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Using nonnegative definite Lyapunov functionals, we prove general theorems for the
boundedness of all solutions of a functional dynamic equation on time scales. We ap-
ply our obtained results to linear and nonlinear Volterra integro-dynamic equations on
time scales by displaying suitable Lyapunov functionals.
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1. Introduction

In this paper, we consider the boundedness of solutions of equations of the form
x2(t) = G(t,x(s); 0 <s < t) := G(t,x(+)) (1.1)

on a time scale T (a nonempty closed subset of real numbers), where x € R" and G:
[0,00) X R" — R" is a given nonlinear continuous function in ¢ and x. For a vector x € R”,
we take ||x|| to be the Euclidean norm of x. We refer the reader to [8] for the continuous
case, thatis, T = R.

In [6], the boundedness of solutions of

x(t) = G(t,x(t)), x(to) =x0, th=0,x €R (1.2)

is considered by using a type I Lyapunov function. Then, in [5], the authors considered
nonnegative definite Lyapunov functions and obtained sufficient conditions for the ex-
ponential stability of the zero solution. However, the results in either [5] or [6] do not
apply to the equations similar to

X = a(t)x+JtB(t,s)f(x(s))As, (1.3)
0
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2 Boundedness in functional dynamic equations on time scales

which is the Volterra integro-dynamic equation. In particular, we are interested in ap-
plying our results to (1.3) with f(x) = x", where n is positive and rational. The authors
are confident that there is nothing in the literature that deals with the qualitative analysis
of Volterra integro-dynamic equations on time scales. Thus, this paper is going to play a
major role in any future research that is related to Volterra integro-dynamic equations.
Let ¢ : [0,f5] — R" be continuous, we define |¢| = sup{[[¢p(¢)]l : 0 <t < t,}.
We say that solutions of (1.1) are bounded if any solution x(t,t,¢) of (1.1) satisfies

lIx(t;t0,9) || < CI¢l,10), V=1, (1.4)

where C is a constant and depends on #,. Moreover, solutions of (1.1) are uniformly
bounded if C is independent of ¢;. Throughout this paper, we assume 0 € T and [0, ) =
{teT:0<t< o0}

Next, we generalize a “type I Lyapunov function” which is defined by Peterson and
Tisdell [6] to Lyapunov functionals. We say V : [0,00) X R" — [0, ) is a type I Lyapunov
functional on [0, 00) X R" when

i (x:) + Ui()), (1.5)

i=1

where each V;: R — R and U;: [0,00) — R are continuously differentiable. Next, we ex-
tend the definition of the derivative of a type I Lyapunov function to type I Lyapunov
functionals. If V is a type I Lyapunov functional and x is a solution of (1.1), then (2.11)
gives

A

V(0] =S (Vi) + Ui(0)"

M

i=1

(1.6)

n

= J: VV[x(t)+hu(t)G(t,x(+))] - G(t,x(-))dh + Z UA(t),

i=1

where V = (9/0x1,...,0/0x,) is the gradient operator. This motivates us to define V :
[0,00) X R" — R by

Vitx) = [Vt,0]% (1.7)

Continuing in the spirit of [6], we have

i Vi(xi+u(t)Gi(t(,;;(.))) - Vi(x:) +iUiA(t)> when u(¢) £ 0,
Vitx)=1"" = (1.8)
Vix) - G(t,x(+)) + Z UA(1), when pu(t) = 0.

i=1

We also use a continuous strictly increasing function W; : [0, ) — [0, 00) with W;(0) = 0,
Wi(s) >0,if s >0 foreachi € Z".
We make use of the above expression in our examples.
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Example 1.1. Assume ¢(t,s) is right-dense continuous (rd-continuous) and let

V(t,x) =x2+J(:¢(t,s)W(|x(s)|)As. (1.9)

If x is a solution of (1.1), then we have by using (2.10) and Theorem 2.2 that

V(t,x) =2x- G(t,x(+)) + u(t)G* (£, x(-))

t (1.10)
+[ st eaw (o Dastglonw(x0)),

where ¢2(t,s) denotes the derivative of ¢ with respect to the first variable.

We say that a type I Lyapunov functional V : [0,00) X R" — [0, c0) is negative definite
if V(t,x) >0 for x # 0, x € R", V(t,x) = 0 for x = 0 and along the solutions of (1.1), we
have V (t,x) < 0. If the condition V(t,x) < 0 does not hold for all (£,x) € T x R", then the
Lyapunov functional is said to be nonnegative definite.

