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1. Introduction

Consider the following difference system of the form:

xn+1 = λxn + f
(
yn
)
,

yn+1 = λyn + f
(
xn
)
,

n= 0,1,2, . . . , (1.1)

where λ∈ (0,1) is a constant, for any a,b ∈R, f :R→R is given by

f (u)=
⎧
⎪⎨

⎪⎩

1, u∈ [a,b],

0, u /∈ [a,b].
(1.2)

The system (1.1) can be viewed as the discrete version of the following two-neuron net-
work model:

dx

dt
=−αx+β f

(
y
(
[t]
))

,

dy

dt
=−αy +β f

(
x
(
[t]
))

,

(1.3)

where [·] denotes the greatest integer function, α > 0 represents the internal decay rate,
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2 Convergence and periodicity

β > 0 measures the synaptic strength, x(t) and y(t) denote the activations of the corre-
sponding neurons, respectively, and f is the activation function defined by (1.2).

In recent years, many research efforts have been made in neural modelling and anal-
ysis since one of the neural networks models with electronic circuit implementation was
proposed by Hopfield in [6]. System (1.3) describes the evolution of a network of two
identical neurons with excitatory interactions, which has found interesting applications
in image processing of moving objects and has been investigated in [7].

In fact, we can rewrite system (1.3) as the following form:

d

dt

(
x(t)eαt

)= βeαt f
(
y
(
[t]
))

,

d

dt

(
y(t)eαt

)= βeαt f
(
x
(
[t]
))
.

(1.4)

Let n be a positive integer. We integrate (1.4) from n to t ∈ [n,n+ 1) and obtain

x(t)eαt − x(n)eαn = β

α

(
eαt − eαn

)
f
(
y(n)

)
,

y(t)eαt − y(n)eαn = β

α

(
eαt − eαn

)
f
(
x(n)

)
.

(1.5)

For any nonnegative integer k, we denote x(k) and y(k) by xk and yk, respectively. Let
t→ n+ 1 in (1.5), then it follows that

xn+1 = 1
eα
xn +

β

α

(
1− 1

eα

)
f
(
yn
)
,

yn+1 = 1
eα

yn +
β

α

(
1− 1

eα

)
f
(
xn
)
,

n= 0,1,2, . . . . (1.6)

In view of system (1.6), we consider the following variables:

f ∗(u)= f
(
β
(
eα− 1

)

αeα
u
)

, a∗ = αeα

β
(
eα− 1

)a, b∗ = αeα

β
(
eα− 1

)b,

x∗n =
αeα

β
(
eα− 1

)xn, y∗n =
αeα

β
(
eα− 1

) yn, n= 0,1,2, . . . ,

(1.7)

and then drop the ∗ to get

xn+1 = 1
eα
xn + f

(
yn
)
,

yn+1 = 1
eα

yn + f
(
xn
)
,

n= 0,1,2, . . . . (1.8)

Obviously, system (1.8) is a special form of system (1.1) with λ= 1/eα. Thus, we may say
that (1.1) includes the discrete version of an artificial neural network of two neurons with
piecewise constant argument.
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On the other hand, the dynamics of the systems (1.1) and (1.3) have been extensively
studied in the literature. However, most of the existing results are concentrated on the case
where the function f is piecewise linear or a smooth sigmoid, see [2–5] and references
therein. Huang and Wu [7] and Meng et al. [9] studied the dynamics of system (1.3).
Yuan et al. [10] considered system (1.1), where the signal function f is of the following
piecewise constant McCulloch-Pitts nonlinearity: f (u) = 1 if u ≤ σ , f (u) = −1 if u > σ ,
for some constant σ ∈R.

The aim of this paper is to investigate the convergence and periodicity of solutions for
system (1.1) as f is of the digital nature (1.2), which describes the input-output relation
of a neuron.

