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1. Preliminary notes

Motivated by the old but significant papers by Driver [3] and Driver et al. [5], a number
of relevant papers has recently appeared in the literature. See Frasson and Verduyn Lunel
[10], Graef and Qian [11], Kordonis et al. [16], Kordonis and Philos [19], Kordonis et
al. [21], Philos [26], and Philos and Purnaras [28, 30, 35, 33, 36]. The results in [10, 11,
16, 26, 28, 30, 35, 36] concern the large time behavior of the solutions of several classes of
linear autonomous or periodic delay or neutral delay differential equations, while those
in [19, 21, 33] are dealing with the behavior of solutions of some linear (neutral or non-
neutral) integrodifferential equations with unbounded delay. Note that the method used
in [10] is based on resolvent computations and Dunford calculus, while the technique
applied in the rest of the papers mentioned above is very simple and is essentially based
on elementary calculus. We also notice that the article [10] is very interesting as well as
comprehensive.

Along with the work mentioned above for the continuous case, analogous investiga-
tions have recently been made for the behavior of the solutions of some classes of lin-
ear autonomous or periodic delay or neutral delay difference equations, for the behavior
of the solutions of certain linear delay difference equations with continuous variable as
well as for the behavior of solutions of a linear Volterra difference equation with infi-
nite delay. See Kordonis and Philos [17], Kordonis et al. [20], and Philos and Purnaras
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[29, 31, 32, 34]. For some related results we refer to the papers by de Bruijn [2], Driver et
al. [4], Gyori [12], Norris [25], and Pituk [37, 38].

In [21], Kordonis et al. obtained some results on the behavior of solutions of linear
neutral integrodifferential equations with unbounded delay; the results in [21] extend
and improve previous ones given by Kordonis and Philos [19] for the special case of
(non-neutral) integrodifferential equations with unbounded delay. In [33], Philos and
Purnaras continued the study in [19, 21] and established some further results on the
behavior of solutions of linear neutral integrodifferential equations with unbounded de-
lay, and, especially, of linear (non-neutral) integrodifferential equations with unbounded
delay.

Our purpose in this paper is to give the discrete analogues of the results in [19, 21, 33].
Here, we study the behavior of solutions of linear neutral Volterra difference equations
with infinite delay, and, especially, of linear (non-neutral) Volterra difference equations
with infinite delay. Our results will be derived by the use of appropriate positive roots of
the corresponding characteristic equation. Some of the results of the present paper extend
and improve the main results of the authors’ previous paper [32].

Neutral, and especially non-neutral, Volterra difference equations with infinite de-
lay have been widely used as mathematical models in mathematical ecology, particu-
larly in population dynamics. Although the bibliography on Volterra integrodifferential
equations is quite extended, however there has not yet been analogously much work on
the Volterra difference equations. We choose to refer here to the papers by Jaro$ and
Stavroulakis [13], Kiventidis [15], Kordonis and Philos [18], Ladas et al. [22], and Philos
[27] for some results concerning the existence and/or the nonexistence of positive solu-
tions of certain linear Volterra difference equations. Also, for some results on the stability
of Volterra difference equations, we typically refer to the papers by Elaydi [6, 8], and
Elaydi and Murakami [9] (see, also, the book [7, pages 239-250]).

For the general background of difference equations, one can refer to the books by
Agarwal [1], Elaydi [7], Kelley and Peterson [14], Lakshmikantham and Trigiante [23],
Mickens [24], and Sharkovsky et al. [39].

The paper is organized as follows. Section 2 contains an introduction and some nota-
tions. Section 3 is devoted to the statement of the main results (and to some comments
on them). The proofs of the main results will be given in Section 4.

2. Introduction and notations

Throughout the paper, N stands for the set of all nonnegative integers and Z stands for the
set of all integers. Also, the set of all nonpositive integers will be denoted by Z~. Moreover,
the forward difference operator A will be considered to be defined as usual, that is,

As, =5S,01—Sp, NEN (2.1)

for any sequence (s,),en of real numbers.
Consider the linear neutral Volterra difference equation with infinite delay

n—1 n—1
A(xn+ Z anxj> =ax, + Z Ky jx; (2.2)

j=—o j=—o
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and, especially, the linear (non-neutral) Volterra difference equation with infinite delay

n—1
Ax, = ax, + Z K- jx;, (2.3)

j=—00

where a is a real number, and (Gy,)nen—10} and (Ky)nen- (o0} are sequences of real numbers.
It will be supposed that (K,)nen—{0} is not eventually identically zero. Note that (2.3) is a
special case of (2.2), that is, the special case where the kernel (G,)nen-{o} is identically
zZero.

Equation (2.2) can equivalently be written as follows

A(xn + Z ij,,_]) =ax, + Z Kix, (2.4)
j=1 j=1

and, especially, (2.3) can equivalently be written as

Ax, = ax, + Z Kjxpj. (2.5)
j=1

By a solution of the neutral Volterra difference equation (2.2) (respectively, of the (non-
neutral) Volterra difference equation (2.3)), we mean a sequence (x,) ez of real numbers
which satisfies (2.2) (resp., (2.3)) for all n € N.

In the sequel, by S we will denote the (nonempty) set of all sequences ¢ = (¢,,),cz- of
real numbers such that, for each n € N,

-1 00 -1 oo
Of= > Gujbi= 2> Gigujp Oh= > Kijpj= > Kipuj (2.6)

j=—o0 j=n+l j=—o j=n+l

exist in R. In the special case of (2.3), the set S consists of all sequences ¢ = (¢,)nez- of
real numbers such that, for each n € N, ®X exists in R.

It is clear that, for any given initial sequence ¢ = (¢,)ncz- in S, there exists a unique
solution (x,)xcz of the difference equation (2.2) (resp., of (2.3)) which satisfies the initial
condition

Xp=¢, forneZ; (2.7)

this solution (x,),cz is said to be the solution of the initial problem (2.2) and (2.7) (resp.,
of the initial problem (2.3) and (2.7)) or, more briefly, the solution of (2.2) and (2.7)
(resp., of (2.3) and (2.7)).

