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1. Introduction

Singular nonlinear boundary value problems for differential equations and difference
equations have been extensively studied in the literature; see [1, 4, 11, 12, 16, 18–22]
and the references therein. However, the research for singular boundary value problems
on time scales is still in its beginning stages. In [8], the authors investigate the existence
of a positive solution for the three-point dynamic boundary value problem

yΔΔ + f (x, y)= 0, x ∈ (0,1], y(0)= 0, y(p)= y
(
σ2(1)

)
, (1.1)

where T is a time scale, the interval (0,1]∩T is abbreviated by (0,1], p ∈ (0,1) is fixed,
and f (x, y) is singular at y = 0 and possibly at x = 0, y =∞.

Throughout we denote by T a time scale, that is, a nonempty closed subset of the real
numbers. In this paper we study the singular second-order m-point dynamic boundary
value problem

xΔ∇ = f
(
t,x,xΔ

)
+ e(t), t ∈ (a,b],

xΔ(a)= 0, x
(
σ(b)

)=
m−2∑

i=1

aix
(
ξi
)
,

(1.2)

where ai ∈ R, ξi ∈ (a,σ(b)), i ∈ {1,2, . . . ,m− 2}, and f : (a,σ(b))×R2 → R satisfies the
Carathéodory conditions, that is, for each (x, y)∈R2, the function f (·,x, y) is measurable
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on (a,σ(b)) and for (see Definition 2.1)∇-a.e. t ∈ (a,σ(b)), the function f (t,·,·) is con-
tinuous on R2. Here we allow f and e to be singular at t = σ(b).

In particular, when the nonlinearity f does not contain xΔ, the problem (1.2) has
been investigated for the nonsingular case by some authors, see He [10]; when T=R, the
problem (1.2) has been studied for the nonsingular case by Gupta et al. [9] and Ma [14]
to name a few. Recently, Ma and O’Regan [16] established the existence of a solution to
the singular problem (1.2) in the special case T=R by making use of the ideas of [4, 9].
The motivation for this paper is [16].

The paper is organized as follows. In Section 2, we state some preliminary definitions
and results about Lebesgue delta and nabla integrals. We then give all spaces relevant
to our work and present the main assumptions ensuring us to obtain the main results.
Section 3 is devoted to the study of the properties of Green’s function. We also state and
prove some lemmas which are required for discussing the problem (1.2). Then we estab-
lish the existence of one solution to the problem (1.2) in Section 4.

The time scale related notations adopted in this paper can be found, if not explained
specifically, in almost all literature related to time scales. The readers who are unfamiliar
with this area can consult for example [2, 3, 5–8, 10, 13, 15] for details.

2. The Lebesgue delta and nabla integrals

The integrals mentioned in this paper refer to the Lebesgue integrals on the time scale T.
For the main notions and facts from Lebesgue measures and Lebesgue integrals theory,
we refer the reader to [5] and [7, pages 157–163]. Here we give some definitions and
lemmas for the convenience of the reader.

Let μΔ and μ∇ be the Lebesgue Δ-measure and the Lebesgue∇-measure on T, respec-
tively. If A ⊂ T satisfies μΔ(A) = μ∇(A), then we call A measurable on T and denote by
μ(A) this same value, named the Lebesgue measure of A.

Definition 2.1. Let P denote a proposition with respect to t ∈ T, A⊂ T.
(1) If there exists E1 ⊂ A with μΔ(E1)= 0 such that P holds on A\E1, then P is said

to hold Δ-a.e. on A.
(2) If there exists E2 ⊂ A with μ∇(E2)= 0 such that P holds on A\E2, then P is said

to hold∇-a.e. on A.
(3) If there exists E1 ⊂ A with μΔ(E1) = 0 and E2 ⊂ A with μ∇(E2) = 0 such that P

holds on A\(E1∪E2), then P is said to hold Δ∇-a.e. on A (or∇Δ-a.e. on A).
(4) If there exists E ⊂ A with μ(E) = 0 such that P holds on A\E, then P is said to

hold a.e. on A.

Clearly, if P holds a.e. on A ⊂ T, then P holds Δ-a.e. on A, ∇-a.e. on A, and Δ∇-a.e.
on A simultaneously.

Remark 2.2. In the case T = R, all concepts defined above coincide with that of a.e. on
R. In this case we have μΔ = μ∇ = μ =m, where m is the usual Lebesgue measure on R.
In the case T= Z, for any subset E ⊂ Z, we know that μΔ(E)= μ∇(E) coincides with the
number of points of the set E. So μ(E)= μΔ(E)= μ∇(E)= 0 if and only if E =∅.
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Combining [7, Theorems 5.82 and 5.84], we have the following example as a further
illustration of Definition 2.1.

Example 2.3. Let f be a bounded function defined on the finite closed interval [r,s].
Assume that f is regulated. Consider the conditions:

(1) f is Riemann Δ-integrable from r to s;
(2) f is Riemann∇-integrable from r to s.