For simplicity, let N denote the set of all nonnegative integers, and define N(m) =
{m,m+ 1,m+ 2, . . .}, N(m,n)= {m,m+ 1, . . . ,n} for any m,n∈N and m≤ n. Moreover,
we introduce the following notations:

I11 =
{

(x, y); x < a, y < a
}

, I12 =
{

(x, y); x < a, y ∈ [a,b]
}

,

I13 =
{

(x, y); x < a, y > b
}

, I21 =
{

(x, y); x ∈ [a,b], y < a
}

,

I22 =
{

(x, y); x ∈ [a,b], y ∈ [a,b]
}

, I23 =
{

(x, y); x ∈ [a,b], y > b
}

,

I31 =
{

(x, y); x > b, y < a
}

, I32 =
{

(x, y); x > b, y ∈ [a,b]
}

,

I33 =
{

(x, y); x > b, y > b
}

, γk = b

λk
(b > 0, k ∈N),

Θ=
⋃

k∈N

((
γk,γk+1

]× (γk,γk+1
])

, Λ=
⋃

k∈N

((
γk+1,+∞)× (γk,γk+1

])
,

Ω=
⋃

k∈N

((
γk,γk+1

]× (γk+1,+∞)).

(1.9)

Obviously,

3⋃

i, j=1

Ii j =R2, lim
k→+∞

γk = +∞, Θ∪Λ∪Ω= I33. (1.10)

By a solution of the system (1.1), we mean a sequence {(xn, yn)} of points in R2 that is
defined for all n ∈ N(1) and satisfies (1.1) for n ∈ N(1). Clearly, for any (x0, y0) ∈ R2,
system (1.1) has a unique solution {(xn, yn)} satisfying the initial condition (xn, yn)|n=0 =
(x0, y0).

For the general background of difference equations, one can refer to [1, 8].
This paper is divided into three parts. The main results and their proofs will be given

in Sections 2 and 3, respectively.

2. Main results

Throughout this paper, {(xn, yn)} denotes the unique solution of the system (1.1) with
initial value (x0, y0)∈R2.
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Proposition 2.1. If either b < 0 or a > 1/(1− λ), then (xn, yn)→ (0,0) as n→∞.

Remark 2.2. When 0 ≤ a < b < 1/(1− λ), solutions of system (1.1) are convergent and
periodic. Moreover, if we restrict a≤ λb, then the convergence and periodicity are similar
to the case as a < 0 < b < 1/(1− λ). Therefore, applying Proposition 2.1, we only consider
the case a < 0 < b < 1/(1− λ) in this paper.

Proposition 2.3. If a < 0 < b < 1/(1− λ), then
(1) (xn, yn)→ (0,1/(1− λ)) as n→∞ if (x0, y0)∈ I23∪Ω;
(2) (xn, yn)→ (1/(1− λ),0) as n→∞ if (x0, y0)∈ I32∪Λ.

Remark 2.4. By a simple analysis, if a < 0 < b < 1/(1− λ), we can find that the solution
{(xn, yn)} of system (1.1) with the initial value (x0, y0) ∈ R2 will be in the region I23 ∪
I32∪ I33 eventually. Note that Θ∪Λ∪Ω= I33, by Proposition 2.3, it remains to consider
the initial value (x0, y0)∈Θ.

Theorem 2.5. For m∈N(1), define

δm = 1
1− λ

− λm−1

1− λm+1
, εm = 1

1− λ
− λm

1− λm+1
. (2.1)

If a < 0 < λ/(1− λ2) ≤ b < 1/(1− λ) and b ∈ [δm,εm), then the solution {(xn, yn)} of sys-
tem (1.1) with the initial value (εm,εm) is periodic with minimal period m+ 1. Moreover,
for any solution {(xn, yn)} of (1.1) with the initial value (x0, y0)∈ (b,λb+ 1]× (b,λb+ 1],
limn→∞(xn− xn)= limn→∞(yn− yn)= 0.

Theorem 2.6. For m∈N(2), define

ζm = λm

1− λm+1
, ηm = λm−1

1− λm+1
. (2.2)

If a < 0 < b < λ/(1 − λ2) and b ∈ [ζm,ηm), then the solution {(xn, yn)} of the system
(1.1) with the initial value (ηm,ηm) is periodic with minimal period m+ 1. Moreover, for
any solution {(xn, yn)} of system (1.1) with the initial value (x0, y0) ∈ (b,b/λ]× (b,b/λ],
limn→∞(xn− xn)= limn→∞(yn− yn)= 0.

Remark 2.7. By the formulations in Theorems 2.5-2.6, it is easy to see that limm→∞ εm =
1/(1− λ) and limm→∞ηm = 0. Moreover, we have

λ

1− λ2
= δ1 < ε1 < δ2 < ε2 < δ3 < ··· < δm < εm < ··· , m∈N(1),

λ

1− λ2
= ζ1 > η2 > ζ2 > ··· > ηm−1 > ζm−1 > ηm > ··· , m∈N(2).

