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We study the third-order linear difference equation with quasi-differences and its adjoint
equation. The main results of the paper describe relationships between the oscillatory
and nonoscillatory solutions of both equations.
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1. Introduction

Consider the third-order linear difference equation
A(prA(1axn)) + GnXni1 = 0 (E)
and its adjoint equation
A(rpe1A(pulitn)) = Gui1tiniz = 0, (E4)

where A is the forward difference operator defined by Ax, = x,41 — x4, (pn), (rn), and
(gn) are sequences of positive real numbers for n € N.

This paper has been motivated by the paper [9], where third-order difference equa-
tions

A3Vn - pn+1AVn+1 + qn+1Vn+1 = 0)
(1.1)

A(Azun - Pn+lun+l) —qn2Un2 = 0

had been investigated. As it is noted here, these equations are not adjoint equations and
are referred to as quasi-adjoint equations.

Equation (E) is a special case of linear nth-order difference equations with quasi-differ-
ences. Such equations have been widely studied in the literature, see, for example, [6, 11]
and the references therein. The natural question which arises is to find the adjoint equa-
tion to (E) and to examine the connection between solutions of (E) and its adjoint one.
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2 Third-order linear difference equations

In the continuous case, it holds (see, e.g., [5, Theorem 8.33]) that

(ng)<r(1t)x,(t)) ) +q(H)x(t) =0 (12)
is oscillatory if and only if the adjoint equation
(T(lt)<p(1t)xl(t)) ) —q(t)x(t) =0 (13)

has the same property. In addition, nonoscillatory solutions of these equations satisfy
some interesting relationships, see, for example, [2, 5].

The aim of this paper is to investigate oscillatory and asymptotic properties of solu-
tions of (E) and (E#). We will prove that (E#) is the adjoint equation to (E) and we will
give discrete analogues of the above-quoted results for third-order differential equations.
Moreover, the oscillation of (E) and (E4) is characterized by means of second-order linear
difference equations and the problem of the number of oscillatory solutions in a given ba-
sis for the solution space of (E) and (E#) is investigated. Our results extend and complete
results of [7—10] stated for the various forms of third-order difference equations.

A solution x of (E) is a real sequence (x,) defined for all n € N and satisfying (E) for
all n € N. A solution of (E) is called nontrivial if for any ny = 1, there exists n > ng such
that x,, # 0. Otherwise, the solution is called trivial. A nontrivial solution x of (E) is said
to be oscillatory if for any ny > 1, there exists n > ny such that x,.1x, < 0. Otherwise,
the nontrivial solution is said to be nonoscillatory. Equation (E) is oscillatory if it has an
oscillatory solution. The same terminology is used for (E4).

Denote quasi-differences x!l, i = 0,1,2, of a solution x of (E) as follows:

x = x,, xM = r,Ax,, x2 = paaxll, x3 = Axl?), (1.4)

Similarly, denote quasi-differences ulll i =0,1,2, of a solution u of (E4) as follows:

uldl =y, ulll = p,Auy, ul? = rp Aull, ul’l = Aul?), (1.5)

All nonoscillatory solutions x of (E) can be a priori classified to the following classes:

No = {x:3n, st x,xlV <0, %612 >0 Vi = n,},

Ny = {x:3n, st xxl >0, 6,612 <0 Vi = n, ),
(1.6)
Ny = {x:3n, st x,xlV >0, 6,62 >0 Vi = n,},

N3 = {x:3n, st x,xlV <0, %62 <0 Vi = n},

and similarly solutions u of (E*) can be classified to the same classes, whereby quasi-
differences ul!, i = 1,2, are defined by (1.5), see [4, 3]. Solutions of (E) from the class Ny
are called Kneser solutions and solutions of (E4) which belong to the class N, are called
strongly monotone solutions.
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2. Relationship between (E) and (E4)
Solutions of (E) and (E*) are related by the following properties.

