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We study the global behavior of positive solutions of the system of rational difference
equations X1 = f(Yu-gpXn—s)> Ynt1 = §Xn—t>Yn-p)> 1 = 0,1,2,..., where p,q,st €
{0,1,2,...} with s > ¢ and p > g, the initial values x_,X_st1,...,X0, Y~ p> Y pt15---> Y0 €
(0,400). We give sufficient conditions under which every positive solution of this system
converges to the unique positive equilibrium.
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1. Introduction

In this paper, we study the convergence of positive solutions of a system of rational dif-
ference equations. Recently there has been published quite a lot of works concerning the
behavior of positive solutions of systems of rational difference equations [1-7, 9, 11]. Not
only these results are valuable in their own right, but also they can provide insight into
their differential counterparts.

Papaschinopoulos and Schinas [10] studied the oscillatory behavior, the periodicity,
and the asymptotic behavior of the positive solutions of systems of rational difference
equations

Xn-1 Yn—1

xi’l+1:A+ Y > )’n+1:A+ Xn > 7’1:0,1,..., (11)

where A € (0,+0o0) and the initial values x_1,x9, y_1, yo € (0,+0).
Recently, Kulenovi¢ and Nurkanovi¢ [8] investigated the global asymptotic behavior
of solutions of systems of rational difference equations

a+x, d+y,

— Y1 = , =0,1,..., .
b+ y, Intl e+x, " (1.2)

Xn+l =

where a,b,d,e € (0,+0) and the initial values x, yo € (0,+).
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2 The system of difference equations

In this paper, we consider the more general equation

Xn+l = f(ynfq)xnfs)) Vn+1 = g(xnft)yn—p)) (13)

where p,q,s,t € {0,1,2,...} with s>t and p > g, the initial values x_sx_g1,...,%0, Y~ p>
Y-pt1>---> )0 € (0,+00) and f satisfies the following hypotheses.
(Hy) f(u,v),g(u,v) € C(E X E,(0,+00)) with a = inf,,)epxe f(u,v) € E and b =
inf(,)eexeg(u,v) € E, where E € {(0,+),[0,+00)}.
(H2) f(u,v) and g(u,v) are decreasing in u and increasing in v.
(Hs) Equation

x=f(y,%), y=gxy) (1.4)
has a unique positive solution x =X, y = y.
(H4) f(b,x) has only one fixed point in the interval (a,+0o0), denoted by A, and g(a, )
has only one fixed point in the interval (b,+o), denoted by B.

(Hs) For every w € E, f(w,x)/x and g(w,x)/x are nonincreasing in x in (0,+co).

2. Main results

THEOREM 2.1. Assume that (H,)—(Hs) hold and {(x,, y.)} is a positive solution of (1.3),
then there exists a positive integer N such that

f(B,a)<x,<A, g(Ab)<y,<B, forn=N. (2.1)
Proof. Since a = inf(,,)cpxg f(4,v) € E and b = inf(,,)epxpg(u,v) € E, we have

X=f(3x)>f(y+1,x)=a,

(2.2)
y=g¢gx7y)>g(x+1,y) =D

Claim 1. g(A,b) <y <Band f(B,a) <x<A.
Proof of Claim 1. If B <y, then it follows from (H;), (H4), and (Hs) that

B =g(a,B) >g(%,B) = Bg(’;B) > Bg(’;y) - B, (2.3)
which is a contradiction. Therefore y < B. In a similar fashion it is true that X < A.

Since ¥ < B and X < A, we have that

fB,a)<f(yx) =%  gADb)<gxy) =7, (2.4)

Claim 1 is proven. O

Claim 2. (i) Foralln = g+ 1, xp41 < x5 ifxy—s >Aand x40 < Aifx, s < A.
(ii) Foralln > t+1, yp41 < yu—p if yop >Band y,1 < Bif y, , <B.
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Proof of Claim 2. 'We only prove (i) (the proof of (ii) is similar). Obviously
Xn+l = f()’n—q:xn—s) < f(b:xn—s)- (2-5)

Ifx,—s < A, then x,41 < f(b,x,—5) < f(b,A) = A.
If x,_s > A, then

flbxay) _ f(b,A)

Xns A

1, (2.6)

which implies x,1 < f(b,x,-5) < x,—s. Claim 2 is proven. [l

Claim 3. (i) There exists a positive integer N; such that x,, < A for all n = Nj.
(ii) There exists a positive integer N, such that y, < B for all n = N,.