(2.3)

Corresponding to Theorems 2.5-2.6, we have the following two results.
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Theorem 2.8. Let x∗ = [b− (1− λm)/(1− λ)]/λm, and a < 0 < λ/(1− λ2)≤ b < 1/(1− λ).
For m∈N(1) and l ∈N, define

θm,l = λ(m+2)(l+2)−2(1− λ) +
(
1− λm

)(
1 + λ(m+2)(l+1)−1

)

(1− λ)
(
1− λ(m+2)(l+2)−1

)

+
λm+1

(
1− λm+1

)(
1− λ(m+2)l

)/(
1− λm+2

)

(1− λ)
(
1− λ(m+2)(l+2)−1

) ,

μm,l = 1− λm + λm+1
(
1− λm+1

)(
1− λ(m+2)(l+1)

)/(
1− λm+2

)

(1− λ)
(
1− λ(m+2)(l+2)−1

) ,

ξm,l =
(
1− λm

)(
1 + λm+1− λ(m+2)(l+2)−1

)
+ λ2m+2

(
1− λm+1

)(
1− λ(m+2)(l+1)

)/(
1− λm+2

)

(
1− λ(m+2)(l+2)−1

)
(1− λ)

.

(2.4)

(1) If b ∈ [θm,l,μm,l), then there exists a (x0, y0) ∈ (x∗,λb+ 1]× (x∗,λb+ 1] such that
the solution {(xn, yn)} of system (1.1) with the initial value (x0, y0) is periodic with
minimal period (m+ 2)(l + 2)− 1. Moreover, for any solution {(xn, yn)} of system
(1.1) with the initial value (x0, y0)∈ (x∗,λb+ 1]× (x∗,λb+ 1], limn→∞(xn− xn)=
limn→∞(yn− yn)= 0.

(2) If b∈ [ξm,l,μm,l), then there exists a (x0, y0)∈ (b,x∗]× (b,x∗] such that the solution
{(xn, yn)} of system (1.1) with the initial value (x0, y0) is periodic with minimal
period (m+ 2)(l+ 2)− 1. Moreover, for any solution {(xn, yn)} of system (1.1) with
the initial value (x0, y0)∈ (b,x∗]× (b,x∗], limn→∞(xn− xn)= limn→∞(yn− yn)=
0.

Theorem 2.9. Let x∗ = (b− λm)/λm+2, and let a < 0 < b < λ/(1− λ2). For m ∈ N(2), l ∈
N(1), define

ρm,l = λm
[
1 + λ(m+1)(l+1)+1 + λm+1

(
1− λ(m+1)l

)/(
1− λm+1

)]

1− λ(m+1)(l+2)+1
,

τm,l = λm
[
1 + λm+1

(
1− λ(m+1)(l+1)

)/(
1− λm+1

)]

1− λ(m+1)(l+2)+1
,

ωm,l = λm +
λ2m+2

[
1 + λm+1

(
1− λ(m+1)(l+1)

)/(
1− λm+1

)]

1− λ(m+1)(l+2)+1
.

(2.5)

(1) If b ∈ [ρm,l,τm,l), then there exists a (x̃0, ỹ0) ∈ (x∗,b/λ]× (x∗,b/λ] such that the
solution {(x̃n, ỹn)} of system (1.1) with the initial value (x̃0, ỹ0) is periodic with
minimal period (m+ 1)(l + 2) + 1. Moreover, for any solution {(xn, yn)} of system
(1.1) with the initial value (x0, y0) ∈ (x∗,b/λ] × (x∗,b/λ], limn→∞(xn − x̃n) =
limn→∞(yn− ỹn)= 0.

(2) If b∈ [ωm,l,τm,l), then there exists a (x̃0, ỹ0)∈ (b,x∗]× (b,x∗] such that the solution
{(x̃n, ỹn)} of system (1.1) with the initial value (x̃0, ỹ0) is periodic with minimal



6 Convergence and periodicity

period (m+ 1)(l + 2) + 1. Moreover, for any solution {(xn, yn)} of system (1.1) with
the initial value (x0, y0)∈(b,x∗]×(b,x∗], limn→∞(xn− x̃n)= limn→∞(yn− ỹn)= 0.