TaEOREM 2.1. (a) Let x, y be solutions of (E). Then the sequence C = (C,,) (n = 2) such that

Xn-1  Yn-1
Cnfl - C(xn layn 1) = 8 1] (21)
Xn-1 yn 1
is a solution of (E*).
(b) Let u,v be solutions of (E*). Then the sequence D = (D,,) (n > 2) such that
Un—1 Vn-1
Dn =D(un,1,vn,1) = [1] (1] (22)
Uy V-1
is a solution of (E).
Proof. Claim (a). For any two solutions x, y of (E), we have
anyLZ 1 ynAxn 1 = —XnGn-1Yn+ YnqQn-1%n = 0. (2.3)
Therefore,
AC,_; = anym +yn le,, 11— ynAxm xl,l,]lAyn,l
= any,Eljl + 1 AYpn-1A%x,-1 — ynAx,[f_]l — 1A% 1Ay (2.4)
= an)’m }’nAX,[ll—]l
Using the fact xn 1= = xZ Axm and (2.3), we obtain
Ll]l = pn1AC,y = xn}’Lz]l )’nxL211
2] (2] 25)
= Xn (yr[l —Ayn- ) In (x1[12] - Axnfl) = Xn i) = yuit.
By a direct computation in view of (2.3), we get
ACL1 = xﬂ+1Ay[2] ymAxn - ynHAx,[f] - xLz]Ayn = yLZ]Axn —xLz]Ayn, (2.6)

hence

2
= rACtt) = Xl y2) gl l2) (2.7)



4 Third-order linear difference equations
Finally

ACH, = XU Ayl2) g 2T Ax) I Axl2] _ l2 g 1]

~x @nyner + paly A + yY gunns — padxil Ayl (2.8)

1]
qn(xmynﬂ ynﬂx,[m) 4nCns1>

that is, C,_; is a solution of (EA).
Claim (b). By the similar argument as in (a), we get

AD, = unAv,[f_]l - VnAu,[f_]l. (2.9)

Using the fact uLz]l = u 2 + Aun », we obtain

D —rnAD = UyV, [2] vnuilz,ll

—un( 2] +Avn 2) v,,( (2] +Au[2]>

o) o) (2.10)
= Uy (Vn—z + qn_lvn> -V (”n—z + qn_lun>
= UnV LZ]Z —Val 1[12]2
Using the same argument as before, we get
ADIY = v Ay + up M, — il Avy = vadul,
, (2.11)
= V,E ]lAun - u Avn
Hence
= ppADIY = 21—y 2) (2.12)
Finally
ADP =yl AV 4y AL — AL — 21 Ay 1
= ull g v + rp AV ALY — v Mg 0 — 7 AulTAVEY
1 (2.13)
=—q [v[ VAuy, +u,) — ulll (Av, + vn)]
= —qn (PnAVnAun + unvy[zl] pnAunAVn — VYVl ) = _Qn n+1»
that is, D, is a solution of (E). O

Relationship between solutions of (E) and (E4) described in Theorem 2.1 is a discrete
analogue of the relationship valid for the differential (1.2) and its adjoint (1.3). For this
reason, we call (E4) the adjoint equation to (E). This is in accordance with the definition
of the adjoint system to the difference system as the following remark shows.
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Remark 2.2. According to [1, page 60], if X = {X,,} is a nontrivial solution of the system
Xnr1 = AnXy, (2.14)

then U = {U,}, where U, = (X,[)~! is a solution of the system
U, =AU, (2.15)

System (2.15) is called the adjoint system of (2.14).
Equation (E) can be written as a first-order difference system

1
AXLO] = r_x,[,ll])
n

Axlt = Lyl (2.16)

n

0
AxfF = —guxyih,

for the vector X, = (xLO] i ). Since x,[fjl = xl + Ax”) we have

1
Axth = —q, (x;[f)] + r—x;[f])- (2.17)
n

Using the usual convention that no index actually means the index n, otherwise the index
is explicitly specified, we obtain

