) - y(t^{\dagger})] = y(t^{\dagger}) + (1 - \xi)[y^{\sigma}(t^{\dagger}) - y(t^{\dagger})] = 0. \quad (2.48)$$

From (2.46), we have

$$y^{\Delta}(t) \leq -q(t)y(\ell(t)) \leq q(t)(\bar{x} + \epsilon), \quad t \in [T, t_n]_{\mathbb{T}}, \quad (2.49)$$

which combined with the fundamental theorem and (2.48) yields for  $t \in [t^{\dagger}, t_n]_{\mathbb{T}}$  that

$$\begin{aligned} -y(\ell(t)) &= \int_{\ell(t)}^{t^{\dagger}} y^{\Delta}(s) \Delta s + (1 - \xi)\mu(t^{\dagger})y^{\Delta}(t^{\dagger}) \\ &\leq (\bar{x} + \epsilon) \left( \int_{\ell(t)}^{\sigma(t^{\dagger})} q(s) \Delta s - \xi\mu(t^{\dagger})q(t^{\dagger}) \right). \end{aligned} \quad (2.50)$$

Put this into (2.46) to obtain

$$y^{\Delta}(t) \leq (\bar{x} + \epsilon)q(t) \left( \int_{\ell(t)}^{\sigma(t^{\dagger})} q(s) \Delta s - \xi\mu(t^{\dagger})q(t^{\dagger}) \right), \quad t \in [t^{\dagger}, t_n]_{\mathbb{T}}. \quad (2.51)$$

Set

$$\lambda = \begin{cases} \max \left\{ A - \frac{1}{2}, \frac{1}{2} \right\} : 0 \leq \bar{p} < \frac{1}{4}, \\ \frac{B^2}{2} : \frac{1}{4} \leq \bar{p} < \frac{1}{2}; \end{cases} \quad (2.52)$$

then  $\lambda < 1 - 2\bar{p}$ . Notice that by replacing  $|x(t^*)|$  by  $\bar{x} + \epsilon$  in the proof of Theorem 2.2, we arrive at  $y(t_n) \leq \lambda(\bar{x} + \epsilon)$ . But then by (2.44),  $z(t_n) \leq (\bar{x} + \epsilon)(\lambda + \bar{p})$ . Letting  $n \rightarrow \infty$  and  $\epsilon \rightarrow 0$  results in

$$\bar{z} = \limsup_{n \rightarrow \infty} z(t_n) \leq (\lambda + \bar{p})\bar{x} < (1 - \bar{p})\bar{x}, \quad (2.53)$$

a contradiction of (2.42). Therefore  $\bar{x} = \limsup_{t \rightarrow \infty} |x(t)| = 0$ , so that any solution  $x \in \Omega$  of (1.1) goes to zero.  $\square$

## Appendix

### A. Time scales

The definitions below merely serve as a preliminary introduction to the time-scale calculus; they can be found in the context of a much more robust treatment than is allowed here in the texts [2, 3] and the references therein.

*Definition A.1.* Define the forward (backward) jump operator  $\sigma(t)$  at  $t$  for  $t < \sup \mathbb{T}$  (resp.,  $\rho(t)$  at  $t$  for  $t > \inf \mathbb{T}$ ) by

$$\sigma(t) = \inf \{\tau > t : \tau \in \mathbb{T}\}, \quad (\rho(t) = \sup \{\tau < t : \tau \in \mathbb{T}\}), \quad \forall t \in \mathbb{T}. \quad (\text{A.1})$$

Also define  $\sigma(\sup \mathbb{T}) = \sup \mathbb{T}$  if  $\sup \mathbb{T} < \infty$ , and  $\rho(\inf \mathbb{T}) = \inf \mathbb{T}$  if  $\inf \mathbb{T} > -\infty$ . Define the graininess function  $\mu : \mathbb{T} \rightarrow \mathbb{R}$  by  $\mu(t) = \sigma(t) - t$ .

Throughout this work, the assumption is made that  $\mathbb{T}$  is unbounded above and has the topology that it inherits from the standard topology on the real numbers  $\mathbb{R}$ . Also assume throughout that  $a < b$  are points in  $\mathbb{T}$  and define the time scale interval  $[a, b]_{\mathbb{T}} = \{t \in \mathbb{T} : a \leq t \leq b\}$ . The jump operators  $\sigma$  and  $\rho$  allow the classification of points in a time scale in the following way. If  $\sigma(t) > t$ , the point  $t$  is right-scattered, while if  $\rho(t) < t$  then  $t$  is left-scattered. If  $\sigma(t) = t$ , the point  $t$  is right-dense; if  $t > \inf \mathbb{T}$  and  $\rho(t) = t$ , then  $t$  is left-dense.