With the neutral Volterra difference equation (2.2) we associate its characteristic equa-
tion

(A—1)<1+iAij> =a+ iw’K-, (2.8)

Jj=1 j=1
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which is obtained by seeking solutions of (2.2) of the form x, = A" for n € Z, where A
is a positive real number. In particular, the characteristic equation of the (non-neutral)
Volterra difference equation (2.3) is

A-1=a+> LMK, (2.9)
j=1
The use of a positive root A of the characteristic equation (2.8) with the property
< L. (IS
2 A7 (1+ 1= ) 16T+ 271K | <1 (2.10)
j=1 /10 AO j=1

plays a crucial role in obtaining the results of this paper. In the special case of the (non-
neutral) Volterra difference equation (2.3), the property (2.10) (of a positive root Ay of
the characteristic equation (2.9)) takes the form

AlilK | < 1. (2.11)

NNZE

1
Ao

j=1

In what follows, if A is a positive root of (2.8) (resp., of (2.9)) with the property (2.10)
(resp., with the property (2.11)), we will denote by S(A¢) the (nonempty) subset of S con-
sisting of all sequences ¢ = (¢,)ucz- in S such that (1;"¢,),cz- is a bounded sequence.

Now, we introduce certain notations which will be used throughout the paper without
any further mention. We also give some facts concerning these notations that we will keep
in mind in what follows.

Let Ag be a positive root of the characteristic equation (2.8) with the property (2.10).
We define

ya) = 207 1= (1= )] G+ 3 20K,
i = (2.12)
p0) = 067 (14| 1= | 7)165 1+ 5 20515 .
j=1 j=1
Property (2.10) together with the hypothesis that (K;) sen- {03 is not eventually identically
zero guarantee that
0<u(o) <1. (2.13)
Also, because of |y(Ag)| < u(Ao), we have —1 < y(Ag) < 1, that is,
0<1+y(o) <2. (2.14)

In the particular case where (G,)nen-0; and (K,)nen—{o} are nonpositive and A is less
than or equal to 1, because of the fact that (K,),en-1o; is not eventually identically zero,
the property (2.10) can be written as —1 < y(A¢) < 0, that is,

0<1+p(d) < L. (2.15)
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Furthermore, we set
2
+u(Ao). (2.16)

We can easily see that @(o) is a real number with
®(ko) > 1. (2.17)
Let us consider the special case of the (non-neutral) Volterra difference equation (2.3)

and let Ay be a positive root of the characteristic equation (2.9) with the property (2.11).
In this case, we define

l <. -,
yo(Ao) = " ZAOJJK"

1]: (2.18)
o(ho) = = D Ao j1 K.

P

J

From the property (2.11) and the hypothesis that (K;;) .en- {0 is not eventually identically
zero it follows that

0<‘Ll()(/1()) <1 (219)
So, since yo(Ao)| < po(Ao), we have —1 < y(Ao) < 1, namely
0<1+y0(do) < 2. (2.20)

If (Ky)nen-1o} is assumed to be nonpositive, then, by the fact that (K,).en-0} is not
eventually identically zero, the property (2.11) is equivalent to —1 < y¢(Ag) < 0, that is,

0< 1+y0(Ao) < 1. (2.21)
Furthermore, we put
[1+u0(Ao)]°
Op(Ag) = ———"—+puo(A 2.22
0(4o) T+ y000) to(Ao) (2.22)

and we see that ©y(Ag) is a real number with
(ON (Ao) > 1. (2-23)

We notice that, in the special case of (2.3), the constants y(Ao), p(Ao), and ®(Ay), which are
defined in the general case of (2.2), are equal to y(Ao), po(Ao), and Oy (Ay), respectively.
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Next, consider again a positive root Ay of the characteristic equation (2.8) with the
property (2.10), and let ¢ = (¢,)ncz- be an initial sequence in S(Ag). We define

L(Ao;¢) =¢)0+§:G1‘ |:¢j— (1 - A—t))tgf( _Zl /\6r¢r)]
j=1

=
0 . -1
SN 3, 220
i =
_ L(Aos¢)
M(Ao;) = sup |1, — —208) |
(oig) = sup | 4o"¢ 1+y(do)

From the property (2.10) and the definition of S(A¢) it follows that L(Ay;¢) is a real num-
ber. Moreover, by the definition of S(Ay), M(A¢;¢) is a nonnegative constant.

Let us concentrate on the special case of (2.3) and consider a positive root Ay of
the characteristic equation (2.9) with the property (2.11) and an initial sequence ¢ =
(¢n)nez- in S(Ao). In this special case, we have the constants

Lo (Ao ¢) = ¢0+%OZ/\(;]Kj< _Z Aarﬁbr),

j=1 r=—j

o (2.25)
N ng _ Lo(doid)
Moo ) = sup | o™ ¢ = 75 15 5

instead of the constants L(Ay;¢) and M(Ag;¢) considered in the general case of (2.2).
Property (2.11) and the definition of S(Ay) guarantee that Ly(Ay;¢) is a real number, and
the definition of S(A) ensures that M,(A¢; ¢) is a nonnegative constant.

Another notation used in the paper is the following one

N(Ao;¢) = sup (Ag" [ ¢ |) (2.26)

nez-

for each positive root Ay of the characteristic equation (2.8) (resp., (2.9)) with the prop-
erty (2.10) (resp., (2.11)) and for any initial sequence ¢ = (¢,)nez- in S(Ay). Clearly,
N(Ao;¢) is a nonnegative constant.