We have
(a) if (1) holds, then f is rd-continuous Δ-a.e. on [r,s);
(b) if (2) holds, then f is ld-continuous∇-a.e. on (r,s];
(c) if both (1) and (2) hold, then f is continuous Δ∇-a.e. on (r,s). If, moreover, r =

minT and s=maxT, then f is continuous Δ∇-a.e. on [r,s]. Here the continuity
of f at r and s is understood as continuous from the right and left, respectively.

Definition 2.4. For a set E ⊂ T and a function f : E→R, the Lebesgue integrals of f over
E denoted by

∫

E
f (t)Δt,

∫

E
f (t)∇t (2.1)

are called the Lebesgue Δ-integral of f over E and the Lebesgue ∇-integral of f over
E on T, respectively. Furthermore, we call f Lebesgue Δ-integrable on E and Lebesgue
∇-integrable on E if

∫
E f (t)Δt and

∫
E f (t)∇t are finite, respectively.

Let r,s∈ T, r ≤ s. We will use the notations

∫ s

r
f (t)Δt =

∫

[r,s)
f (t)Δt,

∫ s

r
f (t)∇t =

∫

(r,s]
f (t)∇t, (2.2)

respectively. Both intervals [r,r) and (s,s] are understood as the empty set.
From [7, page 159], we have that all theorems of the general Lebesgue integration

theory hold also for the Lebesgue delta and nabla integrals on T.

Lemma 2.5. If f is Lebesgue Δ-integrable on [r,s), then the indefinite integral
∫ t
r f (�)Δ� is

absolutely continuous on [r,s].

Lemma 2.6. If f is Lebesgue∇-integrable on (r,s], then the indefinite integral
∫ t
r f (�)∇� is

absolutely continuous on [r,s].

Lemma 2.7. If f is Lebesgue Δ-integrable on [r,s), then F defined by

F(t)=
∫ t

r
f (�)Δ�, t ∈ [r,s) satisfies FΔ = f Δ-a.e. on [r,s). (2.3)

Lemma 2.8. If f is Lebesgue∇-integrable on (r,s], then F defined by

F(t)=
∫ t

r
f (�)∇�, t ∈ (r,s] satisfies F∇ = f ∇-a.e. on (r,s]. (2.4)
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Lemma 2.9. If f is everywhere finite and absolutely continuous on [r,s], then f Δ exists
Δ-a.e. and is Lebesgue Δ-integrable on [r,s) and satisfies

f (t)=
∫ t

r
f Δ(�)Δ� + f (r), t ∈ [r,s]. (2.5)

Lemma 2.10. If f is everywhere finite and absolutely continuous on [r,s], then f ∇ exists
∇-a.e. and is Lebesgue∇-integrable on (r,s] and satisfies

f (t)=
∫ t

r
f ∇(�)∇� + f (r), t ∈ [r,s]. (2.6)

Lemma 2.11. Let f be defined on [r,s].
(i) If f is continuous on [r,s), then

∫ s
r f (ρ(t))∇t = ∫ sr f (t)Δt;

(ii) if f is continuous on (r,s], then
∫ s
r f (σ(t))Δt = ∫ sr f (t)∇t.

Proof. We only show (i) as the proof of (ii) is similar to the proof of (i). Since f is con-
tinuous on [r,s), there exists F : [r,s]→R such that FΔ = f holds on [r,s). Then

F∇(t)= FΔ
(
ρ(t)

)= f
(
ρ(t)

)
, ∀t ∈ (r,s] (2.7)

by [6, Theorem 8.49]. So

∫ s

r
f (t)Δt =

∫ s

r
FΔ(t)Δt = F(s)−F(r),

∫ s

r
f
(
ρ(t)

)∇t =
∫ s

r
FΔ
(
ρ(t)

)∇t =
∫ s

r
F∇(t)∇t = F(s)−F(r).

(2.8)

This implies that (i) holds. �

Now we define the Banach spaces C[a,σ(b)], CΔ[a,σ(b)], and L∇(a,σ(b)] to be the
sets of all continuous functions on [a,σ(b)] with the sup norm ‖·‖∞, all Δ-differentiable
functions with continuous Δ-derivative on [a,σ(b)] with the norm ‖x‖ = max{‖x‖∞,
‖xΔ‖∞}, and all Lebesgue ∇-integrable functions on (a,σ(b)] with the norm ‖x‖ =
∫ σ(b)
a |x(t)|∇t, respectively. Let

L∇loc

(
a,σ(b)

)= {x : x |(a,d]∈ L∇(a,d] for every interval (a,d]⊆ (a,σ(b)
)}
. (2.9)

We denote by AC[a,σ(b)] the space of all absolutely continuous functions on [a,σ(b)]
and set

ACloc
[
a,σ(b)

)= {x : x |[a,d]∈AC[a,d] for every interval [a,d]⊆ [a,σ(b)
)}
. (2.10)

Let E be the Banach space

E = {x ∈ L∇loc

(
a,σ(b)