*Definition A.2.* Fix  $t \in \mathbb{T}$  and let  $y : \mathbb{T} \rightarrow \mathbb{R}$ . Define  $y^{\Delta}(t)$  to be the number (if it exists) with the property that given that  $\epsilon > 0$ , there is a neighbourhood  $U$  of  $t$  such that for all  $s \in U$ ,

$$| [y(\sigma(t)) - y(s)] - y^{\Delta}(t)[\sigma(t) - s] | \leq \epsilon |\sigma(t) - s|. \quad (\text{A.2})$$

Call  $y^{\Delta}(t)$  the (delta) derivative of  $y$  at  $t$ .

*Definition A.3.* If  $F^\Delta(t) = f(t)$ , then define the (Cauchy) delta integral by

$$\int_a^t f(s)\Delta s = F(t) - F(a). \quad (\text{A.3})$$

The following theorem is due to Hilger [6].

**THEOREM A.4.** *Assume that  $f : \mathbb{T} \rightarrow \mathbb{R}$  and let  $t \in \mathbb{T}$ .*

- (1) *If  $f$  is differentiable at  $t$ , then  $f$  is continuous at  $t$ .*
- (2) *If  $f$  is continuous at  $t$  and  $t$  is right-scattered, then  $f$  is differentiable at  $t$  with*

$$f^\Delta(t) = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t}. \quad (\text{A.4})$$

- (3) *If  $f$  is differentiable and  $t$  is right-dense, then*

$$f^\Delta(t) = \lim_{s \rightarrow t} \frac{f(t) - f(s)}{t - s}. \quad (\text{A.5})$$

- (4) *If  $f$  is differentiable at  $t$ , then  $f(\sigma(t)) = f(t) + \mu(t)f^\Delta(t)$ .*

*Definition A.5.* A function  $f : \mathbb{T} \rightarrow \mathbb{R}$  is right-dense continuous (denoted by  $f \in C_{rd}(\mathbb{T}; \mathbb{R})$ ) provided that  $f$  is continuous at every right-dense point  $t \in \mathbb{T}$ , and  $\lim_{s \rightarrow t^-} f(s)$  exists and is finite at every left-dense point  $t \in \mathbb{T}$ .

According to [2, Theorem 1.74], every right-dense continuous function has a delta antiderivative. This implies that the delta definite integral of any right-dense continuous function exists.

## References

- [1] D. R. Anderson, R. J. Krueger, and A. C. Peterson, *Delay dynamic equations with stability*, Advances in Difference Equations **2006** (2006), Article ID 94051, 19 pages.
- [2] L. Berezansky and E. Braverman, *Oscillation of a logistic difference equation with several delays*, Advances in Difference Equations **2006** (2006), Article ID 82143, 12 pages.
- [3] M. Bohner and A. C. Peterson, *Dynamic Equations on Time Scales, An Introduction with Applications*, Birkhäuser, Massachusetts, 2001.
- [4] M. Bohner and A. C. Peterson (eds.), *Advances in Dynamic Equations on Time Scales*, Birkhäuser, Massachusetts, 2003.
- [5] L. H. Erbe, H. Xia, and J. S. Yu, *Global stability of a linear nonautonomous delay difference equation*, Journal of Difference Equations and Applications **1** (1995), no. 2, 151–161.
- [6] S. Hilger, *Analysis on measure chains—a unified approach to continuous and discrete calculus*, Results in Mathematics **18** (1990), no. 1-2, 18–56.

Douglas R. Anderson: Department of Mathematics and Computer Science, Concordia College, Moorhead, MN 56562, USA

E-mail address: andersod@cord.edu

## Special Issue on Intelligent Computational Methods for Financial Engineering

### Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

|                        |                  |
|------------------------|------------------|
| Manuscript Due         | December 1, 2008 |
| First Round of Reviews | March 1, 2009    |
| Publication Date       | June 1, 2009     |

### Guest Editors

**Lean Yu**, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; [yulean@amss.ac.cn](mailto:yulean@amss.ac.cn)

**Shouyang Wang**, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; [sywang@amss.ac.cn](mailto:sywang@amss.ac.cn)

**K. K. Lai**, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; [mskklai@cityu.edu.hk](mailto:mskklai@cityu.edu.hk)