Proof of Claim 3. We only prove (i) (the proof of (ii) is similar). Assume on the contrary
that Claim 3 does not hold. Then it follows from Claim 2 that there exists a positive in-
teger R such that X(sr1)+r = X(ni1)s+1)+R > A for every n > 1. Let limy,—.co Xn(s+1)+r = A1,
then A; > A.

We know from Claim 2 that {x,} and {y,} are bounded. Let ¢ = lim,, .o SUP Yy(st1}+R—g-1>
then ¢ > b and there exists a sequence 1y — o such that

g{m Yn(s+1)+R—g-1 = C. (2.7)
By (1.3) we have that

X (s+1)4R = [ (Vni(s+1)+R=q=1>X(mg—1)(s+1)4R) > (2.8)

from which it follows that

(b.A) _, f(b.A)

Al :f(C’Al) S]((17)141) :Alf A] = A :Al. (29)

This with (H,) and (Hy) implies ¢ = b and A, = A. Therefore lim,, .« Yu(s+1)+r—q-1 = b.
Since {x,} and {y,} are bounded, we may assume (by taking a subsequence) that there
exist a sequence I, — o and «, 8 € E such that
%am Xl (s+1)+R—g-t-2 = &, Ilim Vi(s+1)+R—q—p-2 = ﬁ (2.10)
By (1.3) we have that
Vit 1)+R=g-1 = & (Xl (s+1)+R=q—t=2> VI (s+1)+R—q—p~2) > (2.11)
from which it follows that

b=g(a,p)>gla+1,58) = 0. (2.12)

This is a contradiction. Claim 3 is proven. O
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Let N = max{N;,N,} +2s+2p, then for all n > N we have that
X, <A, Yn <B,
%n = f (Yn-q-1>%n-s1) = f(B,a), (2.13)
Vn =g (%n—t-1,¥n-p-1) = g(A,D).
Theorem 2.1 is proven. O

THEOREM 2.2. Let I = [¢,d] and ] = [a,f] be intervals of real numbers. Assume that f €
C(J X II) and g € C(I X ],]) satisfy the following properties:

(1) f(u,v) and g(u,v) are decreasing in u and increasing in v;

(ii) if My,m; € I with my < M, and M,,m, € ] with my < M, are a solution of the
system

M, = f(ma, M), my = f(My,my),

(2.14)
M, = g(m,M,), my = g(My,ms),
then M = my and M, = m,.
Then the system
Xn+l = f(yn—q)xn—s): Yn+1 = g(xn—hyn—p)y n=0,1,..., (215)

has a unique equilibrium (S, T) and every solution of (2.15) with the initial values x_, X1,
X €land y_p,y_pi1s...,y0 € ] converges to (S, T).

Proof. Let
md =c, m) = a, M) =d, M =g, (2.16)
and fori=1,2,..., we define

M= f(my M), my= f(Mymih),

. ) . . . . 2.17
M; =g(mi',M5"), my=g(Mi"',mh ). (217
It is easy to verify that
il <l = £ (M) = £ (M) = M} = M,
0 1 0 0 1 0 (2.18)
my < my = g(My,m3) < g(mj,M)) = M; < Mj
From (i) and (2.18) we obtain
m% :f(M;))m(l) Sf(le’m%) = m%’
mi = f(My,mj) < f(my,M}) = M,
M; = f(my,Mi) < f(m3,M}) = M},
1 0,0 1,1 2 (2.19)
m; = g(M7,m3) < g(Mj,my) = m3,
mj = g(Mj,m3) <g(m},M;) = M3,
M; = g(mi,M;) < g(m},M3) = M,
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By induction it follows that fori = 0,1,...,

mi<mit <... < MM <M,
' 4 ' . (2.20)
my, <mbl < ... <M < ML,

On the other hand, we have x, € [m},M}] for any n > —s and y, € [m3,M?] for any
n= —pSINCe X_g,X_gt15...,X0 € [(m9,M?] and YpsY—ptlse-s Y0 € [m9,M?]. For anyn > 0,
we obtain