1
0
I ! - 0 /1xlo]
1
Al l=lo 1 P PO (2.18)
2 [2]
i -q —% 1)

Hence (E) can be interpreted as the system of the form (2.14). Its adjoint system is

[ul0) 1 0 _Z Il
ulll [ =7 1 | ul | (2.19)
2]
“ o = 1 u;[12+]1
p

From here we get

2
A = WLJD

1
n_ L o, 9n [2]
Aun - rnun+1+ ru Unt1> (220)

1
A”;[az] = __”LlJr]l’

n
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and the last equation gives Aulll, = A(pnAu,[f] ). Replacing the shift # by n + 1 and sub-
stituting into the second equation, we have

1 n+l 2
—A(PnAuLzl) = o+ 2 :1 ullh. (2.21)
n n

Multiplying this equation by —r,4; and differentiating it, we obtain

A(r,,HA(pnAu,[f])) +A<qn+1un+2) Auﬂz. (2.22)
Substituting from the first equation in (2.20), we get

A (7'n+1A (PnAULZ] ) ) + Qn+2u,[q2+]3 — qn+1 U£l2+]2 Qn+2u£ﬁ3, (2.23)

which means that the sequence v, = ul?) satisfies (EA).

Notation 2.3. Let S denote the solution space of (E) and let S* denote the solution space
of (EA). For (x,u) € Sx S*, define & = (£,)), where
58 g(xn)un) - xn+1u[2] —XL1+] u[l] +x£12+]1”n+1 (224)

The functional & has the following properties.

Lemma 2.4. The sequence £ : S X S* — R is a constant which depends only on the choice of
solutions x and u, and not on n.

Proof. By a direct computation we get
AS, = A<xn+1u£,2] —x,[fj u“] +x[2+] unﬂ)
= xusa Al + U Ay — n+1A”[1] n+len+l
+ oA+ xB2 Ay, (2.25)
= Xpe2Gne1 Une2 + e AUl Ay — 11 Axpi Aul!
- Pn+1Aun+1Ax£l1+]1 — Un+2qn+1Xn+2 +Pn+1Ax;[11+]1Aun+1 =0,

which completes the proof. O

LEmMMA 2.5. Let x,y,z be solutions of (E). Let C and £ be defined by (2.1) and (2.24),
respectively. Then the sequence R = (R,,), where
Xn Yn Zn
Ry= |« i 2 (2.26)

NI

satisfies

R, = g(znfbcnfl)- (2-27)



Z.Dosldand A. Kobza 7

Proof. Expanding R, along its third column, we obtain

(1] (1]
Xn Vn Xn Yn Xn Yn
Ri=zn| oy "ol =@d | o | *ad | - (2.28)
Xn Yn Xn Yn Xn Yn
Using (2.24), we have
P(2p-1,Cn1) = z,CH, — 2l 4+ 221, (2.29)
From here, (2.1), (2.5), and (2.7) show that (2.27) holds. O

3. Nonoscillatory solutions of adjoint equations

In this section, we study nonoscillatory solutions. We start with the following auxiliary
results.

LeEmMA 3.1. There always exists nonoscillatory solution u of (EA) with the property
u, >0, ulll>0, ul?>0 forneN, (3.1)
that is, (E*) has a strongly monotone solution.

For the proof, see [4, Theorem 3.2].

LemMa 3.2. Ifasolution y of (E) satisfies for some integer m > 1 that

ym=0, yi<o,  y>o, (3.2)
then

w>0,  pl<o,  yso0 (3.3)

for each k € N such that 1 <k < m.

The proof follows from the proof of [3, Proposition 2].
The existence of Kneser solutions of (E) is ensured by the following result.

THEOREM 3.3. There always exists nonoscillatory solution x of (E) with the property
x>0, xU<0, xlZ>0 forneN, (3.4)

that is, (E) has a Kneser solution.