Furthermore, let Ay be a positive root of the characteristic equation (2.8) with the
property (2.10) and A, be a positive root of (2.8) with A; < A¢. Let also ¢ = (¢,)necz- be an
initial sequence in S(A¢). We set

Aos

V (Ao, A1;9) = sup {/\1—” [gbn - %Ag] }

nezZ-

(2.27)

From the definition of S(A¢) and the hypothesis that A; < ¢ it follows that U(Ag,A1;¢)
and V(Ag,A1;¢) are real constants.
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In particular, consider the special case of (2.3). Let Ay be a positive root of the char-
acteristic equation (2.9) with the property (2.11) and A, be a positive root of (2.9) with
M < Ag as well as let ¢ = (¢n)necz- be an initial sequence in S(Ay). In this special case, we
consider the real constants

Uahashsd) = i 177 g~ 220500 ],

1+ y0(Ao
B (Ao(p) (2.28)
Vo(Ao,Ai3¢) = ::ZR {Al [(/)” B 1"’)’0(/10)/10}}

in place of U(Ag,A1;¢) and V(Ag,A15¢) considered in the general case of (2.2).

Before closing this section, we will give three well-known definitions. The trivial so-
lution of (2.2) (resp., of (2.3)) is said to be stable (at 0) if, for each € > 0, there exists
0 = 6(€) > 0 such that, for any ¢ = (¢,)nez- in S with [|¢|| = sup, .- 1¢,] <, the solu-
tion (xy)nez of (2.2) and (2.7) (resp., of (2.3) and (2.7)) satisfies |x,| < € for all n € Z.
Also, the trivial solution of (2.2) (resp., of (2.3)) is called asymptotically stable (at 0) if it
is stable (at 0) in the above sense and, in addition, there exists §, > 0 such that, for any
¢ = (¢n)ncz- in S with [[¢]l < &, the solution (x,),cz of (2.2) and (2.7) (resp., of (2.3)
and (2.7)) satisfies lim,_..x, = 0. Moreover, the trivial solution of (2.2) (resp., of (2.3))
is called exponentially stable (at 0) if there exist positive constants A and # < 1 such that,
for any ¢ = (¢pn)nez- in S with [|@]| < oo, the solution (x,),cz of (2.2) and (2.7) (resp., of
(2.3) and (2.7)) satisfies |x,| < An"||¢|| for all n € N (see Elaydi and Murakami [9]).

3. Statement of the main results

Our first main result is Theorem 3.1 below, which establishes a useful inequality for solu-
tions of the neutral Volterra difference equation (2.2). The application of Theorem 3.1 to
the special case of the (non-neutral) Volterra difference equation (2.3) leads to Theorem
3.2 below.

THEOREM 3.1. Let Ay be a positive root of the characteristic equation (2.8) with the property
(2.10). Then, for any ¢ = (¢pu)nez- in S(Ao), the solution (x,)nez of (2.2) and (2.7) satisfies

Agnxn _ L(AO’(P)

T+ (ko) <u(Ao)M(Ao;¢) VneN. (3.1)

THEOREM 3.2. Let Ay be a positive root of the characteristic equation (2.9) with the property
(2.11). Then, for any ¢ = (¢u)nez- in S(Ao), the solution (x,)nez of (2.3) and (2.7) satisfies

Lo(Ao;9)

_ Tt yO(AO) = Uo (AQ)MO (/10,(!)) VnéeN. (32)

Ay " xn

Theorem 3.3 below provides an estimate of solutions of the neutral Volterra difference
equation (2.2) that leads to a stability criterion for the trivial solution of (2.2). By applying
Theorem 3.3 to the special case of the (non-neutral) Volterra difference equation (2.3),
one can be led to the subsequent theorem, that is, Theorem 3.4.
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THEOREM 3.3. Let A be a positive root of the characteristic equation (2.8) with the property
(2.10). Then, for any ¢ = (¢u)nez- in S(Ao), the solution (x,)nez of (2.2) and (2.7) satisfies

|xi] <®(Ao)N(Aosp)A VneN. (3.3)

Moreover, the trivial solution of (2.2) is stable (at 0) if Ao = 1 and it is asymptotically stable
(at0) if Ay < 1. In addition, the trivial solution of (2.2) is exponentially stable (at 0) if Ao < 1.

THEOREM 3.4. Let Ay be a positive root of the characteristic equation (2.9) with the property
(2.11). Then, for any ¢ = (¢pu)nez- in S(Ao), the solution (x,)necz of (2.3) and (2.7) satisfies

|Xn | <0 (Ao)N(/‘o,(/)))Lg VneN. (3.4)

Moreover, the trivial solution of (2.3) is stable (at 0) if Ao = 1 and it is asymptotically stable
(at0) if Ay < 1. In addition, the trivial solution of (2.3) is exponentially stable (at 0) if Ao < 1.

It must be noted that Theorems 3.2 and 3.4 for the (non-neutral) Volterra difference
equation (2.3) can be considered as substiantally improved versions of the main results
of the previous authors’ paper [32]. One can easily see the connection between Theorems
3.2 and 3.4, and the main results in [32].

The following lemma, that is, Lemma 3.5, gives sufficient conditions for the character-
istic equation (2.8) to have a (unique) root A with the property (2.10). The specialization
of Lemma 3.5 to the special case of the characteristic equation (2.9) is formulated be-
low as Lemma 3.6. We notice that Lemma 3.6 has been previously proved in the authors’
paper [32].

LEMMA 3.5. Assume that there exists a positive real number y such that

SyiG <o, S yi|K;| < oo, (3.5)
j=1 =1
1=y G+ 2y /Ki>y-1-a, (3.6)
j=1 j=1
> 1)\ . 1<
zy1[1+<1+>]}|(;j|+nyj|1<j|s1. (3.7)
j=1 Y y]':1

Then, in the interval (y, o), the characteristic equation (2.8) admits a unique root Ay;
this root has the property (2.10).

LEMMA 3.6. Assume that there exists a positive real number y such that
2V K| < oo,
=1

Dy IKi>y-1-a, (3.8)
j=1

2y ik =1
j=

= |~
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Then, in the interval (y, o), the characteristic equation (2.9) admits a unique root Ay;
this root has the property (2.11).