m% = f(Mg’m(l)) = Xp+1 = f()/nfwxnﬂ) = f(mg)M(l)) :M11>

(2.21)
my = g(M?,m3) < yus1 = g(Xn—1yn—p) < g(m},MJ) = M;.
Let k = max{s+ 1, p+1}. It follows that for any n > k,
m% = f(M%>mi) = Xp+1 = f(yﬂ*q’xnfs) = f(m%)Mll) :M%)
(2.22)
mj = g(M,m3) < yui1 = g(%n—t, yu—p) < g(m1, M) = M3.
By induction, for [ = 0, 1,..., we obtain that for any n > Ik,
mitt <, < ML mbt <y, < ML (2.23)
Let
lim mi = m, lim m} = my,
(2.24)
fim MY = M, fim M3 = M
By the continuity of f and g, we have from (2.17) that
M, = f(ma, M), M, = g(my,M,),
(2.25)
my = g(My,ms), my = f(My,my).
Using assumption (ii), it follows from (2.23) that
lim x, = my = M, = S, lim y, = my = My = T. (2.26)
Theorem 2.2 is proven. O
TaeoreM 2.3. If (Hy)—(Hs) hold and the system
M, :f(mle)’ M, =g(msz),
(2.27)

m2:g(M1)m2)) m1=f(M2,m1),
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with f(B,a) <m; < M, <A and g(A,b) < my < M, < B has the unique solution m;, =
M, =% and my = M, =y, then every solution of (1.3) converges to the unique positive equi-
librium (X, 7).

Proof. Let {(x,,ys)} is a positive solution of (1.3). By Theorem 2.1, there exists a positive
integer N such that f(B,a) <x, = f(yu—g-%n—s) <A and g(A,b) < y, = g(Xn—t,yu—p) <
B for all n = N. Since f, g satisty the conditions (i) and (ii) of Theorem 2.2 in I =
[f(B,a),A] and ] = [(A,b),B], it follows that {(x,, y,)} converges to the unique positive
equilibrium (x,y). a

3. Examples
In this section, we will give two applications of the above results.
Example 3.1. Consider equation

CH+ Xps _dtyup
a+yn—q, Vn+1 b+xn—t >

(3.1)

Xn+l =

where p,q,s,t € {0,1,2,...} with s>t and p > g, the initial values x_5,X_g1,...,%0,
Y-psY—pt1s--> Y0 € (0,+00) and a,b,c,d € (0,+00). If a > 1 and b > 1, then every positive
solution of (3.1) converges to the unique positive equilibrium.

Proof. Let E = [0,+0), it is easy to verify that (H;)—(Hs) hold for (3.1). In addition, if

Ml_c+M1 M _d+M,

T a+my’ 2T bmy
(3.2)
o — d+my - c+m
2_b+M1, ]_a+M2’
with 0 < m; < M; and 0 < m, < M,, then we have
(Ml—ml)(a—1)=m1M2—M1m2,
(3.3)

(M —my)(b—1) = Mymy — mi M,

from which it follows that M, = m; and M, = m,. Moreover, it is easy to verify that (3.2)
have the unique solution

—@-1)(b-1D)+c—d+\[(a-1)(b-1)+d—c]’ +4ca—1)(b—1)

M ,
! 20a-1)

m; =X

—@-1D)(b-1D)+d-c+y[(a-1)(b—1)+c—d]’ +ad(a—1)(b—1)
20— 1) '

Mz =mp = 7 =
(3.4)

It follows from Theorems 2.1 and 2.3 that every positive solution of (3.1) converges to the
unique positive equilibrium (X, y). O
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Example 3.2. Consider equation

Xn—s Yn—p
xn+1:a+y > }’n+1=b+x—,
n—q n—t

(3.5)

where p,q,s,t € {0,1,2,...} with s>t and p = ¢, the initial values x_s,X_g1,...,%0,
Y—psY—pt1s--> Y0 € (0,+00) and a,b € (0,+00). If a > 1 and b > 1, then every positive so-
lution of (3.5) converges to the unique positive equilibrium.

Proof. Let E = (0,+), it is easy to verify that (H;)—(Hs) hold for (3.5). In addition, if

M M
My=a+=—,  My=b+-—2,
my mp
(3.6)
my m,
=b+—, =a+—,
my M1 mi a Mz
with 0 < m; < M, and 0 < m, < M,, then (3.6) have the unique solution
-1
M] =mm =X= abb—l 5
(3.7)
ab—1
M, = =7 = .
2=M=y a—1

It follows from Theorems 2.1 and 2.3 that every positive solution of (3.5) converges to the
unique positive equilibrium (%, 7) = ((ab—1)/(b—1),(ab—1)/(a—1)). O
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