Proof. Letx = (x(n)), y = (y(n)), z = (z(n)) be a basis of the solution space S of (E). For
k € N, define

wi(n) = arx(n) + bry(n) + ckz(n), (3.5)
where ay, by, ¢k are chosen such that

wr(k) =0, we(k+1) =0, ai+bi+c =1 (3.6)
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Then w,[f] (k) = 0. By [3, Lemma 1], wi(k +2) # 0. Without loss of generality, assume that
wir(k+2)>0. Then

0N (k+1) = i Awg(k +1) = re (i (k+2) — w(k+1)) >0, (3.7)
hence
0l (k) = prdwl (k) = pe (@ (k+ 1) - 01 (k)) >0, (3.8)
Since
wrk)=0, wl(k)=0, wZ(k) >0, (3.9)
by Lemma 3.2
wr(n) >0, wi'(n)<0, w'(n)>0, forl<n<k. (3.10)

Put Ay = (ak,bi,ck). Then ||Agll = 1 for each k. The unit ball is compact in R?, so (Ax)
has a convergent subsequence (Ay,). Denote

A =limAyg, = (a,b,¢). (3.11)

i—00
Then a% + b2 + ¢ =1 and

w(n) =limwg, = lim (ax,x(n) + by, y(n) + cx,z(n)) (3.12)

1— 00

is a nontrivial solution of (E). Then in view of (3.10) and the fact that k is arbitrary
integer, we get

wn) =0, wln) <0, wlm =0 forn=1. (3.13)

If w(ny) = 0 for some n = ng, then w(n) = 0 for all n > ny which is a contradiction with
the fact that w is a nontrivial solution. Thus w(#) > 0 for every n = 1, and so

AwP(n)) = —g(n)w(n+1)<0 forn=1. (3.14)

Hence, w!?! is decreasing and so w!?!(n) > 0 for n € N. From here A(w!'(n)) >0 forn €
N, which implies that w!!! is increasing and w!!!(n) < 0 for n € N. O

THEOREM 3.4. Every nonoscillatory solution of (E2) is strongly monotone if and only if every
nonoscillatory solution of (E) is a Kneser solution.

Proof. Let every nonoscillatory solution of (E#) be strongly monotone. Assume by con-
tradiction that there exists solution y of (E) which belongs to the class N;, where i €
{1,2,3}. Let x be a Kneser solution of (E). Without loss of generality, we may suppose
that x, >0 and y, > 0 for large n. Then the sequence C defined by (2.1) is according to
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Theorem 2.1 solution of (E4) and in view of (2.5) and (2.7) it satisfies, for large n,

Co1>0, CW <0 (ifi=1)
Coo1 >0, CZ <o (ifi=2) (3.15)
cli<o, >0 (ifi=3).
This is a contradiction with the fact that C is strongly monotone solution.
Now suppose that every solution of (E) is a Kneser solution. Assume by contradiction
that there exists solution v of (E4) which belongs to the class N;, where i € {0,1,3}. Let
u be a strongly monotone solution of (E4). Without loss of generality, we may suppose

that u, >0 and v, > 0 for large n. Then the sequence D defined by (2.2) is according to
Theorem 2.1 solution of (E) and it satisfies, for large n,

D,<0, DP>o0 (ifi=0)
Dl <o, D <0 (ifi=1) (3.16)
D,<0, D<o (ifi=3).

This is a contradiction with the fact that D is a Kneser solution. O

4. Oscillatory properties of adjoint equations

LemMA 4.1. Let u be a strongly monotone solution and v an oscillatory solution of (E*).
Then their Casoratian D defined by (2.2) is an oscillatory solution of (E).