Remark 2.10. Obviously, [θm,l,μm,l) ⊆ (εm,δm+1), [ξm,l,μm,l) ⊆ (εm,δm+1), [ρm,l,τm,l) ⊆
(ηm+1,ζm), [ωm,l,τm,l)⊆ (ηm+1,ζm). Moreover,

εm < θm,0 < μm,0 < θm,1 < ··· < μm,l < θm,l+1 < μm,l+1 < ··· < δm+1,

εm < ξm,0 < μm,0 < ξm,1 < ··· < ξm,l < μm,l < ··· < δm+1,

ηm+1 < ρm,0 < τm,0 < ρm,1 < τm,1 < ··· < ρm,l < τm,l < ··· < ζm,

ηm+1 < ωm,0 < τm,0 < ωm,1 < ··· < ωm,l < τm,l < ··· < ζm.

(2.6)

It is easy to see that liml→∞μm,l = δm+1, and liml→∞ τm,l = ζm.
Furthermore, we have the following results.

Proposition 2.11. Let a < λ/(1− λ2)≤ b < 1/(1− λ), and let b ∈ (εm,δm+1) form∈N(1),
then

(1) (xn, yn)→ (1/(1− λ),0) as n→∞ if (x0, y0)∈ (x∗,λb+ 1]× (b,x∗];
(2) (xn, yn)→ (0,1/(1− λ)) as n→∞ if (x0, y0)∈ (b,x∗]× (x∗,λb+ 1],

where εm and δm+1 are given in Theorem 2.5, and x∗ is given in Theorem 2.8.

Proposition 2.12. Let a < 0 < b < λ/(1− λ2) and let b ∈ (ηm+1,ζm) for m∈N(1), then
(1) (xn, yn)→ (1/(1− λ),0) as n→∞ if (x0, y0)∈ (x∗,b/λ]× (b,x∗];
(2) (xn, yn)→ (0,1/(1− λ)) as n→∞ if (x0, y0)∈ (b,x∗]× (x∗,b/λ].

Here ηm+1 and ζm are given in Theorem 2.6, and x∗ is given in Theorem 2.9.

Remark 2.13. It is easy to see that Theorems 2.5–2.9 and Propositions 2.3–2.12 are valid
as a=−∞.

3. Proofs of main results

By (1.1) and (1.2), it is easy to see that system (1.1) has an obvious connection with the
following linear difference systems:

xn+1 = λxn + 1,

yn+1 = λyn + 1,

xn+1 = λxn + 1,

yn+1 = λyn,

xn+1 = λxn,

yn+1 = λyn + 1,

xn+1 = λxn,

yn+1 = λyn.
(3.1)

Therefore, we first consider the following relating equations:

un+1 = λun + 1, (3.2)

un+1 = λun. (3.3)

By induction, it is easy to check that, for n∈N(n0), the solution of (3.2) with the initial
value un0 = c is given by

un = λn−n0c+
1− λn−n0

1− λ
, n∈N

(
n0 + 1

)
, (3.4)
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and the solution of (3.3) with the initial value un0 = c is given by

un = λn−n0c, n∈N
(
n0 + 1

)
. (3.5)

Note that λ∈ (0,1), by formulations (3.4) and (3.5), it follows that limn→∞un = 1/(1− λ),
and limn→∞un = 0, respectively.

By a direct iterative method, we can prove Propositions 2.1–2.12 and the following
lemma.

Lemma 3.1. Let a < 0 < b < 1/(1− λ). Then, for every solution {(xn, yn)} of system (1.1)
with the initial value (x0, y0)∈R2, there exists a k ∈N such that one of the following results
holds:

(1) (xk, yk)∈ I23;
(2) (xk, yk)∈ I32;
(3) (xk, yk)∈ (b,λb+ 1]× (b,λb+ 1]∩ (b,b/λ]× (b,b/λ]⊆ I33.

Now we give the proofs of our main results.