In the case of differential equations or difference equations, it is known that if one can
display a negative definite Lyapunov function, or functionals, for (1.1), then bounded-
ness of all solutions follows. In [8], the second author displayed nonnegative Lyapunov
functionals and proved boundedness of all solutions of (1.1), in the case T = R.

2. Calculus on time scales

In this section, we introduce a calculus on time scales including preliminary results. An
introduction with applications and advances in dynamic equations are given in [2, 3].
Our aim is not only to unify some results when T = R and T = Z but also to extend them
for other time scales such as hZ, where h > 0, gN°, where g > 1 and so on. We define the
forward jump operator o on T by

o(t):=inf{s>t:se€T}teT (2.1)

for all t € T. In this definition, we put inf(&) = sup T. The backward jump operator p on
T is defined by

p(t):=sup{s<t:seT}teT (2.2)

forallt € T.If o(t) > t, we say t is right-scattered, while if p(t) < t, we say ¢ is left-scattered.
If o(t) = t, we say t is right-dense, while if p(t) = t, we say t is left-dense. The graininess
function p: T — [0, 00) is defined by

u(t) = o(t)—t. (2.3)

T has left-scattered maximum point m, then T* = T — {m}. Otherwise, T* = T. Assume
x: T — R”. Then we define x*(¢) to be the vector (provided it exists) with the property
that given any € > 0, there is a neighborhood U of t such that

|[xi(o(£)) = xi(s)] —xP () [a(t) —s] | <€|o(t)—s] (2.4)
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foralls € U and for each i = 1,2,...,n. We call x2(t) the delta derivative of x(t) at t, and it

turns out that x2(t) = x'(t) if T = R and x2(¢) = x(t+ 1) —x(¢) if T = Z. If GA(¢) = g(¢),
then the Cauchy integral is defined by

jt 2(s)As = G(1) - Gla). (2.5)

It can be shown that if f: T — R" is continuous at t € T and ¢ is right-scattered, then

A1) = , (2.6)

while if ¢ is right-dense, then

fA@) = f( f, (2.7)

—S

if the limit exists. If f,g : T — R" are differentiable at t € T, then the product and quotient
rules are as follows:

(f)2(t) = fA(Ng(t) + f7 (g™ (¢ (2.8)
A\ g - fFgh) .
(g) (= it g(H)g° (1) £0. (2.9)

If f is differentiable at ¢, then

Fo() = F()+u(t) fA(), where f7 = fou. (2.10)

We say f:T — R is rd-continuous provided f is continuous at each right-dense point
t € T and whenever t € T is left-dense, lim;_,- f(s) exists as a finite number. We say that
p: T — Ris regressive provided 1+ u(t)p(t) # 0 for all + € T. We define the set R of all
regressive and rd-continuous functions. We define the set R* of all positively regressive
elements of R by R* = {p e R: 1+pu(t)p(t) >0 forall t € T}.

The following chain rule is due to Poetzsche and the proof can be found in [2, Theorem
1.90].

TueEOREM 2.1. Let f : R — R be continuously differentiable and suppose g : T — R is delta
differentiable. Then f o g: T — R is delta differentiable and the formula

(fog)™(t) = {J £ ((6) + (g () dh [ g* (1 (2.11)

holds.

We use the following result [2, Theorem 1.117] to calculate the derivative of the Lya-
punov function in further sections.

THEOREM 2.2. Let tyg € T* and assume k : T X T* — R is continuous at (t,t), wheret € T*
with t > ty. Also assume that k(t,-) is rd-continuous on [ty,o(t)]. Suppose for each € >0,
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there exists a neighborhood of t, independent U of T € [ty,0(t)], such that
|k(o(t),) —k(s,7) —k2(t,7)(0(t) —s) | <€|a(t)—s| VseU, (2.12)

where k® denotes the derivative of k with respect to the first variable. Then

t t
gt):=| k(t,r)Ar implies g*(t) = | kA(t,1)Ar+k(o(t),1);
to to
, . (2.13)
h(t) :=J k(t,r)AT  implies kA1) =J kA (1, 1) AT — k(0 (6), ).
t t
We apply the following Cauchy-Schwarz inequality in [2, Theorem 6.15] to prove
Theorem 4.1.