)
:
[
σ(b)− ρ

]
x ∈ L∇

(
a,σ(b)

]}
, (2.11)
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equipped with the norm

‖x‖E =
∫ σ(b)

a

[
σ(b)− ρ(t)

]∣∣x(t)
∣
∣∇t, (2.12)

and let X be the Banach space

X =
{
u∈ CΔ

[
a,σ(b)

)
: u∈ C

[
a,σ(b)

]
, lim
t→σ(b)

[
σ(b)− t

]
uΔ(t) exists

}
, (2.13)

equipped with the norm

‖u‖X =max
{‖u‖∞,

∥
∥[σ(b)− τ

]
uΔ
∥
∥∞
}

, where τ(t) := t, ∀t ∈ T. (2.14)

A function x : [a,σ(b)]→R is said to be a solution of the problem (1.2) provided x is Δ-
differentiable Δ-a.e. on [a,σ(b)), xΔ is∇-differentiable Δ∇-a.e. on (a,b], xΔ∇ : (a,b]→R
satisfies the dynamic equation in (1.2), and x fulfills the boundary conditions in (1.2).

We make the following assumptions throughout this paper.
(A0) σ(b) �= maxT, ξi ∈ (a,σ(b)) for i ∈ {1,2, . . . ,m− 2}, a < ξ1 < ξ2 < ··· < ξm−2 <

σ(b), ai ∈R for i∈ {1,2, . . . ,m− 2}, m≥ 3, and

m−2∑

i=1

ai �= 1. We define A := 1 +

∑m−2
i=1

∣
∣ai
∣
∣

∣
∣
∣1−∑m−2

i=1 ai
∣
∣
∣
. (2.15)

(A1) There exist p,q,r ∈ E such that for (u,v)∈R2 we have

| f (t,u,v)| ≤ p(t)|u|+ [σ(b)− t]q(t)|v|+ r(t),∇-a.e. on (a,σ(b)]. (2.16)

(A2) e ∈ E, that is, e ∈ L∇loc(a,σ(b)) and
∫ σ(b)
a [σ(b)− ρ(t)]|e(t)|∇t <∞.

By (A1) and (A2), we allow f (·,u,v) and e(·) to be singular at t = σ(b). When σ(b)= b,
their singularities are clear. When σ(b) > b, their singularities are reflected on that both
f (·,u,v) and e(·) may not be defined at t = σ(b). If we put f (σ(b),u,v)=∞, then

∫ σ(b)

a
f (t,u,v)∇t =

∫ b

a
f (t,u,v)∇t+ f

(
σ(b),u,v

)[
σ(b)− b

]=∞. (2.17)

Now (2.16) means that∞=∞ provided p(σ(b))= q(σ(b))= r(σ(b))=∞.

3. Green’s function and preliminary lemmas

Let G be Green’s function of the second-order boundary value problem

−xΔ∇ = 0, on (a,b], xΔ(a)= 0, x
(
σ(b)

)= 0, (3.1)
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which can be explicitly given by

G(t,s)=
⎧
⎨

⎩

σ(b)− s if a≤ t ≤ s≤ σ(b),

σ(b)− t if a≤ s≤ t ≤ σ(b).
(3.2)

From this explicit representation, the following lemma is clear.

Lemma 3.1. We have

0≤G(t,s)≤G(s,s), ∀s, t ∈ [a,σ(b)
]
. (3.3)

For each y ∈ E, we define

u(t)=
∫ σ(b)

a
G(t,s)y(s)∇s, for t ∈ [a,σ(b)

]
. (3.4)

Since
∣
∣
∣
∣

∫ σ(b)

a
G(t,s)y(s)∇s

∣
∣
∣
∣≤

∫ σ(b)

a
G(s,s)

∣
∣y(s)

∣
∣∇s

=
∫ σ(b)

a

[
σ(b)− s

]∣∣y(s)
∣
∣∇s

≤
∫ σ(b)

a

[
σ(b)− ρ(s)

]∣∣y(s)
∣
∣∇s

= ‖y‖E <∞,

(3.5)

we know that u : [a,σ(b)]→R is well defined.

Lemma 3.2. Let y ∈ E. Then

∫ σ(b)

a
G(·,s)y(s)∇s∈ACloc

[
a,σ(b)

)
. (3.6)

Proof. We have

∫ σ(b)

a
G(t,s)y(s)∇s=

∫ t

a

[
σ(b)− t

]
y(s)∇s+

∫ σ(b)

t

[
σ(b)− s

]
y(s)∇s. (3.7)

Since y ∈ E, we have y ∈ L∇loc(a,σ(b)) and [σ(b)− τ]y ∈ L∇(a,σ(b)]. Thus (3.6) follows
from Lemma 2.6. �

Lemma 3.3. Let y ∈ E. Then

ŷ ∈ L∇
(
a,σ(b)

]
, where ŷ(t) :=

∫ t

a
y(s)∇s, ∀t ∈ T. (3.8)