Proof. By Theorem 2.1, D is a solution of (E). We will show that D is an oscillatory so-
lution. Without loss of generality, we may suppose that u satisfies (3.1). Since v is an os-
cillatory solution, there exist increasing sequences of positive integers (i,) and (j,), with
properties

v; <0, vWso forne N,

n in

X (4.1)
v, =0, vﬁn] <0 forneN.
From the above inequalities, (2.2), and (3.1), we have
Dii =y (ol
i1 = Ui, v —viu o >0 forneN, (4.2)

n

and similarly Dj,;; < 0 for n € N. Hence the sequence D is an oscillatory solution of
(E). O

LEmMaA 4.2. Let x be a Kneser solution and y an oscillatory solution of (E). Then their
Casoratian C defined by (2.1) is an oscillatory solution of (E*).

Proof. By Theorem 2.1, C is a solution of (E4). We will show that C is an oscillatory
solution. Without loss of generality, we may suppose that x satisfies (3.4). Because y is an
oscillatory solution, there exist increasing sequences of positive integers (i,);” and (j,){’
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with properties

h>M,  y,<0, y>0 forneN,

1 (4.3)
j1>M, Y, =20, yj <0 forneN,
where M = min{n € N: y, y,1 <0}.
Assume that )’;[‘f] >0 for some n € N. Then by Lemma 3.2, we get
>0, yl<0 forl<k<jp, (4.4)

which is a contradiction with j; > M. Hence y][f] < 0 for n € N. From here and using (2.7)
follows

(2] (11 (2] (1] [2]
Cit1=x;, ¥, —Yj, % >0 forneN. (4.5)

By similar argument as before, we obtain y,-[nz] > 0 for n € N, which implies that

C[Z] =X 1])/1” —y,n ,[2] <0 forneN. (4.6)

By [3, Lemma 2], it follows from inequalities (4.5) and (4.6) that C is an oscillatory solu-
tion of (E4). The proof is now complete. O

Our next result characterizes the existence of oscillatory solutions of the adjoint equa-
tions.

THEOREM 4.3. Equation (EA) is oscillatory if and only if (E) is oscillatory.

The proof follows from Theorem 3.3 and Lemmas 3.1, 4.1, and 4.2.
In the sequel, we study the existence of an oscillatory solution in terms of second-order
equations.

TuEOREM 4.4. (a) If u is a nonoscillatory solution of (E*), then two linearly independent
solutions of (E) satisfy the second-order difference equation

2
Trut1 AXpp1 ) 4 UL ]

Xpi2 = 0. (4.7)
Un+1

pn+lA(

Un+1Un+2

(b) If x is a nonoscillatory solution of (E), then two linearly independent solutions of (E*)
satisfy the second-order difference equation

WA, [2]
rn+1A<p “ ) + xn+1 Un+1 = O (48)

Xn+1 Xn+1Xn+2

Proof. Claim (a). Let u be a fixed nonoscillatory solution of (E4) such that u, >0 for
n>N.LetL:S — R be the functional on S defined by L(x) = £ (x4, u,). The set

K={xeS:L(x) =0} (4.9)
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is the kernel of linear functional L defined on S. Then x € K satisfies
2
u,,ﬂx,[ﬁ]l - u,&”xﬂl +ulPlx, = 0.

Multiplying the last equation by (u,+1us+2) 7", we get

(2] (1 (1 (11,.01] 2]
Unt1Xpt1 — Uni1Xn+1 4 Unr1Xni1 —Un Xpp1 + Un Xnt+1
Un+1Un+2 Un+1Un+2 Un+1Un+2

From here and using

x;[11+]1 un+1Pn+leLl+]1 - x;[q1+]1Pn+1Aun+1
PrnA|l — | =

Un+1 Un+1Un+2
2] 1] (1]
Un+1Xn+1 — Unr1Xn+1
bl

Un+1Un+2
we obtain
[1] (1] [1] (2]
X X1 Aty Un Xna1
pn+1A n+l + n+l + n =0.
Un+1 Up+1Un+2 Up+1Un+2

In view of the identity

1
o Al 4+ ul2, 0 = ul2 Ay +ulP 1 = 4l 0,

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.13) can be rewritten in the form (4.7). Since dimK = dim S — 1 = 2, we get the conclu-

sion.

