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Essentially nonlinear difference equations in a Euclidean space are considered. Condi-
tions for the existence of periodic solutions and solution estimates are derived. Our main
tool is a combined usage of the recent estimates for matrix-valued functions with the
method of majorants.
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1. Introduction and notation

Periodic solutions of difference equations in Euclidean and Banach spaces have been con-
sidered by many authors, see, for example, [1–3, 5–10, 12] and the references therein.
Mainly equations with separated linear parts and scalar equations were investigated. In
this paper, we consider essentially nonlinear systems in a Euclidean space. We prove the
existence of periodic solutions and derive the estimates for their norms.

Let Cn be the set of all complex n-vectors with an arbitrary norm ‖ · ‖, I is the unit
matrix, Rs(A) denotes the spectral radius of a matrix A, and

Ω(r)= {z ∈ Cn : ‖z‖ ≤ r
}
. (1.1)

Consider in Cn the equation

x(t+ 1)= B
(
x(t), t

)
x(t) +F

(
x(t), t

)
(t = 0,1,2, . . .), (1.2)

where F(·, t) continuously maps Ω(r) into Cn, and B(z, t) are n×n-matrices continuous
in z ∈Ω(r) and dependent on t = 0,1, . . . . In addition, F(v, t) and B(v, t) are periodic in t:

F(z, t)= F(z, t+T)
(
z ∈Ω(r); t = 0,1, . . .

)
,

B(z, t)= B(z, t+T)
(
z ∈Ω(r); t = 0,1, . . .

) (1.3)
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2 Periodic solutions of nonlinear vector difference equations

for some positive integer T . It is also assumed that there are nonnegative constants ν and
μ, such that

∥
∥F(z, t)

∥
∥≤ ν‖z‖+μ

(
z ∈Ω(r), t = 0,1,2, . . . ,T − 1

)
. (1.4)

Denote by ω(r,T) the set of the finite sequences h= {v(k)}T−1
k=0 whose elements v(k) belong

to Ω(r).
For an h= {v(k)}Tk=0 ∈ ω(r,T), put

Uh(t,s)= B
(
v(t− 1), t− 1

)
B
(
v(t− 2), t− 2

)···B(v(s),s
)
,

Uh(t, t)= I (0≤ s < t ≤ T)
(1.5)

and assume that

I −Uh(T ,0) is invertible ∀h∈ ω(r,T). (1.6)

2. Statement of the main result

Theorem 2.1. Under conditions (1.3)–(1.6), with the notation

M(r,T) := sup
h∈ω(r,T); k=0,...,T−1

T−1∑

j=0

∥
∥Uh(k,0)

(
I −Uh(T ,0)

)−1
Uh(T , j + 1)

∥
∥

+
k−1∑

j=0

∥
∥Uh(k, j + 1)

∥
∥

(2.1)

suppose that

M(r,T)(νr +μ) < r. (2.2)

Then system (1.2) has a T-periodic solution. Moreover, that periodic solution satisfies the
estimates

max
j=0,1,...,T−1

∥
∥x( j)

∥
∥≤ μM(r,T)

1− νM(r,T)
< r. (2.3)

We remark that if F(0, t) �= 0 for some t in {0,1, . . . ,T − 1}, then the solution found in
the above theorem cannot be trivial.

For instance, let

∥
∥B(z, t)

∥
∥≤ q < 1

(
z ∈Ω(r), t = 0, . . . ,T − 1

)
. (2.4)

Then ‖Uh(k, j)‖ ≤ qk− j and

∥
∥(I −Uh(T ,0)

)−1∥∥≤ 1
1− qT

. (2.5)
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Therefore

M(r,T)≤
T−1∑

j=0

1
1− qT

qT− j−1 + max
k

k−1∑

j=0

qk− j−1 ≤
T−1∑

j=0

q j
(

1
1− qT

+ 1
)
= 2− qT

1− qT

T−1∑

j=0

q j .