Proof. Set

Φ(t,s)=
⎧
⎨

⎩

y(s) if a≤ s≤ t ≤ σ(b),

0 if a≤ t < s≤ σ(b).
(3.9)
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Since
∫ σ(b)

a

∫ σ(b)

a

∣
∣Φ(t,s)

∣
∣∇t∇s=

∫ σ(b)

a

∫ σ(b)

ρ(s)

∣
∣y(s)

∣
∣∇t∇s

=
∫ σ(b)

a

[
σ(b)− ρ(s)

]∣∣y(s)
∣
∣∇s= ‖y‖E <∞,

(3.10)

we get by the Fubini theorem [2] that

∫ t

a

∣
∣y(s)

∣
∣∇s=

∫ σ(b)

a

∣
∣Φ(t,s)

∣
∣∇s∈ L∇

(
a,σ(b)

]
. (3.11)

Furthermore,
∫ σ(b)

a

∣
∣
∣
∣

∫ t

a
y(s)∇s

∣
∣
∣
∣∇t =

∫ σ(b)

a

∣
∣
∣
∣

∫ σ(b)

a
Φ(t,s)∇s

∣
∣
∣
∣∇t

≤
∫ σ(b)

a

∫ σ(b)

a

∣
∣Φ(t,s)

∣
∣∇s∇t

=
∫ σ(b)

a

∫ σ(b)

a

∣
∣Φ(t,s)

∣
∣∇t∇s <∞.

(3.12)

Thus (3.8) holds. �

Lemma 3.4. Let y ∈ E. Then

lim
t→σ(b)

∫ σ(b)

a
G(t,s)y(s)∇s= 0. (3.13)

Proof. We have

lim
t→σ(b)

∫ σ(b)

a
G(t,s)y(s)∇s= lim

t→σ(b)

{∫ t

a

[
σ(b)− t

]
y(s)∇s+

∫ σ(b)

t

[
σ(b)− s

]
y(s)∇s

}
.

(3.14)

Since y ∈ E, we have [σ(b)− τ]y ∈ L∇(a,σ(b)]. So

lim
t→σ(b)

∫ σ(b)

t

[
σ(b)− s

]
y(s)∇s= 0. (3.15)

Now we verify that

lim
t→σ(b)

∫ t

a

[
σ(b)− t

]
y(s)∇s= 0 (3.16)

holds, which completes the proof. We have

∫ σ(b)

t

∫ r

a
y(s)∇s∇r =

∣
∣
∣
∣r
∫ r

a
y(s)∇s

∣
∣
∣
∣

σ(b)

t
−
∫ σ(b)

t
ρ(r)y(r)∇r

= [σ(b)− t
]
∫ t

a
y(s)∇s+

∫ σ(b)

t

[
σ(b)− ρ(s)

]
y(s)∇s.

(3.17)
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Since y ∈ E, we have [σ(b)− ρ]y ∈ L∇(a,σ(b)], so

lim
t→σ(b)

∫ σ(b)

t

[
σ(b)− ρ(s)

]
y(s)∇s= 0. (3.18)

On the other hand, we know from Lemma 3.3 that ŷ ∈ L∇(a,σ(b)], so

lim
t→σ(b)

∫ σ(b)

t

∫ r

a
y(s)∇s∇r = lim

t→σ(b)

∫ σ(b)

t
ŷ(r)∇r = 0. (3.19)

Therefore the limit in (3.16) exists and is equal to zero, that is, (3.16) holds. �

For each y ∈ E, we define

(Ty)(t)=
∫ σ(b)

a
G(t,s)y(s)∇s+

1

1−∑m−2
i=1 ai

m−2∑

i=1

ai

∫ σ(b)

a
G
(
ξi,s
)
y(s)∇s. (3.20)

Now since (using Lemma 3.1 and the notation introduced in (A0))

∣
∣(Ty)(t)

∣
∣≤

∫ σ(b)

a
G(s,s)

∣
∣y(s)

∣
∣∇s+

1
∣
∣1−∑m−2

i=1 ai
∣
∣

m−2∑

i=1

∣
∣ai
∣
∣
∫ σ(b)

a
G(s,s)

∣
∣y(s)

∣
∣∇s

= A
∫ σ(b)

a

[
σ(b)− s

]∣∣y(s)
∣
∣∇s≤A‖y‖E <∞,

(3.21)

we know from (A0) that Ty : [a,σ(b)]→R is well defined.