Claim (b). Let x be a fixed nonoscillatory solution of (E) such that x,, >0 for n > N.

Let L* : S* — R be the functional on S defined by L* (1) = £(x,,, uy). The set

K*={ueS*:L*(u) =0}
is the kernel of linear functional defined on S*. Then u € K* satisfies

! 2
Xy ul?! —x,[qjlui,” +x2 u =0,

Multiplying the last equation by (x,+1x,+2) "}, we get

(2] (1] (1] (2]
Xn+1Un = — Xyp1Un +xn+1un+1 - 0.

Xn+1Xn+2 Xn+1Xn+2

From here using

ub \  xa e Aul) —ul 0 Ax
Tn+1 A =

Xn+1 Xn+1Xn+2

Xn+1 ULZ] - -xy[zlJr]l MLI]

>

Xn+1Xn+2

we get (4.8). Since dimK* = dimS* — 1 = 2, we get the conclusion.

(4.15)

(4.16)

(4.17)

(4.18)
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CoroLLARY 4.5. (a) If (E) is oscillatory, then there exists a basis for S consisting of one
nonoscillatory solution and two oscillatory solutions.

(b) If (E*) is oscillatory, then there exists a basis for S* consisting of one nonoscillatory
solution and two oscillatory solutions.

Proof. By Theorem 3.3 and Lemma 3.1, there exist Kneser solution of (E) and strongly
monotone solution of (E#). Assume that (E) and (E#) are oscillatory. In view of Theorem
4.4 and its proof, (E) has two independent solutions which must be oscillatory. Similarly,
there exist two independent oscillatory solutions of (E4). Because dim$ = dimS* = 3,
the proof is complete. O

THEOREM 4.6. (a) If (4.7), where u is a nonoscillatory solution of (EA), is oscillatory, then
(E) and (E*) are oscillatory.

(b) If (4.8), where x is a nonoscillatory solution of (E), is oscillatory, then (E) and (E*)
are oscillatory.

Proof. Assume that (4.7) is oscillatory, that is, there exists an oscillatory solution x of
(4.7). Using the same argument as in the proof of Theorem 4.4, we obtain that x € K,
where K is defined by (4.9). Hence x is an oscillatory solution of (E). By Theorem 4.3,
(EA) is oscillatory, too.

Similarly, if u is an oscillatory solution of (4.8), then u € K*. Hence u is oscillatory
solution of (E#) and this implies that (E) is oscillatory too. O

TueoreM 4.7. Equation (E) is oscillatory if and only if (4.8) is oscillatory.

Proof. Assume that (E) is oscillatory, that is, there exists an oscillatory solution y of (E).
By Theorem 3.3, there exists a Kneser solution x of (E). According to (2.27),

Xn Yn Xn
0= [« Y ) = P(xuy, Coi), (4.19)
x[2] (2] (2]
n Yn Xn
where C is defined by (2.1). By Theorem 2.1, C is solution of (E4). From Lemma 4.2
follows that C is an oscillatory solution of (E4). In view of Lemma 2.4,

L*(C) =% (xy,Cy) =0, (4.20)

hence C € K*, where K* is defined by (4.15). From here and the proof of Theorem 4.4,
we get the fact that C is an oscillatory solution of (4.8). The opposite statement follows
from Theorem 4.6. O

Open problems.

(1) It is an open problem whether the existence of an oscillatory solution of (E4) im-
plies the oscillation of (4.7). To solve this problem, it would be useful to find the
functional £* defined on S* X S with similar properties to those of & described
in Lemmas 2.4 and 2.5.

(2) To generalize results of this paper to the linear nth-order difference equations
involving quasi-differences.
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