Theorem 3.7 and Corollary 3.8 below concern the behavior of solutions of the neutral
Volterra difference equation (2.2), while Theorem 3.9 and Corollary 3.10 below are deal-
ing with the behavior of solutions of the (non-neutral) Volterra difference equation (2.3).

THEOREM 3.7. Suppose that (G,)nen-10y and (Ky)nen-1o0} are nonpositive. Let Ay be a pos-
itive root of the characteristic equation (2.8) with Ay < 1 and with the property (2.10). Let
also Ay be a positive root of (2.8) with Ay < Ag. Then, for any ¢ = (¢n)nez- in S(Ao), the
solution (xn)nez of (2.2) and (2.7) satisfies

L(Ao;
Ul 15 ) <A77 |:xn . %Ag] < V0odi;d) VneEN. (3.9)

We immediately observe that the double inequality in the conclusion of Theorem 3.7
can equivalently be written as follows

) L(Ao; )
U(/lg,)n;qﬁ)(hl)) S/\(;"xn—l_i(_yo(/\qi)))sV(/lo,)n;¢)<A;> forn €N. (3.10)

Consequently, since A; < A9, we obtain

lim (Ay"x,) = 7L(Ao;¢)

lim Ty ()’ (3.11)

which establishes the following corollary.

CoroLLARY 3.8. Suppose that (Gu)nen—10} and (K,)nen—{0} are nonpositive. Let Ay be a
positive root of the characteristic equation (2.8) with Ay < 1 and with the property (2.10).
Assume that (2.8) has another positive root less than Ag. Then, for any ¢ = (¢n)nez- in S(Ao),
the solution (x,) ez of (2.2) and (2.7) satisfies

lim (") = % (3.12)

THEOREM 3.9. Suppose that (K,,)nen-1{0} is nonpositive. Let Ay be a positive root of the char-

acteristic equation (2.9) with the property (2.11). Let also Ay be a positive root of (2.9) with
M < Ao. Then, for any ¢ = (¢n)nez- in S(Ao), the solution (x,) ez of (2.3) and (2.7) satisfies

Lo(Aos¢)

Uo(Ao,Al;(p) S/\f [Xn— 1+)/0(A0)/‘0:| < Vo(/\o,Al;(/)) VnéeN. (3.13)

We see that the double inequality in the conclusion of Theorem 3.9 is equivalently
written as

A

. M ' . Lo (Ao; $) . A1 '
UO(AO’AI’(/))()LO) SAO Xn 1+)/0(/\()) SVo(Ao,Al,gb) /\0 forneN. (3.14)
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So, as A1 < Ag, we have

lim (45 "x,) = % (3.15)

This proves the following corollary.

CoRrOLLARY 3.10. Suppose that (Ky,)uen-1o} is nonpositive. Let Ay be a positive root of the
characteristic equation (2.9) with the property (2.11). Assume that (2.9) has another positive
root less than Ay. Then, for any ¢ = (¢n)uez- in S(Ao), the solution (x,)nez of (2.3) and (2.7)
satisfies

lim (A, "x,) = Lo (Aos )

lim 71_”/0(/10). (3.16)

Now, we state two propositions (Propositions 3.11 and 3.12) as well as two lemmas
(Lemmas 3.13 and 3.14). Proposition 3.11 and Lemma 3.13 give some useful information
about the positive roots of the characteristic equation (2.8), while Proposition 3.12 and
Lemma 3.14 are concerned with the special case of the positive roots of the characteristic
equation (2.9).

ProposiTiON 3.11. Suppose that (G,)nen—10} and (K,)nen-ioy are nonpositive. Let Ay be a
positive root of the characteristic equation (2.8) with Ay < 1. If there exists another positive
root Ay of (2.8) with A, < Ag such that

SAjIGH <o, SATIK] < oo, (3.17)
j=1 j=1
then Ay has the property (2.10).

ProrosITION 3.12. Suppose that (K,,),en- o} is nonpositive. Let Ay be a positive root of the
characteristic equation (2.9). If there exists another positive root Ay of (2.9) with A, < Ag
such that

SATjIK; | < oo, (3.18)
j=1
then Ay has the property (2.11).

LemMA 3.13. Suppose that (G,)nen- 10y and (Ky)nen-—{o} are nonpositive.
(I) Ifa =0, then A = 1 is not a root of the characteristic equation (2.8).
(IT) Assume that a = 0 and that

> |G| =1L (3.19)
j=1

Then, in the interval (1,0), the characteristic equation (2.8) has no roots.
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(IIT) Assume that
> jlGj| < o, (3.20)
j=1
DG+ 21K <1, (3.21)
j=1 j=1
>Kj| = a (3.22)
j=1

Then, in the interval (1,0), the characteristic equation (2.8) has no roots.
(IV) Assume that (3.22) holds, and let there exist a positive real number y withy < 1 and
y <a+1sothat

SyIilGil <o, Dyj|K;| <o, (3.23)
j=1 j=1
A=) 2y 7G|+ 2y |K;| >a+1-y. (3.24)
=1 i1

Moreover, assume that there exists a real number § with § >0 and a<d <a+1—y such
that

(6—a)i(a+1—8)—f|Gj| +i(a+1—6)—f|Kj| <. (3.25)
j=1 j=1

Then: (i) A = a+ 1 — & is not a root of the characteristic equation (2.8). (ii) A = y is not a
root of (2.8). (iii) In the interval (a+ 1 — §,1], (2.8) has a unique root. (iv) In the interval
(y,a+1-29), (2.8) has a unique root. (Note: We have § >0 andy<a+1-686<1.)

LemMa 3.14. Suppose that (Ky)nen—1{o} s nonpositive.
(I) a > —1 is a necessary condition for the characteristic equation (2.9) to have at least
one positive root.
(IT) The characteristic equation (2.9) has no positive roots greater than or equal to a+ 1.
(IIT) Let a > —1 and let there exist a positive real number y with y < a+ 1 so that

>y IjlK;| < oo, (3.26)
j=1

Sy IIKi| >a+1-y. (3.27)
j=1
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Moreover, assume that there exists a real number § with 0 < § < a+1 —y such that
Dla+1-8)7|K;| <. (3.28)
j=1

Then: (i) A = a+ 1 — § is not a root of the characteristic equation (2.9). (ii) A = y is not a root
of (2.9). (iii) In the interval (a+ 1 — 8,a+ 1), (2.9) has a unique root. (iv) In the interval
(y,a+1—=2), (2.9) has a unique root. (Note: We havey <a+1—-38<a+1).