THEOREM 2.3. Let a,b € T. For rd-continuous f,g: [a,b] — R,

Lb | f()g(t)| At < \J {Lb | f(1) IzAt} { Lb lg(t)] zAt}. (2.14)

If p: T ~ R is rd-continuous and regressive, then the exponential function e,(t,t) is
for each fixed ty € T the unique solution of the initial value problem

X = p(t)x, x(ty) =1 (2.15)
on T. Under the addition on R defined by

(peq)t) = p(D) +q(O) +u()p(H)g(t), teT, (2.16)

is an Abelian group (see [2]), where the additive inverse of p, denoted by ep, is defined
by

(ep)(t) = _p) oy (2.17)

C L+u()p(t)’
We use the following properties of the exponential function e,(t,s) which are proved
in Bohner and Peterson [2].

THEOREM 2.4. If p,q € R, then for t,s,r,th €T,
(i) ep(t,t) =1 and ey(t,s) = 1;
(i) ep(a(t),s) = (L+u(t)p(t))ey(t,s);
(iil) 1/ep(t,s) = eap(t,s) = ey(s,t);
(iv) ep(t,s)/eq(t,s) = epoq(tss);
(V) ep(t,5)eq(t,s) = epaq(t,s).

Moreover, the following can be found in [1].

THEOREM 2.5. Letty € T.
(i) If p € R*, then ey(t,t9) >0 forall t € T.
(ii) If p = 0, then e, (t,ty) = 1 for all t > t. Therefore, ecp(t,to) < 1 forall t > t,.
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3. Boundedness of solutions

In this section, we use a nonnegative definite type I Lyapunov functional and establish
sufficient conditions to obtain boundedness of solutions of (1.1).

THEOREM 3.1. Let D C R™. Suppose that there exists a type I Lyapunov functional V : [0, o)
X D~ [0,00) such that for all (t,x) € [0,c0) X D,

t
LW (Ixl) < V(Ex) < W (1x]) +As Lgbl(t,s)Wg( 1x(s)| ) As, (3.1)

Wy (Ix]) = A3 [ o (t,5) Ws (| x(s) | ) As+ L

V(t,x) < 1+‘u(t)()t3/)l2) ,

(3.2)

where A1, A2, A3, and L are positive constants and ¢;(t,s) = 0 is rd-continuous function for
0<s<t<oo,i=1,2such that

Wa(Ixl) = Wa(lx]) +L (@1t Ws([x(9)]) = go(t9)Ws([x(s)]))As <y, (3.3)

where y = 0. If fotgbl(t,s)As < B for some B = 0, then all solutions of (1.1) staying in D are
uniformly bounded.

Proof. Let x be a solution of (1.1) with x(¢) = ¢(¢) for 0 < ¢ < t,. Set M = A3/A,. By (2.8)
and (2.10) and inequalities (3.1), (3.2), and (3.3) we obtain

[V (t,x(6))en (t,10)]" = V (£,x(8)) el (£, to) + MV (£,x(t) ) es (£, to)
= [V (t,x(8)) (1 +p(t)M) + MV (t,x(t)) Jem (t,to)

< [—13W4(|x|) -3 Jot¢z(t,5)Ws( |x(s) | )A5+L:|5M(t)t0)

t
" [A3w2(|x|) 15 jo b1 (6, W3 (] x(5) | )As]eM(t,to)

< [Asy+L]em(t,to) =: Kem(t,to),
(3.4)

where we used Theorem 2.5(i). Integrating both sides from t; to t, we have

V(tx(0) e (tt0) < V (0, ) + = Jt e (7, 1) AT
My (3.5)

— V(to, ) + %(eM(t,to) 1) = V(o) + %eM(t,to).

It follows from Theorem 2.4(iii) that for all ¢ > £,

V(t,x(5) < V (o, ) eont (t,0) + % (3.6)
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From inequality (3.1), we have

Wi(lxl) = (Vi g)ean (o) + )

(3.7)
1 fo K
S/T[AZWZ(|¢|)+A2W3(|¢|) </51(t0>S)AS+M],
1 0
where we used the fact Theorem 2.5(ii). Therefore, we obtain
(1 fo K
|X|SW] A_ A2W2(|¢|)+/12W3(|¢|) ¢1(t(),S)AS+— (38)
1 0 M
for all t > ty. This concludes the proof. O

In the next theorem, we give sufficient conditions to show that solutions of (1.1) are
bounded.