Lemma 3.5. Let y ∈ E. Then Ty ∈ X and

(Ty)Δ∇ + y = 0, Δ∇-a.e. on (a,b]. (3.22)

Proof. By using Lemma 3.2, Ty ∈ ACloc[a,σ(b)) for y ∈ E. Together with Lemma 2.9, we
have that Ty is Δ-differentiable Δ-a.e. on [a,σ(b)). Then

(Ty)Δ(t)=−
∫ t

a
y(s)∇s, (3.23)

so (Ty)Δ ∈ACloc[a,σ(b)) since y ∈ L∇loc(a,σ(b)). Next,

(Ty)Δ∇(t)=−y(t), Δ∇-a.e. on (a,b]. (3.24)

(Note that μ∇({b})= b− ρ(b) > 0 when ρ(b) < b. If σ(b)= b holds at the same time, that
is, b is an lsrd point, then this equality just holds for Δ∇-a.e. t ∈ (a,b). Further, by means
of the definition of Δ∇-a.e. and the fact of μΔ({b})= 0 for σ(b)= b, we get (3.24).) Next,
since

(Ty)(t)=
∫ t

a
(Ty)Δ(s)Δs+ (Ty)(a) (3.25)
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and (Ty)Δ ∈ L∇(a,σ(b)] from Lemma 3.3, we haveTy ∈AC[a,σ(b)] by means of Lemma
2.6. Now we need to verify that limt→σ(b)[σ(b)− t](Ty)Δ(t) exists. Indeed, according to

lim
t→σ(b)

[
σ(b)− t

]
(Ty)Δ(t)=− lim

t→σ(b)

∫ t

a

[
σ(b)− t

]
y(s)∇s, (3.26)

we obtain the existence of the above limit from the proof of Lemma 3.4. Therefore, Ty ∈
X when y ∈ E. The proof is complete. �

Lemma 3.6. Let y ∈ E. Then

(Ty)Δ(a)= 0, (Ty)(σ(b))=
m−2∑

i=1

ai(Ty)(ξi). (3.27)

Proof. The fact that (Ty)Δ ∈ C[a,σ(b)) and y ∈ L∇loc(a,σ(b)) imply that

(Ty)Δ(a)= lim
t→a

(Ty)Δ(t)=− lim
t→a

∫ t

a
y(s)∇s= 0. (3.28)

From Ty ∈ C[a,σ(b)] and Lemma 3.4, we have

(Ty)
(
σ(b)

)= lim
t→σ(b)

(Ty)(t)

= lim
t→σ(b)

∫ σ(b)

a
G(t,s)y(s)∇s+

1

1−∑m−2
i=1 ai

m−2∑

i=1

ai

∫ σ(b)

a
G
(
ξi,s
)
y(s)∇s

= 1

1−∑m−2
i=1 ai

m−2∑

i=1

ai

∫ σ(b)

a
G
(
ξi,s
)
y(s)∇s.

(3.29)

By (3.20), we have

m−2∑

i=1

ai(Ty)
(
ξi
)=

m−2∑

i=1

ai

[∫ σ(b)

a
G
(
ξi,s
)
y(s)∇s+

1

1−∑m−2
i=1 ai

m−2∑

i=1

ai

∫ σ(b)

a
G
(
ξi,s
)
y(s)∇s

]

= 1

1−∑m−2
i=1 ai

m−2∑

i=1

ai

∫ σ(b)

a
G
(
ξi,s
)
y(s)∇s= (Ty)

(
σ(b)

)
.

(3.30)

This completes the proof. �

For x ∈ X , we define a nonlinear operator N by

(Nx)(t)=− f
(
t,x(t),xΔ(t)

)− e(t), for t ∈ (a,σ(b)
)
. (3.31)
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From (A1) and (A2), we conclude that N : X → E is well defined. In fact, for d < σ(b),

∫ d

a

∣
∣(Nx)(t)

∣
∣∇t ≤

∫ d

a

∣
∣ f
(
t,x(t),xΔ(t)

)∣∣∇t+
∫ d

a

∣
∣e(t)

∣
∣∇t

≤
∫ d

a
p(t)

∣
∣x(t)

∣
∣∇t+

∫ d

a
[σ(b)−t]q(t)|xΔ(t)|∇t+

∫ d

a
r(t)∇t+

∫ d

a

∣
∣e(t)

∣
∣∇t

≤ ‖x‖X
(∫ d

a
p(t)∇t+

∫ d

a
q(t)∇t

)
+
∫ d

a
r(t)∇t+

∫ d

a

∣
∣e(t)

∣
∣∇t <∞.

(3.32)

So Nx ∈ L∇loc(a,σ(b)). Moreover,

∣
∣
∣
∣

∫ σ(b)

a

[
σ(b)− ρ(t)

]
(Nx)(t)∇t

∣
∣
∣
∣

≤
∫ σ(b)

a

[
σ(b)− ρ(t)

]∣∣ f
(
t,x(t),xΔ(t)

)
+ e(t)

∣
∣∇t

≤
∫ σ(b)

a

[
σ(b)− ρ(t)

]
p(t)

∣
∣x(t)

∣
∣∇t

+
∫ σ(b)

a

[
σ(b)− ρ(t)

][
σ(b)− t

]
q(t)

∣
∣xΔ(t)

∣
∣∇t

+
∫ σ(b)

a

[
σ(b)− ρ(t)

]
r(t)∇t+

∫ σ(b)

a

[
σ(b)− ρ(t)

]∣∣e(t)
∣
∣∇t

≤ ‖p‖E‖x‖∞ +‖q‖E
∥
∥[σ(b)− τ

]
xΔ
∥
∥∞ +‖r‖E +‖e‖E

≤ ‖x‖X
(‖p‖E +‖q‖E

)
+‖r‖E +‖e‖E <∞.