(2.6)

But

T−1∑

j=0

q j = 1− qT

1− q
. (2.7)

Thus

M(r,T)≤ 2− qT

1− q
. (2.8)

Now Theorem 2.1 implies the following corollary.

Corollary 2.2. Under conditions (1.3)–(1.4) and (2.4), suppose that

(rν +μ)
2− qT

1− q
< r. (2.9)

Then system (1.2) has a T-periodic solution. Moreover that periodic solution satisfies the
estimates

max
j=0,1,...,T−1

∥
∥x( j)

∥
∥≤ μ

(
2− qT

)

1− q− ν
(
2− qT

) ≤ r. (2.10)

3. Proof of Theorem 2.1

To achieve our goal, let us first consider the nonhomogeneous periodic problem

y(t+ 1)= B
(
v(t), t

)
y(t) + f (t), t = 0,1, . . . ,T − 1 (3.1)

y(0)= y(T), (3.2)

where { f (t)}T−1
k=0 is a given sequence in Cn and h= {v(t)} ∈ ω(r,T). Thanks to the Vari-

ation of constants formula, solution of (3.1) is given by

y(k)=Uh(k,0)y(0) +
k−1∑

j=0

Uh(k− 1, j + 1) f ( j), k = 1, . . . ,T. (3.3)

Thus, the periodic boundary value problem (3.1), (3.2) has a solution provided

y(0)= y(T)=Uh(T ,0)y(0) +
T−1∑

j=0

Uh(T , j + 1) f ( j), (3.4)
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or

y(0)= (I −Uh(T ,0)
)−1

T−1∑

j=0

Uh(T , j + 1) f ( j), (3.5)

and in such a case, this solution is given by

y(k)=Uh(k,0)
(
I −Uh(T ,0)

)−1
T−1∑

j=0

Uh(T , j + 1) f ( j) +
k−1∑

j=0

Uh(k, j + 1) f ( j), k = 1, . . . ,T ,

(3.6)

and thus its maximum norm satisfies the inequality

max
j=0,1,...,T−1

∥
∥y( j)

∥
∥≤M(r,T) max

j=0,1,...,T−1

∥
∥ f ( j)

∥
∥. (3.7)

Let us consider the nonlinear periodic problem (1.2), (3.2).

Lemma 3.1. Under conditions (1.4), (1.6), and (2.2), the periodic problem (1.2), (3.2) has
at least one solution {x(t)}Tt=0 ∈ ω(r,T). Moreover, that solution satisfies estimates (2.3).

Proof. For an arbitrary h= {v(t)} ∈ ω(r,T), define a mapping Z by

(Zh)(k)=Uh(k,0)
(
I −Uh(T ,0)

)−1
T−1∑

j=0

Uh(T , j + 1)F
(
v( j), j

)

+
k−1∑

j=0

Uh(k, j + 1)F
(
v( j), j

)
, k = 0, . . . ,T − 1.

(3.8)

Due to (2.2),

max
j=0,1,...,T−1

∥
∥(Zh)( j)

∥
∥≤ max

t=0,...,T−1

∥
∥F
(
v(t), t

)∥∥M(r,T)

≤
(

ν max
j=0,...,T−1

∥
∥v( j)

∥
∥+μ

)
M(r,T)≤ νr +μ.

(3.9)

So Z continuously maps ω(r,T) into itself. By Browder’s fixed point theorem, Z has a
fixed point x ∈ ω(r,T), cf. [11]. It is easily checked that the point is the desired solution
of problem (1.2), (3.2).