THEOREM 3.2. Let D C R". Suppose that there exists a type I Lyapunov functional V :
[0,00) X D + [0, 00) such that for all (t,x) € [0,00) X D,

MW (Ix]) < V(t,x) < () Wa(Ix]) +Aa(t) Jo ¢1(t,5)Ws(|x(s)|)As,

t (3.9)
*A3(t)W4(|x|) *)L3(l’) IO ¢2(t,S)W5( |X(S) | )AS+L

1+ u()(A3(8)/2(1)) ’

Vit,x) <
where A1, A2, A3 are positive continuous functions, L is a positive constant, A, is nondecreas-
ing, and ¢;(t,s) = 0 is rd-continuous for 0 < s < t < c0, i = 1,2, such that

t

Wa(Ix1) = Wy (lxl) +J0 (1(t,5) W3 (Ix]) — o (t,5) W5 (|x(s)|))As <y, (3.10)

where y = 0. If [y $1(t,5)As < B and A3(t) < N for t € [0,0) and some positive constants B
and N, then all solutions of (1.1) staying in D are bounded.

Proof. Let M := inf;0(A3(¢)/A2(¢)) > 0 and let x be any solution of (1.1) with x() =
¢(t). Then we obtain

[V (t,x(6))ens (£,10)]" = V (£,x(8)) €8 (£, o) + MV (£,x(t) e (£, o)
= [V (£,x(t)) (1 +u(t)M) + MV (t,x(t)) lem (t,to)

t
< [—A3(t)W4(|x|) () L ¢2(t,s)W5(|x(s)|)As+L]eM(t,to)

+ M0y Wa(1x1) + M0t L¢>1<t,s>w3( )]s ex (110

< [A3(t)y+L]eM(t,to) < (N)/+L)€M(t,t()) =:K€M(t,t()),
(3.11)



8 Boundedness in functional dynamic equations on time scales

because of M < A3(t)/A2(¢), As(t) < N, for t € [0,00) and Theorem 2.5(i). Integrating
both sides from t to t, we obtain

V(t,x(t))em(t,t0) < V(to,¢) + ]I\<_46M(t’ to). (3.12)

This implies from Theorem 2.4(iii) that for all t > t,

V(t,x(5) < V (o, ) eont (£,0) + % (3.13)

From inequality (3.1), we have

to

WilD) = - (Rl Wal19) +halto) W(1g1) [ n(ros)ass ) (314)

for all ¢ > ty, where we used the fact Theorem 2.5(ii) and A, is nondecreasing. O
The following theorem is the special case of [8, Theorem 2.6].

THEOREM 3.3. Suppose there exists a continuously differentiable type I Lyapunov functional
V :[0,00) X R" — [0, c0) that satisfies

MlxlI?P < V(t,x), V(tx)#0 ifx#0, (3.15)

[V(6x)]" < OV (%) V(4 x) (3.16)

for some positive constants Ay and p are positive constants, and A, is a positive continuous
function such that

= Oi%fg)tz(t). (3.17)
Then all solutions of (1.1) satisfy
1 1 Ve
Il = ;q_/P[l/v(to,@ el (318)

Proof. For any ty = 0, let x be the solution of (1.1) with x(#)) = ¢(ty). By inequalities
(3.16) and (3.17), we have

[V(60)]* < —a V(LX) VO (x). (3.19)
Let u(t) = V(t,x(t)) so that we have

ub (1)

uue () =" (320
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Since (1/u(t))® = —u®/u(t)u(o(t)), we obtain

(1) = s

Integrating the above inequality from ¢, to t, we have

1

u(t) =< 1/u(t0)+cl(t—to) (3.22)
or
1
V(t,x(t)) < Vg tali—t) (3.23)
Using (3.15), we obtain
1 1 1/p
ol = A}_/P[l/v(to,gb) +c1(t—to)] ' (3'2‘;)

The next theorem is an extension of [7, Theorem 2.6].

THEOREM 3.4. Assume D C R" and there exists a type I Lyapunov functional V : [0, c0) X
D — [0, ) such that for all (t,x) € [0,00) X D,

AIH)C”P = V(t)x)a (325)
. ML V(x)+L
Vt,x) < T‘u(t)’ (3.26)

where A1,A2, p >0, L = 0 are constants and 0 < e < A,. Then all solutions of (1.1) staying in
D are bounded.