(3.33)

Thus [σ(b)− ρ](Nx)∈ L∇(a,σ(b)].

Lemma 3.7. TN : X → X is completely continuous.

Proof. By the definitions of T and N , we get that

(
(TN)x

)
(t)=−

∫ σ(b)

a
G(t,s) f

(
s,x(s),xΔ(s)

)∇s−
∫ σ(b)

a
G(t,s)e(s)∇s

− 1

1−∑m−2
i=1 ai

m−2∑

i=1

ai

∫ σ(b)

a
G
(
ξi,s
)
f
(
s,x(s),xΔ(s)

)∇s

− 1

1−∑m−2
i=1 ai

m−2∑

i=1

ai

∫ σ(b)

a
G
(
ξi,s
)
e(s)∇s.

(3.34)

For each x1,x2 ∈ X ,
∥
∥(TN)x1− (TN)x2

∥
∥
X

=max
{∥∥(TN)x1− (TN)x2

∥
∥∞,

∥
∥[σ(b)− τ

][
(TN)x1)Δ− ((TN)x2

)Δ]∥∥∞
}
.
(3.35)
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Since f satisfies Carathéodory’s conditions, together with (use (A0) and Lemma 3.1)

∣
∣(TN)x1− (TN)x2

∣
∣

≤
∫ σ(b)

a
G(t,s)

∣
∣ f
(
s,x2(s),xΔ2 (s)

)− f
(
s,x1(s),xΔ1 (s)

)∣∣∇s

+
1

∣
∣1−∑m−2

i=1 ai
∣
∣

m−2∑

i=1

∣
∣ai
∣
∣
∫ σ(b)

a
G
(
ξi,s
)∣∣ f

(
s,x2(s),xΔ2 (s)

)− f
(
s,x1(s),xΔ1 (s)

)∣∣∇s

≤ A
∫ σ(b)

a
G(s,s)

∣
∣ f
(
s,x2(s),xΔ2 (s)

)− f
(
s,x1(s),xΔ1 (s)

)∣∣∇s,
∣
∣[σ(b)− t

][(
(TN)x1

)Δ
(t)− ((TN)x2

)Δ
(t)
]∣∣

≤ [σ(b)− a
]
∫ t

a

∣
∣ f
(
s,x1(s),xΔ1 (s)

)− f
(
s,x2(s),xΔ2 (s)

)∣∣∇s,
(3.36)

it is easy to show that TN : X → X is continuous.
Now let B ⊂ X be a bounded set. We need to show that (TN)(B) ⊂ X is a relatively

compact subset. Let {xn}∞n=1 ⊂ B and denote

wn(t)= ((TN)xn
)
(t), zn(t)= [σ(b)− t

](
(TN)xn

)Δ
(t). (3.37)

We only need to show that there exists a subsequence with

wn −→w∗, in C
[
a,σ(b)

]
, (3.38)

zn −→ z∗, in C
[
a,σ(b)

]
, (3.39)

where z∗(t) = [σ(b)− t](w∗)Δ(t) for t ∈ [a,σ(b)). We prove (3.38) and (3.39) by the
following three steps.
Step 1. We prove that (TN)(B) is bounded. Let M = sup{‖x‖X : x ∈ B}. Then M is a
finite number. For each t ∈ (a,σ(b)), we have

∣
∣(Nxn

)
(t)
∣
∣≤ ∣∣ f (t,xn(t),xΔn (t)

)∣∣+
∣
∣e(t)

∣
∣

≤ p(t)
∥
∥xn
∥
∥∞ +

[
σ(b)− t

]
q(t)

∣
∣xΔn (t)

∣
∣+ r(t) +

∣
∣e(t)

∣
∣

≤ p(t)M + q(t)M + r(t) +
∣
∣e(t)

∣
∣ := χ(t).

(3.40)

Clearly, (A1) and (A2) imply that χ ∈ E. Thus

∥
∥Nxn

∥
∥
E ≤

∫ σ(b)

a

[
σ(b)− ρ(t)

]
χ(t)∇t := K <∞. (3.41)

It follows that T((Nxn)(t)) is bounded. So (TN)(B) is bounded.
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Step 2. We prove that {wn}∞n=1 is equicontinuous on [a,σ(b)]. For every t1, t2 ∈ [a,σ(b)]
with t1 < t2, according to Lemma 2.11(i), (3.23), and (3.40), we get

∣
∣wn

(
t1
)−wn

(
t2
)∣∣=

∣
∣
∣
∣

∫ t1

t2

(
(TN)xn

)Δ
(t)Δt

∣
∣
∣
∣≤

∫ t2

t1

∣
∣((TN)xn

)Δ
(t)
∣
∣Δt

=
∫ t2

t1

∣
∣
∣
∣

∫ t

a
Nxn(s)∇s

∣
∣
∣
∣Δt ≤

∫ t2

t1

∫ t

a

∣
∣Nxn(s)

∣
∣∇sΔt

≤
∫ t2

t1

∫ t

a
χ(s)∇sΔt =

∫ t2

t1

∫ ρ(t)

a
χ(s)∇s∇t.