Proof of Theorem 2.5. By λ/(1− λ2)≤ b < 1/(1− λ), it follows that λb < b < λb+ 1≤ b/λ.
If (x0, y0)∈ (b,λb+ 1]× (b,λb+ 1]⊆ I33, then

x1 = λx0 < b, y1 = λy0 < b,
(
x1, y1

)∈ (λb,b]× (λb,b]⊆ I22. (3.6)

In view of Lemma 3.1, there exists n1 ∈N such that

(
xn, yn

)∈ I22 for n∈N
(
1,n1

)
,

(
xn1+1, yn1+1

)
/∈ I22, (3.7)

where

xn1 = λn1x0 +
1− λn1−1

1− λ
≤ b, yn1 = λn1 y0 +

1− λn1−1

1− λ
≤ b. (3.8)

Since b ∈ [δm,εm), we have

(
xm, ym

)∈ I22,
(
xm+1, ym+1

)∈ (b,λb+ 1]× (b,λb+ 1]⊆ I33, (3.9)

then n1 =m. For l ∈N and k ∈N(1,m), repeating the above proceeding, we have

(
x(m+1)l, y(m+1)l

)∈ (b,λb+ 1]× (b,λb+ 1],
(
x(m+1)l+k, y(m+1)l+k

)∈ I22. (3.10)

In terms of (3.2) and (3.3), we define

f1(x)= λx+ 1, f2(x)= λx, (3.11)

and for (x, y)∈ (b,λb+ 1]× (b,λb+ 1], we define

Pm+1(x)=
(
f (m)
1 ◦ f2

)
(x), Rm+1(x, y)=(Pm+1(x),Pm+1(y)

)
, R(n+1)

m+1 =Rm+1 ◦R(n)
m+1.

(3.12)
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It follows that

Rm+1(x, y)=
(
λm+1x+

1− λm

1− λ
,λm+1y +

1− λm

1− λ

)
,

R(n)
m+1(x, y)=

(
λn(m+1)x+

1− λm

1− λ
· 1− λn(m+1)

1− λm+1
, λn(m+1)y +

1− λm

1− λ
· 1− λn(m+1)

1− λm+1

)
,

(3.13)

and limn→∞R
(n)
m+1(x, y)= (εm,εm).

In fact, (εm,εm) is the unique fixed point of Rm+1(x, y), and the solution {(xn, yn)}
of system (1.1) with the initial value (εm,εm) is periodic with minimal period m+ 1. By
(3.13), it follows that

(
x(m+1)l, y(m+1)l

)= R(l)
m+1

(
x0, y0

)
for

(
x0, y0

)∈ (b,λb+ 1]× (b,λb+ 1]. (3.14)

Therefore for any solution {(xn, yn)} of system (1.1) with the initial value (x0, y0) ∈
(b,λb + 1]× (b,λb + 1], we can get limn→∞(xn − xn) = limn→∞(yn − yn) = 0. The proof
is complete. �

Proof of Theorem 2.6. By 0 < b < λ/(1− λ2), we have (b− 1)/λ < λb < b < b/λ < λb+ 1. If
(x0, y0) ∈ (b,b/λ]× (b,b/λ] ⊆ I33, then x1 = λx0, y1 = λy0, x2 = λ2x0 + 1, y2 = λ2y0 + 1,
where (x1, y1)∈ I22, (x2, y2)∈ (b,λb+ 1]× (b,λb+ 1]⊆ I33, and

xn = λn−2x2 = λnx0 + λn−2, yn = λn−2y2 = λny0 + λn−2, n∈N(2). (3.15)

Since b ∈ [ζm,ηm), we have

(
xn, yn

)∈
(
b

λ
,λb+ 1

]
×
(
b

λ
,λb+ 1

]
, n∈N(2,m),

(
xm+1, ym+1

)∈
(
b,
b

λ

]
×
(
b,
b

λ

]
,

(
xm+2, ym+2

)∈ I22, m∈N(2).

(3.16)

For l ∈N, repeating the above proceeding, it follows that

(
x(m+1)l+k, y(m+1)l+k

)∈
(
b

λ
,λb+ 1

]
×
(
b

λ
,λb+ 1

]
, k ∈N(2,m),

(
x(m+1)l+1, y(m+1)l+1

)∈ I22,
(
x(m+1)l, y(m+1)l

)∈
(
b,
b

λ

]
×
(
b,
b

λ

]
.