Proof. For any t; > 0, let x be the solution of (1.1) with x(ty) = ¢. Since e € R, e,(£,0) is
well defined and positive. By (3.26), we obtain

[V (5,x(1))ec(t,0)]" = V(£,x()) el (£,0) + eV (1,x(t) ) ex(£,0),
< (=M V(t,x(t)) +L)e(t,0) + eV (t,x(t))ee(t,0), (3.27)

=e.(t,0)[eV (t,x(t)) = A,V (t,x(t)) + L] < Le.(t,0).

Integrating both sides from £, to t, we obtain

V (t,x(1))e(t,0) < V(to,¢) + %eg(t,o). (3.28)
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Dividing both sides of the above inequality by e.(¢,0) and then using (3.25) and Theorem
2.5, we obtain

1 1/p L 1/p
Il < {A—} [V(t0,¢)+g] forall £ > ;. (3.29)
1

This completes the proof. O

Remark 3.5. In Theorem 3.4, if V(¢y,¢) is uniformly bounded, then one concludes that
all solutions of (1.1) that stay in D are uniformly bounded.

4. Applications to Volterra integro-dynamic equations

In this section, we apply our theorems from the previous section and obtain sufficient
conditions that insure the boundedness and uniform boundedness of solutions of Volter-
ra integro-dynamic equations. We begin with the following theorem.

THEOREM 4.1. Suppose B(t,s) is rd-continuous and consider the scalar nonlinear Volterra
integro-dynamic equation

X8 =a(H)x(t) + JtB(t,s)xm(s)As, t>0, x(t) = ¢(t) for 0 < t <to, (4.1)
0

where ¢ is a given bounded continuous initial function on [0,), and a is a continuous
function on [0, 00). Suppose there are positive constants v, 31, B2, with v € (0,1), and A3 =
min{p, 2} such that

t t
[2a(t)+y(t)a2(t)+y(t)|a(t)| L |B(t,s)|As+L |B(t,5) | As
(4.2)

+vLo:t> |B(”’t)|A”] (1+u(D)s) < -,
2 t
{5 [H“(t”“(m TuD) JO |B(t,s)|AS] —V}(l +p(As) < ~Pa, (4.3)

t poo t
J J | B(u,5) | AuAs < oo, J | B(t,s)| As < o0,
0Je 0
(4.4)

[eY)

|B(t,s)| = vJ | B(u,s) | Au,

t

then all solutions of (4.1) are uniformly bounded.
Proof. Let

Vit x) = xz(t)+vjtjw | Bl,s) | Aux(s)As. (4.5)
0Jt
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Using Theorem 2.2, we have along the solutions of (4.1) that

V(t,x) = 2x(1) (a(t)x(t) " JtB(t,s)xm(s)As)
0
t 2
o (a(t)x(t) n J B(t,s)x2/3(s)As)
0
! 2 h 2
—vJO |B(t,s) | x (s)As+vLm | Blu, 1) | 2(6) A
< 2a(0)x(1) + zr B(t,5) | | () | x3(s)As (4.6)
0
t
+u(t)a® (£)x*(t) +2u(t) |a(t) | L | B(t,s) | |x(t) | x*>(s)As
t 2
2/3
+y(t)<J0 B(t,5)x (s)As)

+1/Ioo | B(u,t) | x*(t)Au — vjt | B(t,s) | x*(s)As.
o(t) 0

Using the fact that ab < a?/2 + b?/2 for any real numbers a and b, we have

t t
2[ | B(t,s)| | x(t) | x*(s)As < I | B(t,s) | (x*(t) + x*3(s)) As. (4.7)
0 0
Also, using Theorem 2.3, one obtains

2

t 2
(Jt |B(t,5) |x2/3(s)As> (J 1B(t,5)| | B(t,9)]| 1/2x2/3(s)As)
0 0
t t (4.8)
sj |B(t,s)|AsJ | B(t,s) | x*(s)As.
0 0

A substitution of the above two inequalities into (4.6) yields
. t
Vitx) < [Za(t) Fua@ )+ u(0) | a(t)| J |B(t,s) | As
0