(3.42)

By the proof of Lemma 3.3, χ̂ ◦ ρ ∈ L∇(a,σ(b)]. Thus (3.42) shows that {wn}∞n=1 is
equicontinuous on [a,σ(b)]. Therefore by the Arzelà-Ascoli theorem, after taking a sub-
sequence if necessary, (3.38) holds.
Step 3. We prove that {zn}∞n=1 is equicontinuous on [a,σ(b)]. For every t1, t2 ∈ [a,σ(b)]
with t1 < t2, we have by Lemma 3.5 and (3.40) that

∣
∣zn
(
t1
)− zn

(
t2
)∣∣≤

∫ t2

t1

∣
∣z∇n (t)

∣
∣∇t

=
∫ t2

t1

∣
∣− ((TN)xn

)Δ
(t) +

[
σ(b)− ρ(t)

](
(TN)xn

)Δ∇
(t)
∣
∣∇t

≤
∫ t2

t1

∫ t

a

∣
∣Nxn(s)

∣
∣∇s∇t+

∫ t2

t1

[
σ(b)− ρ(t)

]∣∣Nxn(t)
∣
∣∇t

≤
∫ t2

t1

∫ t

a
χ(s)∇s∇t+

∫ t2

t1

[
σ(b)− ρ(t)

]
χ(t)∇t

=
∫ t2

t1

[∫ t

a
χ(s)∇s+

[
σ(b)− ρ(t)

]
χ(t)

]
∇t.

(3.43)

Since χ ∈ E and because of Lemma 3.3, we know that

χ̂ +
[
σ(b)− ρ

]
χ ∈ L∇

(
a,σ(b)

]
. (3.44)

Thus (3.43) shows that {zn}∞n=1 is equicontinuous on [a,σ(b)]. Therefore by the Arzelà-
Ascoli theorem, after taking a subsequence if necessary, (3.39) holds.

This completes the proof. �

4. Main result

Theorem 4.1. Let f : (a,σ(b))×R2 → R satisfy Carathéodory’s conditions. Assume that
(A0), (A1), and (A2) hold. Then the problem (1.2) has at least one solution in X provided

A‖p‖E +‖q‖E < 1. (4.1)

Proof. From Lemmas 3.5 and 3.6, we know that x ∈ X is a solution of (1.2) if and only if

x = TNx. (4.2)
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By Lemma 3.7, we will apply the Leray-Schauder continuation theorem [17, Corollary
IV.7] to obtain the existence of a solution for (4.2) in X . To do this, it suffices to verify
that the set of all possible solutions of the family of equations

xΔ∇ = λ f
(
t,x,xΔ

)
+ λe(t) on (a,b]

xΔ(a)= 0, x
(
σ(b)

)=
m−2∑

i=1

aix
(
ξi
) (4.3)

is, a priori, bounded in X by a constant independent of λ∈ [0,1].
Let x ∈ X be a solution of (4.3) for some λ∈ [0,1]. Then for t ∈ [a,σ(b)], we have

∣
∣x(t)

∣
∣=

∣
∣
∣
∣
∣

∫ σ(b)

a
G(t,s)λ(Nx)(s)∇s+

1

1−∑m−2
i=1 ai

m−2∑

i=1

ai

∫ σ(b)

a
G
(
ξi,s
)
λ(Nx)(s)∇s

∣
∣
∣
∣
∣

≤A
∫ σ(b)

a
G(s,s)λ

∣
∣(Nx)(s)

∣
∣∇s

=A
∫ σ(b)

a

[
σ(b)− s

]∣∣xΔ∇(s)
∣
∣∇s

≤A‖xΔ∇‖E.

(4.4)

This implies

‖x‖∞ ≤ A‖xΔ∇‖E. (4.5)

Similarly,

∣
∣[σ(b)− t

]
xΔ(t)

∣
∣=

∣
∣
∣
∣
[
σ(b)− t

]
[
−
∫ t

a
λ(Nx)(s)∇s

]∣∣
∣
∣

≤
∫ σ(b)

a

[
σ(b)− ρ(s)

]∣∣xΔ∇(s)
∣
∣∇s= ‖xΔ∇‖E,

(4.6)

and therefore
∥
∥[σ(b)− τ

]
xΔ
∥
∥∞ ≤ ‖xΔ∇‖E. (4.7)

Now we get from (4.3), (4.5), (4.7), (A1), and (A2) that

‖xΔ∇‖E =
∫ σ(b)

a

[
σ(b)− ρ(t)

]∣∣xΔ∇(t)
∣
∣∇t

=
∫ σ(b)

a
λ
[
σ(b)− ρ(t)

]∣∣ f
(
t,x(t),xΔ(t)