Furthermore, if {x(t)}Tt=0 ∈ ω(r,T) is a solution of (1.2), (3.2), then in view of (3.7)
and (1.4), we will have the relations

max
j=0,1,...,T−1

∥
∥x( j)

∥
∥≤ max

t=0,1,...,T−1

∥
∥F
(
x(t), t

)∥∥M(r,T)≤
(

ν max
j=0,...,T

∥
∥x( j)

∥
∥+μ

)
M(r,T),

(3.10)

which implies (2.3), since under (2.2) νM(r,T) < 1. The proof is complete. �

Assertion of Theorem 2.1 follows from the previous lemma and the periodicity of F(·, t)
and B(·, t) in t.
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4. Systems with linear majorants

In this section and the next one it is assumed that the norm is ideal. That is the vectors
z = (zk)nk=1 and |z| = (|zk|)nk=1 have the same norm. For example,

‖z‖ = ‖z‖p =
[ n∑

k=1

∣
∣zk
∣
∣p
]1/p

(1≤ p <∞). (4.1)

Let there be a variable matrix W(t) = (wjk(t))nj,k=1 t = 0, . . . ,T independent of z with
nonnegative entries, such that the relation

∣
∣B(z, t)

∣
∣≤W(t)

(
z ∈Ω(r), t = 0, . . . ,T − 1

)
(4.2)

is valid with a positive r <∞. Then we will say that B(·, t)= (b{ jk}(·, t))nj,k=1 has in Ω(r)
the linear majorant W(t).

Inequality (4.2) means that

∣
∣bjk(z, t)

∣
∣≤wjk(t)

(
j,k = 1, . . . ,n; z ∈Ω(r), t = 1,2, . . . ,T

)
. (4.3)

Let us introduce the equation

y(t+ 1)=W(t)y(t) (t = 1,2, . . .). (4.4)

Lemma 4.1. Let B(·, t) have a linear majorant W(t) in the ball Ω(r). Then

∥
∥Uh(t,s)

∥
∥≤ ∥∥V(t,s)

∥
∥ (

h∈ ω(r,T), 0≤ s < t ≤ T − 1
)
, (4.5)

where V(t,s)=W(t− 1)W(t− 2)···W(s).

Proof. Clearly,

∥
∥Uh(t,s)

∥
∥= ∥∥B(v(t− 1), t− 1

)···B(v(s),s
)∥∥≤ ∥∥W(t− 1)···W(s)

∥
∥. (4.6)

This proves the result. �

Furthermore, assume that the spectral radius of V(T ,0) is less than one. Then the
matrix I −V(T ,0) is positively invertible. Put

m(W ,T) := sup
k=0,...,T−1

T−1∑

j=0

∥
∥V(k,0)

(
I −V(T ,0)

)−1
V(T , j + 1)

∥
∥+

k−1∑

j=0

∥
∥V(k, j + 1)

∥
∥. (4.7)

Now Theorem 2.1 implies the following theorem.

Theorem 4.2. Under conditions (1.3)–(1.4) and (4.2) assume that the evolution operator
of (4.4) satisfy the inequality Rs(V(T ,0)) < 1. In addition, suppose that

(rν +μ)m(W ,T) < r. (4.8)
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Then system (1.2) has a T-periodic solution. Moreover, that periodic solution satisfies the
estimates

max
j=0,1,...,T−1

∥
∥x( j)

∥
∥≤ μm(W ,T)

1− νm(W ,T)
≤ r. (4.9)

5. Systems with constant majorants

Assume that in (4.2) W(t)≡W0 is a constant matrix. Then we will say that B(h, t) has in
set Ω(r) the constant majorant W(t). In this case V(t,s)=Wt−s

0 . Set

m
(
W0,T

)= max
k=0,...,T−1

{∥∥Wk
0

(
I −WT

0

)−1∥∥+ 1
}T−1∑

j=0

∥
∥W

j
0

∥
∥. (5.1)

Now Theorem 4.2 yields the following theorem.