It is an open problem to examine if Theorem 3.7, Corollary 3.8, and Proposition 3.11
remain valid without the restriction that the root Ay of the characteristic equation (2.8)
satisfies Ap < 1. Such a restriction is not a necessity in the non-neutral case (i.e., in
Theorem 3.9, Corollary 3.10, and Proposition 3.12).

The neutral Volterra difference equation with infinite delay (2.2) can be considered as
the discrete version of the neutral Volterra integrodifferential equation with unbounded
delay

|:x(t)+Jt G(t—s)x(s)ds} :ax(t)+£ K(t - s)x(s)ds, (3.29)

where a is a real number, G and K are continuous real-valued functions on the interval
[0,00), and K is assumed to be not eventually identically zero. In particular, the (non-
neutral) Volterra difference equation with infinite delay (2.3) can be viewed as the discrete
version of the (non-neutral) Volterra integrodifferential equation with unbounded delay

X (1) = ax(t) + Jt K(t - s)x(s)ds. (3.30)

The results obtained in this paper should be looked upon as the discrete analogues of the
ones given by Kordonis and Philos [19], Kordonis et al. [21], and Philos and Purnaras
[33], for the neutral Volterra integrodifferential equation with unbounded delay (3.29)
and, especially, for the (non-neutral) Volterra integrodifferential equation with unbound-
ed delay (3.30).

4. Proofs of the main results

Proof of Theorem 3.1. Let ¢ = (¢)ucz- be an initial sequence in S(Ay), and (x,) ez be the
solution of (2.2) and (2.7).
Define

Yn=2Ay"x, fornelZ (4.1)



Ch. G. Philos and I. K. Purnaras 13

Then, for each n € N, we obtain

A(xn + z G]-xn]) —ax, — ZKjxn,j
j=1

j=1

=A [AS (yn +3 7 Gﬂn—j) ] — My =28 D 0 Ky

j=1 j=1
=\ [/\OA (}’n + Z/\(;jGj)/n]) +(Ao—1—a)y,
Xo=1) X A Giynj Zlojijn—j]

i

j=1

=AS[/\OA(yn+z/\ojGj)’nj) Ao—l(ZAo )yn

+(Z/\(;JK) +(o—1) Z ]Gj)’nj ZAO_jKj)’nJ}
j=1 j=1 j=1

ZAS |:A0A<yn+Z)L0_jGjynj> ()— 1 Z ynfj)
= =
2

0 K (yn = yn-j) |-

(4.2)
So, (xn)nez satisfies (2.2) for n € N if and only if (y,)nez satisfies
A (yn + 2.4’ Gﬂn—j)
= (4.3)
(1—) ZAOJG — Ynj) ZAOJK —yn-j) formeN.
Moreover, the initial condition (2.7) can equivalently be written as
yn=MA""¢, forneZ . (4.4)
Furthermore, we see that (4.3) becomes
A (yn +2 /\oJGj)’n—j>
i=1
’ (4.5)

b gvelE ) Le(3)]
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for n € N. Thus, we have

Yn+ DA’ Giyn-j
j=1

1 © n—1 1 © n—1
= (1_A_> Z/‘OJGJ( > yr)—/rzlo’Kj( > yr)ﬂ\
0 j=1 Oj=l

r=n-—j r=n-—j

(4.6)

for every n € N, where A is a real constant. But, by using (4.4) and taking into account
the definition of L(A¢;¢), we can immediately verify that A = L(1¢;¢). Hence, (4.3) takes
the following equivalent form

Iut > A’ Giynj

j=1
1 * n-l1 1 o n—1
N (1AO>ZA°JGJ'< . y’)MZAOJKJ( > }’r>+L(7to;¢) forn € N.
j=1 r=n—j j=1 r=n—j
(4.7)
Next, we set
_ . LOe¢)
Zn = Yn Ty() forneZ. (4.8)

Then, we take into account the definition of y(A¢) to show that (4.7) may equivalently be
written as follows

[e°]
—Jj
Znt Z Ao Gjznj

i=1
j N el L el (4.9)
= (1= 2X'Gi| > z)|-+2AK| D z| forneN.
A0 P . AO .7 ~—.
j=1 r=n-j j=1 r=n—j
On the other hand, the initial condition (4.4) becomes

_ L(Ao;¢) _

Zn=A"¢,— ———~~ forneZ . 4.10

Now, by taking into account the definitions of (y,)xez and (z,)ncz, we conclude that
what we have to prove is that (z,,) ez satisfies

|zu| <u(Mo)M(Ao;¢) VneN. (4.11)

In the rest of the proof we will establish (4.11). From (4.10) and the definition of M(1y;¢)
it follows that

|zo| <M(Ag;¢p) forneZ. (4.12)
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We will show that
|z,| < M(Ap;¢) VneZ (4.13)
For this purpose, let us consider an arbitrary real number € > 0. Then (4.12) guarantees
that
|zu| <M(Ao;¢p) +€ forneZ . (4.14)
We claim that
|z.| <M(Ao;¢p) +€ foreveryn € Z. (4.15)

Otherwise, because of (4.14), there exists an integer 7y > 0 so that
|zu| <MAg;)+€ forneZwithn<ng—1, |z, | = M(Ao;) +€. (4.16)

Then, by taking into account the definition of y(A¢) and the fact that 0 < () < 1, from
(4.9) we obtain

M(Aos¢) +

|Zno|

[e9]

< 305165 lans +[1- ] S0 16,1 3 12

j=1 j=1 r=ng—j

no—1
1 . 0 (4.17)
+AZAOJ|K1|( > |zr|)
001 :

s[gkoj(u’l )Ll‘ )|G]|+ ZAO ]|K|] (Ao;p) +€]

= p(ho) [M(Aos¢) +€] < M(Ao3¢) +

This is a contradiction and consequently our claim is true, that is, (4.15) holds true. Since
(4.15) is fulfilled for all numbers € > 0, we conclude that (4.13) is always satisfied. Finally,
using (4.13) and taking again into account the definition of u(A¢), from (4.9) we derive,
for every n € N,

© » 1 n—1
aal = 3016 ¢ 1| 20716, 5 1)
j=1 r=n-—j
1 00 . n—1
+— > A |K; ( zr)
L O -

s[z)toj(1+‘1—;‘j>|G|+ ZAOJ|K|:| (Aos )
j=1 0

= u(20) M (A3 ¢).