)
+ e(t)

∣
∣∇t

≤
∫ σ(b)

a

[
σ(b)− ρ(t)

][
p
(
t)
∣
∣x(t)

∣
∣+

[
σ(b)− t

]
q(t)

∣
∣xΔ(t)

∣
∣+ r(t) +

∣
∣e(t)

∣
∣]∇t

≤ ‖p‖E‖x‖∞ +‖q‖E
∥
∥[σ(b)− τ

]
xΔ
∥
∥∞ +‖r‖E +‖e‖E

≤A‖p‖E‖xΔ∇‖E +‖q‖E‖xΔ∇‖E +‖r‖E +‖e‖E.
(4.8)
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Thus we get from the assumption (4.1) that

‖xΔ∇‖E ≤ ‖r‖E +‖e‖E

1− (A‖p‖E +‖q‖E
) := c. (4.9)

Here c is a constant, which is independent of λ∈ [0,1]. Therefore, by (4.5) and (4.7), we
get

‖x‖X =max
{‖x‖∞,

∥
∥[σ(b)− τ

]
xΔ
∥
∥∞
}≤max{c,Ac} = Ac. (4.10)

Therefore the proof is complete. �
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tions, Birkhäuser Boston, Massachusetts, 2001.

[7] M. Bohner and A. Peterson (eds.), Advances in Dynamic Equations on Time Scales, Birkhäuser
Boston, Massachusetts, 2003.

[8] J. J. DaCunha, J. M. Davis, and P. K. Singh, Existence results for singular three point boundary
value problems on time scales, Journal of Mathematical Analysis and Applications 295 (2004),
no. 2, 378–391.

[9] C. P. Gupta, S. K. Ntouyas, and P. Ch. Tsamatos, Solvability of an m-point boundary value problem
for second order ordinary differential equations, Journal of Mathematical Analysis and Applica-
tions 189 (1995), no. 2, 575–584.

[10] Z. He, Existence of two solutions of m-point boundary value problem for second order dynamic
equations on time scales, Journal of Mathematical Analysis and Applications 296 (2004), no. 1,
97–109.

[11] J. Henderson and E. R. Kaufmann, Focal boundary value problems for singular difference equa-
tions, Computers & Mathematics with Applications 36 (1998), no. 10–12, 1–10.

[12] J. Henderson and W. Yin, Focal boundary-value problems for singular ordinary differential equa-
tions, Advances in Nonlinear Dynamics, Stability Control Theory Methods Appl., vol. 5, Gordon
and Breach, Amsterdam, 1997, pp. 283–295.

[13] S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus,
Results in Mathematics 18 (1990), no. 1-2, 18–56.

[14] R. Ma, Existence of positive solutions for superlinear semipositone m-point boundary-value prob-
lems, Proceedings of the Edinburgh Mathematical Society. Series II 46 (2003), no. 2, 279–292.

[15] R. Ma and H. Luo, Existence of solutions for a two-point boundary value problem on time scales,
Applied Mathematics and Computation 150 (2004), no. 1, 139–147.



M. Bohner and H. Luo 15

[16] R. Ma and D. O’Regan, Solvability of singular second order m-point boundary value problems,
Journal of Mathematical Analysis and Applications 301 (2005), no. 1, 124–134.

[17] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional
Conference Series in Mathematics, vol. 40, American Mathematical Society, Rhode Island,
1979.

[18] D. O’Regan, Theory of Singular Boundary Value Problems, World Scientific, New Jersey, 1994.
[19] S. D. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Analysis 3 (1979), no. 6,

897–904.
[20] P. J. Y. Wong and R. P. Agarwal, On the existence of solutions of singular boundary value problems

for higher order difference equations, Nonlinear Analysis 28 (1997), no. 2, 277–287.
[21] Y. Zhang, Positive solutions of singular sublinear Emden-Fowler boundary value problems, Journal

of Mathematical Analysis and Applications 185 (1994), no. 1, 215–222.
[22] Z. Zhang and J. Wang, The upper and lower solution method for a class of singular nonlinear second

order three-point boundary value problems, Journal of Computational and Applied Mathematics
147 (2002), no. 1, 41–52.

Martin Bohner: Department of Mathematics, University of Missouri–Rolla, Rolla,
MO 65409-0020, USA
E-mail address: bohner@umr.edu

Hua Luo: Department of Mathematics, Northwest Normal University, Lanzhou 730070,
Gansu, China
E-mail address: luohua@nwnu.edu.cn

mailto:bohner@umr.edu
mailto:luohua@nwnu.edu.cn


Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and
Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due December 1, 2008

First Round of Reviews March 1, 2009

Publication Date June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of São Paulo, 05508-970 São Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de
Matemática Aplicada e Computação (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), São Josè dos
Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research,
King’s College, University of Aberdeen, Aberdeen AB24
3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1. Introduction
	2. The Lebesgue delta and nabla integrals
	3. Green's function and preliminary lemmas
	4. Main result
	References
	1Call for Papers4pt
	Guest Editors