[oe]
ot

+J0t |B(t,s)|As+vJ ., |B(u,t)|Au]x2(t)

t t (4.9)
+ [1 L ut) | a(t)| +y(t)J 1B(t,9)] As] J | B(t,5) |3 (s)As
0 0

- th | B(t,5) | x*(s)As.
0
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To further simplify (4.9), we make use of Young’s inequality, which says that for any two
nonnegative real numbers w and z, we have

e Zf

wz< ™42 wih i+ log, (4.10)
e f e

f
Thus, for e = 3/2 and f = 3, we get

jt | B(t,5) | x*3(s)As = Jt |B(t,5)| | B(£,5)| *x3(s)As
0 0

(1Bs)] 2 i
< Jo (% +3 | B(t,s) |x2(s)>As.
By substituting the above inequality into (4.9), we arrive at
t
Vitx) < [2a(t)+y(t)a2(t)+y(t)|a(t)| L |B(t,5) | As
t o0
2
+JO |B(t,s)|As+vL(t) |B(u,t)|Au]x (1)
2 t t
+[—v+ §<1+y(t)|a(t)| Fu(h) L |B(t,s)|As)] JO |B(t,5) | x2(s)As
t t
+%(l+y(t)|a(t)| Fut) L |B(t,s)|As> L |B(t,5) | As
(4.12)

Multiplying and dividing the above inequality by 1 + u(#)A3, and then applying conditions

(4.2) and (4.3), V(t,x) reduces to

. - —Bix2(t) = B2 [y | B(t,s) | x2(s)As+ L
Vitx) < 11;;(% ’

(4.13)

where L = 1/3(1 +u(t)la(t)| +u(t) [y |1B(t,5)|As) [ |B(t,s)|As(1 +u(t)As). By taking W, =
W2 = W4 = xz(t), W3 = W5 = XZ(S), /11 = )L2 =1 and A} = min{ﬁl,ﬁz}, ¢1(t,S) =
vftoo [B(u,s)|Au, and ¢, (¢,s) = |B(t,s)|, we see that conditions (3.1) and (3.2) of Theorem
3.1 are satisfied. Next we make sure that condition (3.3) holds. Use (4.4) to obtain

Wo (|x]) — Wa(lx]) +Lt (1t )Ws([x(5)]) — 2(t,) W5 (|x(s)|))As
(4.14)

t

— () -2 +J

(vro | B(u,s) | Au— | B(t,s) | )xz(s)As <0.
o\ Js

Thus condition (3.3) is satisfied with y = 0. An application of Theorem 3.1 yields the
results. O

Remark 4.2. In the case T = R, the second author in [8] took v = 1 in the displayed
Lyapunov functional. On the other hand, in our theorem, we had to incorporate such v
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in the Lyapunov functional, otherwise, condition (4.5) may only hold if B(¢,s) = 0 for all
t € T with 0 < s <t < o for a particular time scale. For example, if we take T = Z, then
condition (4.5) reduces to |B(t,s)| > v>.., |B(u,s)|, which can only hold if B(t,s) = 0 for
v=1.

Remark 4.3. If T = R, then u(t) = 0 for all # and hence Theorem 4.1 reduces to [8, Exam-
ple 2.3].

Remark 4.4. We assert that Theorem 4.1 can be easily generalized to handle scalar non-
linear Volterra integro-dynamic equations of the form

X = a(t)x(t) + LtB(t,s) F(5,x(5))As, (4.15)

where | f(t,x(t))| < x*3(t) + M for some positive constant M.
For the next theorem, we consider the scalar Volterra integro-dynamic equation
t
X0 = alOx()+ | B(19)f (5x(5) s+ g (1,x(1), (4.16)

0

where t > 0, x(¢) = ¢(t) for 0 <t < t;, ¢ is a given bounded continuous initial function,
a(t) is continuous for t > 0, and B(t,s) is right-dense continuous for 0 < s <t < co. We
assume f(t,x) and g(t,x) are continuous in x and ¢ and satisfy

lg(t,x)| < y1(0)+y2(8) | x(D) ], | f(tx)| <yt)|x(1)], (4.17)

where y and y; are positive and bounded, and y; is nonnegative and bounded.
For the next theorem, we need the identity

()| = DX (). (4.18)

|[x()] + [xo(8)

Its proof can be found in [4].