Theorem 5.1. Under conditions (1.3)–(1.4) assume that B(·,s) has in Ω(r) a constant
majorant W0, and Rs(W0) < 1. In addition, suppose that

(μ+ rν)m
(
W0,T

)
< r. (5.2)

Then system (1.2) has a T-periodic solution. Moreover, that periodic solution satisfies the
estimates

max
j=0,1,...,T−1

∥
∥x( j)

∥
∥≤ μm

(
W0,T

)

1− νm
(
W0,T

) < r. (5.3)

Let us derive an estimate for m(W0;T) in terms of the eigenvalues and the Frobenius
norm of W0 as follows. Let ‖ · ‖2 be the Euclidean norm in Cn, and A be an n×n-matrix.
Let λ1(A), . . . ,λn(A) be the eigenvalues of A including their multiplicities. We will make
use of the following quantity

g(A)=
{
N2(A)−

n∑

i=1

∣
∣λi(A)

∣
∣2
}1/2

, (5.4)

where N(A) is the Frobenius (Hilbert-Schmidt) norm of A, that is, N2(A)= Trace(AA∗).
Below we give simple estimates for g(A).

Next, we recall that the following estimates are valid:

∥
∥Am

∥
∥

2 ≤
n−1∑

k=0

Rm−k
s (A)gk(A)

Ck
m√
k!

(m= 0,1, . . .), (5.5)

∥
∥(A− λI)−1

∥
∥

2 ≤
n−1∑

k=0

gk(A)√
k!ρk+1(A,λ)

, (5.6)

where

Ck
m =

m!
(m− k)!k!

(5.7)
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and ρ(A,λ) is the distance between λ ∈ C and the spectrum of A. Estimates (5.5) and
(5.6) are proved in [4, pages 12 and 21]. Thus,

∥
∥Wm

0

∥
∥

2 ≤ θm
(
W0
)
, m= 0,1,2, . . . , (5.8)

where

θm
(
W0
)=

n−1∑

k=0

Rm−k
s

(
W0
)
gk
(
W0
) Ck

m√
k!
. (5.9)

Furthermore, due to (5.6)

∥
∥(WT

0 − I
)−1∥∥

2 ≤ v
(
T ,W0

)
, (5.10)

where

v
(
T ,W0

)=
n−1∑

k=0

gk
(
WT

0

)

√
k!
(
1−RT

s

(
W0
))k+1 . (5.11)

Then

m
(
W0;T

)≤ M̃
(
W0;T

)
, (5.12)

where

M̃
(
W0;T

)
:=
{
v
(
T ,W0

)
max

k=0,...,T−1
θk
(
W0
)

+ 1
}T−1∑

j=0

θj
(
W0
)
. (5.13)

Under the condition, Rs(W0) < 1 we have

max
k=0,...,T−1

θk
(
W0
)≤ 2T−1

n−1∑

k=0

gk
(
W0
)

√
k!

. (5.14)

Note also that g(WT
0 ) ≤ NT(W0). Moreover, if A is a normal matrix: AA∗ = A∗A, then

g(A)= 0. The following inequalities are also true

g2(A)≤N2(A)−∣∣TraceA2
∣
∣,

g2(A)≤ 1
2
N2(A∗ −A

)
,

(5.15)

cf. [4, Section 2.1].
Now Theorem 5.1 implies the following theorem.

Theorem 5.2. Under conditions (1.3)–(1.4), assume that B(·, t) has in Ω(r) a constant
majorant W0 and Rs(W0) < 1. In addition, let

(μ+ rν)M̃
(
W0;T

)
< r. (5.16)
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Then system (1.2) has a T-periodic solution. Moreover, that periodic solution satisfies the
estimates

max
j=0,1,...,T−1

∥
∥x( j)

∥
∥≤ μM̃

(
W0,T

)

1− νM̃
(
W0,T

) ≤ r. (5.17)

As an example, let W0 be a normal matrix, then g(W0) = 0, θm(W0) = Rm
s (W0) ≤ 1

and

M̃
(
W0,T

)= 1
1−RT

s

(
W0
) . (5.18)

Now we can directly apply the previous theorem.
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