Consequently, (4.11) has been proved.
The proof of our theorem is complete. O
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Proof of Theorem 3.3. Consider an arbitrary initial sequence ¢ = (¢,)sez- in S(Ap) and let
(xn)nez be the solution of (2.2) and (2.7). Then, by Theorem 3.1, it holds

L(Aos¢)

Aa Xy — m < ‘M(A())M(Ao,(p) VneN, (419)
which leads to
Ao x| < % +u(Ao)M(Ags¢p) for everyn €N. (4.20)
On the other hand, the definitions of M(A¢;¢) and N(Ag;¢) give
| L(Aos¢) |
M(Ap;¢) < N(Ag;) + ————~. 4.21
(s6) =N () + S0 (421)
Thus, we have
o 1+u(ho) )
AO |Xn| < 71_1_)/(/10) | /\(), | +u Ao (/1(),¢) forn e N. (422)

But, taking into account the definitions of L(Ao;¢), N (Ao;¢), and p(Ag), we obtain

1009 = ool + 3075 P o1+ 1= (S asrte ) i

r==j

+£;M(2hﬁww&|

=2 (4.23)
< [1+Z)Loj(1+ 1= |i) 1611+ ZAO 1K |} o)
j=1
= [1+u(Xo) IN(Ao;9).
This together with (4.22) give
, [1+p()]” .
o™ | xn | s{ (o) +u(do) fN(Ao;p) forneN (4.24)
and hence, by taking into account the definition of ®(1y), we have
[x0| <@A0)N(Ao;p)Ad VneEN. (4.25)

We have thus proved the first part of the theorem.
Next, we will establish the stability criterion contained in our theorem. Assume that
Ao < 1. Consider an arbitrary bounded initial sequence ¢ = (¢,,)ncz- in S and define

l[¢[| = sup |¢n]. (4.26)

nel-
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As Ay < 1, we immediately see that ¢ = (¢,),cz- belongs to S(Ap) and, in addition, that
N(Aos¢) < lI6l. (4.27)

The solution (x,),ez of (2.2) and (2.7) satisfies (4.25). By combining (4.25) and (4.27),
we obtain

|xi| <®(Ao)ll¢lIAG for everyn € N. (4.28)
Since Ag < 1, it follows from (4.28) that
|xn| <®(Xo)ll¢ll foranyn € N. (4.29)
Thus, as ©(Ag) > 1, we always have
|xu| <@o)llgll VneZ (4.30)

We have proved that, for any bounded initial sequence ¢ = (¢,)ncz- in S, the solution
(xn)nez of (2.2) and (2.7) satisfies (4.28) and (4.30). From (4.30) it follows that the trivial
solution of (2.2) is stable (at 0), provided that Ay < 1. Furthermore, if A¢ < 1, then (4.28)
ensures that lim, X, = 0 and hence the trivial solution of (2.2) is asymptotically stable
(at 0). Finally, if Ao < 1, then it follows from (4.28) that the trivial solution of (2.2) is also
exponentially stable (at 0).

The proof of the theorem has been finished. O

Proof of Lemma 3.5. Assumption (3.5) guarantees that

DAT|Gi| <o, DATV|Kj| <00, VAzy (4.31)
j=1 j=1

and hence the formula
F(A)=(/\—1)(1+Z/1jGj>—a—zAjKj forA >y (4.32)
j=1 j=1

defines a continuous real-valued function on the interval [y, co) . From condition (3.6) it
follows that
F(y) <o. (4.33)

Furthermore, for each A > y, we obtain

<ISaG < LSy G =YY Gyl (4.34)
Aa AS AS

lim > 177G, =0. (4.35)
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In a similar way, one can see that

Ahm Z)L JK; =0. (4.36)
So, we immediately verify that
F(o0) = o0, (4.37)

Now, by using the hypothesis that (K, ),en- {0} is not eventually identically zero as well as
condition (3.7), we derive for A >y

FM)=1+>17|1- (1—/{)1'}(;#;211]'1@

j=1

Gl -1 2A7)1K | (4.38)

which means that F is strictly increasing on (y, ). This fact together with (4.33) and
(4.37) guarantee that, in the interval (y, ), the equation F(1) = 0 (i.e., the character-
istic equation (2.8)) has a unique root Ay. Finally, by using again the hypothesis that
(Ki)nen-1oy is not eventually identically zero as well as condition (3.7), we get

[

S0’ (14 11 [) 1651+ 5 Zwm
sZ)LEj[1+<1+;0>}|G|+ Z)L0]|K| (4.39)

] 1

<iyf[1+(1+y) ]|G]|+y2y 7j|K;| = 1.

j=1

So, the root Ay of the characteristic equation (2.8) has the property (2.10). This completes
the proof of the lemma. O