THEOREM 4.5. Suppose there exist constants k > 1 and e, a with 0 < & < a such that
[a(t) Fa(8) +kL°:t) | Bu,1) | Auy(t)] (1+eu(t) < —a<0, (4.19)
where k = 1+ for some { > 0. Suppose
(1+8(0e) [ B(15) =] " [BGws) | Au, (4.20)
where A > ka/(, 0 <s<t<u< o,

ty o
J I | B(u,s) | Auy(s)As <p< oo Vi =0, (4.21)
0 to
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and for some positive constant L,

Y1) (1 +eu(t)) < L. (4.22)

Then all solutions of (4.16) are uniformly bounded.
Proof. Define

- |x(t)|+kj r|B(u,s)|Au|f(s,x(s))|As. (4.23)
0Jt

Along the solutions of (4.16), we have
: x() x7(t)
V(00 = T kj Blw,t)| Au| f(6,x(D)) |

—kjo 1B(6,5)] | f(5,x()) | As < a(t) | x(8) | +L 1B(4,5)] | f(5,%(5)) | As

0 t
+|g(tx(1)) | +kLm | B(u,t) | Aul f (£,x(1)) | _kL | B(t,9) | | f(s,x(5)) | As

< [a(t)+y2(t)+kL°;) |B(u,t)|Auy(t)] 1x(8)|

+(1 —k)JO | B(t,s)| | f(s,x(5)) | As+y1(2)

- [a(t)+yz(t)+kro IB(u’l‘)|A“V(f)] |x()] iﬁggi
1 1
—{(1+u(t)e) I | B(t,5)| | f (s,x(s)) |A51+ WD (1+u(t)s)y1(t)m

_(AIO Lw |B(u’s)|Au|f(5’x(5))|AS ! + L

—a|x(t)| L+u(t)e  1+u(t)e

1
1+u(t)e

1 N L
L+u(t)e  1+u(t)e

—cx[|x(t)| +kj0tfo | B(u,s)| Au| f (s,x(s)) |As]

—aV(t,x)+L
1+u(t)e

(4.24)

The results follow form Theorem 3.4 and Remark 3.5. O

In the next theorem, we establish sufficient conditions that guarantee the boundedness
of all solutions of the vector Volterra integro-dynamic equation

= Ax(t) + Jt Ct,5)x(s)As + g(8), (4.25)
0
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where t > 0, x(t) = ¢(t) for 0 < t < t;, ¢ is a given bounded continuous initial k X 1 vector
function. Also, A and C(t,s) are k X k matrix with C(t,s) being continuouson T X T, g, x
are k X 1 vector functions that are continuous for ¢ € T. If D is a matrix, then |D| means

the sum of the absolute values of the elements.

THEOREM 4.6. Suppose CT(t,s) = C(t,s). Let I be the k X k identity matrix. Assume there
exist positive constants L, v, &, 1, B2, A3, and k X k positive definite constant symmetric

matrix B such that
[ATB+BA+u(t)ATBA] < —&I,
t t
[—f+ |ATBg| +|Bg|+J |B||C(t,s)|As+y(t)J |ATB| | C(t,)| As
0 0

+vLo:t) |C(u,t)|Au](1+y(t))t3) < —Bi,

t
[IBI - v+[,¢(t)<(gTB)2 114 |ATB +L 1C(L,s) | As)] (14 u(DAs) < —Bo,
(u(0)1g"g | +1Bgl) (1+u(t)As) +u(t)|A"Bg| = L,

)

|C(tys)| = ‘VI " | C(u,s)| Au,

o

t oo t
J I | C(u,s) | AuAs < oo, I | C(t,s) | As < oo.
0J¢ 0

Then there exists an r; € (0,1] such that
rixTx <xTBx < xTx.

Proof. Let the matrix B be defined by (4.26) and define

t 00
V(t,x) = xTBx+1/J J | C(u,s) | Aux?(s)As.
0Jt

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

Here xTx = x? = (x{ +x3 + - - - + x}). Using the product rule given in (2.8), we have along

the solutions of (4.25) that

V(t,x) = (xA)TBx+ (x")TBxA - vjt | C(t,s) |x2(s)As+vr:) |C(u,t) | Aux?
0 o(t

= () Bx+ (x+,u(l‘)xA)TBxA - vjt |C(t,s) |x2(s)As+vJ0:) |C(u,t) | Aux?
0 o(t

t )
= (xA)TBchTBxA +u(t) (xA)TBxA —VJ | C(t,s) | x*(s)As + vJ | C(u,t) | Aux?.
0 a(t)

(4.34)
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Substituting the right-hand side of (4.25) for x* into (4.34) and making use of (4.26), we
obtain

V(t,x) = [Ax + Jot C(t,s)x(s)As +g] TBx +x'B [Ax + Jot C(t,s)x(s)As +g]

T t
+u(t) [Ax + Jt C(t,s)x(s)As +g] B [Ax + JO C(t,s)x(s)As +g] (4.35)
0
- VL: | C(t,s) |x2(s)As+vLO:t) | C(u,t) | Aux?.