(3.17)

In view of (3.11), for (x, y)∈ (b,b/λ]× (b,b/λ], we define

Gp+1(x, y)=
(
f

(p−1)
2 ◦ f1 ◦ f2(x), f

(p−1)
2 ◦ f1 ◦ f2(y)

)
, (3.18)
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and set G(n+1)
p+1 =Gp+1 ◦G(n)

p+1. Thus, we have

Gp+1(x, y)= (λp+1x+ λp−1,λp+1y + λp−1),

G(n)
p+1(x, y)=

(

λn(p+1)x+
λp−1

(
1− λn(p+1)

)

1− λp+1 ,λn(p+1)y +
λp−1

(
1− λn(p+1)

)

1− λp+1

)

,
(3.19)

and limn→∞G
(n)
m+1(x, y) = (ηm,ηm). In view of (3.19), for (x0, y0) ∈ (b,b/λ]× (b,b/λ], we

have (x(m+1)l, y(m+1)l)=G(l)
m+1(x0, y0).

Obviously, (ηm,ηm) is the unique fixed point of Gm+1 and the solution {(xn, yn)} of
system (1.1) with the initial value (ηm,ηm) is periodic with minimal period m+ 1. More-
over, for any solution {(xn, yn)} of system (1.1) with the initial value (x0, y0)∈ (b,b/λ]×
(b,b/λ], we have limn→∞(xn− xn)= limn→∞(yn− yn)= 0. The proof is complete. �

Proof of Theorem 2.8. We only prove the first claim, the other is similar.

For x ∈ (b,λb+ 1], we set Pm+1(x)= ( f (m)
1 ◦ f2)(x), where f1 and f2 have been given in

(3.11), and we have

Pm+1(x)= λm+1x+
1− λm

1− λ
, m∈N(1). (3.20)

Note b ∈ (εm,δm+1), we have 0 < x < 1/(1 − λ), Pm(x) < Pm+1(x), and Pm+1(x∗) = b,
Pm+2(x∗) = λb + 1. Moreover Pm+1(x) ∈ (b,λb + 1] for x ∈ (x∗,λb + 1], and Pm+2(x) ∈
(b,λb+ 1] for x ∈ (b,x∗].

Since b ≥ θm,0, we have

Pm+1(λb+ 1)≤ x∗, Pm+1
((
x∗,λb+ 1

])⊆ (b,x∗
]
. (3.21)

Furthermore, by b ∈ [θm,l,μm,l
)
, it follows that

P(l)
m+2 ◦Pm+1(λb+ 1)≤ x∗, P(l+1)

m+2 ◦Pm+1
(
x∗
)
> x∗. (3.22)

If the initial value (x0, y0) ∈ (x∗,λb + 1]× (x∗,λb + 1], then, for b ∈ [θm,l,μm,l) and n ∈
N(1), we have

(
xm+1+(m+2)n, ym+1+(m+2)n

)=
(
P(n)
m+2 ◦Pm+1

(
x0
)
,P(n)

m+2 ◦Pm+1
(
y0
))

,

(
xm+1+(m+2)k, ym+1+(m+2)k

)∈ (b,x∗
]× (b,x∗

]
for k ∈N(0, l),

(3.23)

and (xm+1+(m+2)(l+1), ym+1+(m+2)(l+1))∈ (x∗,λb+ 1]× (x∗,λb+ 1].
In view of (3.22), for (x, y)∈ (x∗,λb+ 1]× (x∗,λb+ 1], we denote

H(x, y)=
(
P(l+1)
m+2 ◦Pm+1(x),P(l+1)

m+2 ◦Pm+1(y)
)

, (3.24)

and it follows that (x(m+2)(l+2)−1, y(m+2)(l+2)−1)=H(x0, y0).
Obviously, there exists a (x0, y0)∈ (x∗,λb+ 1]× (x∗,λb+ 1] such that

lim
n→∞H

(n)(x, y)= (x0, y0

)
for (x, y)∈ (x∗,λb+ 1

]× (x∗,λb+ 1
]
, (3.25)
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where (x0, y0) is the unique fixed point of H . Therefore, the solution {(xn, yn)} of system
(1.1) with the initial value (x0, y0) ∈ (x∗,λb+ 1]× (x∗,λb+ 1] is periodic with minimal
period (m+ 2)(l + 2)− 1. Moreover, for any solution {(xn, yn)} of system (1.1) with the
initial value (x0, y0)∈ (x∗,λb+ 1]× (x∗,λb+ 1], we have limn→∞(xn− xn)= limn→∞(yn−
yn)= 0. The proof is complete. �

Proof of Theorem 2.9 is similar to that of Theorem 2.8 and is omitted.
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