Proof of Theorem 3.7. Let ¢ = (¢,)ncz- be an arbitrary initial sequence in S(A¢) and
(x4)nez be the solution of (2.2) and (2.7). Define (y,)nez and (2z,)necz as in the proof
of Theorem 3.1. As it has been shown in the proof of Theorem 3.1, the fact that (x,)ncz
satisfies (2.2) for n € N is equivalent to the fact that (z,)ncz satisfies (4.9), while the initial
condition (2.7) becomes (4.10). Furthermore, set

w, = (%) z, fornel. (4.40)
1
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Then it is easy to see that (4.9) can equivalently be written as follows

x " 1 © . n—1 A n—r
Wn+z/11]GjWn—j: <1—A—0)ZAOJGJ‘|: z ()t_?) Wr:|
j=1

j=1 r=n—j

N . . (4.41)
- Ai Z/\OjKj[ z (%) W,] forn € N.
0 j=1 r=n-—j 1
Moreover, the initial condition (4.10) is written in the following equivalent form
_1-n L(/\O’(p) n -
Wy =) |:</>,1 o Y(AO)/\O forneZ". (4.42)
In view of the definitions of (¥,)necz, (24)nez, and (wy)nez, we have
_1-n L(/\(),(b) n
Wy = A [xn T+ 7 (ko) Ay | forneZ (4.43)
From (4.42) and the definitions of U(Ag,A1;¢) and V (Ag,A;;¢) it follows that
U(Ao,Ai39) = ian Ws, V (Ao,A134) = supws. (4.44)
sel™

seZ-

So, by taking into account (4.43), we immediately conclude that all we have to prove is
that (w,,),ez satisfies

inf wy <w, < supws, VneN. (4.45)
seZ- seZ-

We restrict ourselves to show that

Wy, = ian ws foreveryn € N. (4.46)
NS

In a similar manner, one can prove that

wn < supws foreveryn € N. (4.47)
sel~

In the rest of the proof we will establish (4.46). To this end, it suffices to show that, for
any real number D with D < infsez- ws, it holds

w,>D VneN. (4.48)
Let us consider an arbitrary real number D with D < infscz- w;. Then we obviously have
w,>D fornelZ . (4.49)

Assume, for the sake of contradiction, that (4.48) fails. Then, because of (4.49), there
exists an integer 7y > 0 so that

wy,>D forneZwithn<ng—1,

W <D. (4.50)
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Hence, by using the hypothesis that (G, ),en- (0} and (K, )»en- {0} are nonpositive and that
(K )nen- 1oy is not eventually identically zero and taking into account the assumption that
Ao < 1, from (4.41) we obtain

3

—iAoK[(i’) IB (4.51)
:ﬁ{_[ue_l A1—1§ °_1§1< %')G)
Sy —/\Oj)K]}

j=1
e [
j=1 j=1
[ Al—li ]GJ+ZA1 ]}
j=1 j=1
D
:AO—Al[(AO_l_a)_(AI_I_Q)]:D'

This contradiction shows that (4.48) holds true.
The proof of the theorem is now complete. O

Proof of Theorem 3.9. First, let us notice that the main difference between the neutral case
and the non-neutral one is the existence (in the neutral case) of the terms

(o) . 1 00 » n—1 /‘, n
lejGjWn_j, (1 - /\_()> ZAOJG]‘[ Z (/\—(1)) Wy:| (4.52)
j=1 =n

j=1 r=n-—j
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in (4.41), which do not appear in the non-neutral case. In the special case of the
(non-neutral) Volterra difference equation (2.3), (4.41) becomes

W =——Z,\OJK[ Z Gi’) wr] for n e N. (4.53)

r=n—j

The need for assuming, in Theorem 3.7, that the root A of the characteristic equation
(2.8) is such that 1o < 1 is due only to the existence of the second of the above terms in
(4.41). After the above observations, we omit the proof of the theorem. O

Proof of Proposition 3.11. Assume that there exists another positive root A; of the charac-
teristic equation (2.8) with A; < A¢ such that (3.17) holds. Clearly,

> )tl_j Gj, > )Ll_jKj exist in R. (4.54)
j=1 E
So, since (Gy)nen—1o} and (K,)nen-0} are nonpositive, we must have
SAG <00, SN K| < . (4.55)
j=1 j=1
(This fact can also be obtained from (3.17).) This guarantees that
DAT|Gj| <o, DAT|Ki| <00, VA=) (4.56)
j=1 j=1
and consequently the formula
F()L)—(/\—l)(lJrZ/lej) —a—ZA’jKj forA =\ (4.57)
j=1 j=1
defines a real-valued function F on the interval [A;, c0). It follows from assumption (3.17)
that
DATj|Gj| <o, D ATj|Kj| <00, VAz A, (4.58)
j=1 j=1
which ensures that F is differentiable on [A;, o) with
F’(A):HZAJ[l—(l—l) ] %Z JiK; ford= A, (4.59)
j=1 j=1

Furthermore, by using the hypothesis that (G,,),en-10; and (K, )nen—{0} are nonpositive
and (K,)uen-{o} is not eventually identically zero, it is not difficult to check that F’ is
strictly increasing on the interval [A;,1]. (We notice that 0 < A, < Ag < 1.)

Now, observe that F(A;) = F(A¢) = 0, and so an application of Rolle’s theorem ensures
the existence of a real number & with A, < & < Ag so that F'(§) = 0. Since F’ is strictly
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increasing on [&,1], it follows that F’ is always positive on (&,1]. Hence, as & < Ay < 1, we
conclude, in particular, that F'(Ag) > 0, namely that

1+ZA01[1—(1—%>j]Gj+%ZA0ijj>o. (4.60)
j=1 0 0j=1

By taking into account the fact that (G,),en- 1oy and (K;)nen- (o} are nonpositive and that
Ao < 1, we see that the last inequality can equivalently be written as follows

1—Z)tgj(1+'1—i‘j)|cj|—iZAgfj|Kj|>o, (4.61)
j=1 Ao Ao i3
which means that Ay has the property (2.10).