By noting that the right side of (4.35) is scalar and by recalling that B is a symmetric
matrix, expression (4.35) simplifies to

t
V(t,x)=x"(ATB +BA+‘u(t)ATBA)x+2xTBg+2J xTBC(t,5)x(s)As
0
t t
+u(t) [ZxTATBg+2gTBJ C(t,s)x(s)As+2xTATBJ C(t,s)x(s)As
0 0
t t
+J xT(s)C(t,s)AsBJ C(t,s)x(s)As+gTBg]
0 0

- vjot | C(t,s) | x*(s)As + ijn | C(u,t) | Aux?

IA

et 2|aT | |Bg|+2Lt T | 1B C(6,3)] | x(s) | As
a0 | 1005 121gB] [+ |as+2 15" [|ATB] O] 1x(5) As
+thT(s)C(t,s)BAthC(t,s)x(s)As+ |gTg] +2]xT] |ATBg|]
0 0

t
- VJO | C(t,s) |x2(s)As+vJ " | C(u,t) | Aux?.

(4.36)
Next, we perform some calculations to simplify inequality (4.36),
2|x"|IBgl =2|x"||Bg|"*|Bg|"? < x*|Bg| +|Bg],
2[+7| |ATBg|2 = |xT| | ATBg| | ATBg| "> < x| ATBg| + | ATBg],
ZJ; [xT|IB|| C(t,s)| | x(s)| As < Lt IBI|C(t,s) | (x* +x%(s)) As, (437)

JO |C(t,s)]2]|gTB] | x(s)| As < JO |C(t,5)| (|g7B|” +x2(s)) As,

th |xT| |ATB]| | C(t,s)| |x(s)|As < jt |ATB| | C(t,s)| (x* + x%(s)) As.
0 0
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Finally,
t t
J xT(s)C(t,s)AsBJ C(t,s)x(s)As
0

\BIH (s)C (6 s)As

J C(t,s)x(s)As

- 1BI(Jyx" (5)C(t,5)As)” IBI(fo $)x(s)As)*
B 2 2

= |B| <Lt C(t,s)x(s)As)2

t
= 1B1( | 1e9)] s x| s)

(4.38)

2

< \B|J0 |C(t,s)|AsL |Ct,5) | () As

A substitution of the above inequalities into (4.36) yields
V(t,x) [ E+u(t)|ATBg| + |Bg] +J IBI|C(t,s) | As

+u(t) L |ATB| |C(t,s)|A5+vL(t) |C(u,t)|Au]x2

+|:|B|_7}+.U(t)<(gTB)2+l+|ATB| (4.39)

t t
+1B1 | lcts)1as)| [ Tows) eas
t)(|A"Bg| +|g"Bg|) +|Bgl.

Multiplying and dividing the above inequality by 1 + u(#)As, and then applying conditions
(4.30) and (4.31) V(t,x) reduces to

—BoJy | Cltys) | x2(s)As + L

L i
v = L+ a0l |

(4.40)

where L = (u(t)(IATBg| + |g"Bgl) + IBgl)(1 + u(t)A3). By taking W; = rix"x, W, =
xTBx, Wy = xTx, Ws = Ws = x%(s), Ay = A, =1 and A3 = min{f,:}, ¢1(t,5) =
v [ 1C(u,s)|Au, and ¢, (t,s) = |C(t,s) |, we see that conditions (3.1) and (3.2) of Theorem
3.1 are satisfied. Next we make sure that condition (3.3) holds. Using (4.29) and (4.32),
we obtain

W) (1x1) — Wi (Ixl) + J(¢1ts)ws(| ) = a6, Ws (| x(5) ) As
(4.41)

t
=x"Bx —xTx+ J

. (vro | C(u,s) | Au— |C(t,s)|)x2(s)Ass 0.
t
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Thus condition (3.3) is satisfied with y = 0. An application of Theorem 3.1 yields the
results. O

Remark 4.7. Tt is worth mentioning that Theorem 4.6 is new when T = R.
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