The proof of the proposition is complete. O

Proof of Proposition 3.12. The proof will be omitted since it is similar to that of
Proposition 3.11. We restrict ourselves only to noting that here we have the differentiable
real-valued function F, defined by

FoM)=A-1-a->AJK; forA=) (4.62)
j=1
instead of F. We note that F; is strictly increasing on the whole interval [A;, ). O

Proof of Lemma 3.13. (I) Let us consider the case where a = 0. Then the characteristic
equation (2.8) takes the form

(A-1) (1 + iwc,) = i)erj. (4.63)
j=1 j=1

From the hypothesis that (K,),en—10; is nonpositive and not eventually identically zero,
it follows that

> K;<O0. (4.64)
j=1

Consequently, A = 1 cannot be a root of (4.63).
(II) Assume that (4.63) has a positive root y with y > 1. Then

(u— 1)(1+ZWG,-) = > uK;. (4.65)
j=1 j=1

In view of the fact that (G,),en- 10} is nonpositive and because of the assumption (3.19),

we get

1+ > u/Gi21+> Gj=1-> |Gj| z0. (4.66)
j=1 j=1 j=1
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Thus,
(y—1)<1+z,ﬂ'Gj> > 0. (4.67)
j=1

On the other hand, since (K,),en- 1o} is nonpositive and not eventually identically zero,
we have

> uK;<o. (4.68)
j=1

We have thus arrived at a contradiction.
(IIT) A particular consequence of assumption (3.21) is that

Y]

Z |Kj| < oo. (4.69)

Assumption (3.20) and (4.69) imply, in particular, that
2 |Gjl <o, > [Kj| < oo, (4.70)
j=1 j=1

(Note that the first of these facts can also be obtained from (3.21).) Thus, we can imme-
diately conclude that

SA|Gl <o, SAI|Kj| <o, VA= (4.71)
j=1 j=1
So, the formula
F(A) = (A—1)<1+2A1G,») —a->1JK; ford=>1 (4.72)
j=1 j=1

introduces a real-valued function F on the interval [1, ). From (3.20) and (4.69), it
follows that

DAUjGj| <o, D ATTj|Kj| <00, VAz1 (4.73)
j=1 j=1

and consequently the function F is differentiable on [1, o) with

+ZN[ (1_%>] %Z jK; ford=1.  (4.74)
i i1
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Furthermore, by the hypothesis that (G,)nen-10; and (Ky,)nen—{0} are nonpositive and
(Ku)nen- 10 is not eventually identically zero, we obtain for A > 1

P —1—ZM|G|+(1——)ZA 7161 - LS a1

j=1 j=1 11

N (4.75)
>1—Z 1G;| = 2 ilK;l.
j=1 j=1
Hence, by assumption (3.21), we find
F'(A)>0 foreveryd>1. (4.76)

This implies that F is strictly increasing on the interval (1, c0). Since (K,)nen-{o} 1S non-
positive, assumption (3.22) means that

F(1) > 0. (4.77)

Thus, the characteristic equation (2.8) cannot have roots in the interval (1, c0).
(IV) Assumption (3.22) means that (4.77) is true. Furthermore, assumption (3.23)
guarantees, in particular, that

> y7|Gj| < oo, >y IIKj| <o (4.78)
j=1 j=1
and consequently
DAIGjl <o, DATIKj| <o, VAzy. (4.79)
j=1 j=1
So, the formula
F(A)=(/\—1)(1+Z/ljGj>—a—zAjKj forA>y (4.80)
j=1 j=1

defines a real-valued function F on the interval [y, co). From assumption (3.23) it follows
that

DATjIGjl <o, D ATj|Kj| <, VAzy, (4.81)
j=1 j=1

which ensures that the function F is differentiable on [y, co) with

F'( _1+zw[1—<1—1>] i AjK; ford=y. (4.82)

j=1
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By using the hypothesis that (G,)nen-(0; and (Ky)nen-{o} are nonpositive and (K, ) nen—{0}
is not eventually identically zero, we can easily verify that F’ is strictly increasing on the
interval [y, 1]. Consequently,

F is strictly convex on [y,1]. (4.83)

Furthermore, we take into account the fact that (G,,),en-10; and (Kj,)nen- (o} are nonpos-
itive to conclude that assumption (3.24) means that

F(y) >0, (4.84)
while assumption (3.25) means that
Fla+1-96)<0. (4.85)

A particular consequence of (4.84) is that A = y is not a root of (2.8). Similarily, (4.85)
guarantees, in particular, that A = a+1 — § is not a root of (2.8). Moreover, from (4.77),
(4.83), and (4.85) it follows that, in the interval (a+ 1 — §,1], (2.8) has a unique root.
Finally, (4.83), (4.84), and (4.85) ensure that, in the interval (y,a+1— &), (2.8) has also
a unique root.

The lemma has now been proved. O

Proof of Lemma 3.14. (I) and (II) These parts can easily be established using the hypoth-
esis that (Kj,)nen- {0} is nonpositive and not eventually identically zero.

(III) By using the assumption (3.26) and following some arguments similar to those
in the proof of Lemma 3.13, we can see that the formula

FoM)=A-1-a->1JK; fordlzy (4.86)
j=1

defines a real-valued function Fy, which is differentiable on [y, ). Furthermore, the hy-
pothesis that (K,)en- 1o} is nonpositive and not eventually identically zero ensures that
F; is strictly increasing on the interval [y, ). So,

Fy is strictly convex on [y, ©). (4.87)
Now, as (Ky)sen- 1o} 1 nonpositive, assumption (3.27) means that
Fo(y) >0, (4.88)
while assumption (3.28) means that
Fo(a+1-0)<0. (4.89)

From (4.88) it follows, in particular, that A = y is not a root of (2.9), while (4.89) ensures,
in particular, that A = a+1 — § is not a root of (2.9). Next, by taking into account the fact
that (K, )nen- o} is nonpositive and not eventually identically zero, we see that

Fo(a+1) >0. (4.90)
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Because of (4.87), (4.89), and (4.90), we conclude that, in the interval (a+1—8,a+1),
(2.9) has a unique root. Moreover, (4.87), (4.88), and (4.89) guarantee that, in the interval
(y,a+1-94),(2.9) admits also a unique root.

We have thus completed the proof of our lemma. O
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