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1. Introduction

Sobolev’s spaces are a fundamental tool in real analysis, for instance, in the use of vari-
ational methods to solve boundary value problems in ordinary and partial differential
equations and difference equations. In spite of this, theory for functions defined on an
arbitrary bounded open interval of the real numbers is well known, see [2], and for func-
tions defined on an arbitrary bounded subset of the natural numbers is trivial, as far as
we know, for functions defined on an arbitrary time scale, it has not been studied before.

The aim of this paper is to give an introduction to Sobolev’s spaces of functions defined
on a closed interval [a,b] N T of an arbitrary time scale T endowed with the Lebesgue A-
measure. In Section 2, we gather together the concepts one needs to read this paper, such
as the L? spaces linked to the Lebesgue A-measure and absolutely continuous functions
on an arbitrary closed interval of T. The most important part of this paper is Section 3
where we define the first-order Sobolev’s spaces as the space of LX([a,b) N T) functions
whose generalized A-derivative belongs to L‘Z([a,b) N T), moreover, we study some of
their properties by establishing an equivalence between them and the usual Sobolev’s
spaces defined on an open interval of the real numbers. Section 4 is devoted to the gener-
alization of Sobolev’s spaces to order n > 2.

2. Preliminaries

The Lebesgue A-measure yp was defined in [1, Section 5.7] or in [5, Section 5] as the
Carathéodory extension of a set function and it may be characterized in terms of
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2 Basic properties of Sobolev’s spaces on time scales

well-known measures as the following result shows; we refer the reader to [6-8] for a
broad introduction to measure and integration theory.

ProrosiTiON 2.1. The Lebesgue A-measure is defined over the Lebesgue measurable subsets
of T; moreover, it satisfies the following equality:

A+Z(0(ti) —t) O +pum, if MET,

_ iel
NS (o) - 1) -8, if MET, D

icl

where {ti}icr, I C N, is the set of all right-scattered points of T, M is the supremum of T, A
is the Lebesgue measure, 8y, is the Dirac measure concentrate at t;, and py is a degenerate
measure defined as pp(A) = 0if M & A and pp(A) = +o0 if M € A.

Proof. From properties of measure, one can deduce relation (2.1) for the outer measures
linked to these measures which plainly yields to (2.1). O

As a straightforward consequence of equality (2.1), one can deduce the following for-
mula to calculate the Lebesgue A-integral; this formula was proved in [4], nevertheless,
we remark that this argument is more simple than that.

ProprosITION 2.2. Let E C T be a A-measurable set. If f : T — R is A- integrable on E, then

Lf(S)AS = JEf(S)dS+ > (a(t;) —t;) - f(t;) +r(f,E), (2.2)
i€lg
where
[uu® - fO0), ifMeT,
r(f,E) = {0’ IMET, (2.3)

Ig:={iel:t; € E} and {t;}ic1, I CN, is the set of all right-scattered points of T.

Definition 2.3. Let A C T. A is called A-null set if 4s(A) = 0. Say that a property P holds
A-almost everywhere (A-a.e.) on A, or for A-almost all (A-a.a.) t € A if there is a A-null
set E C A such that P holds for all t € A\E.

Definition 2.4. Let E C T be a A-measurable set and let p € R = [—o0,+00] be such that
p=1andlet f:E — R bea A-measurable function. Say that f belongs to L (E) provided
that either

J If17(s) As< oo if pER, (2.4)
E
or there exists a constant C € R such that

[fl=<C A-ae.onE if p=+co. (2.5)

Note that equality (2.2) guarantees that in order for f:T — R to belong to L (T),
p € R, and T bounded from above, it is necessary that f(M) = 0. We will work with the
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Li(]") spaces, where ] = [a,b] N T, a,b € T, a < b, is an arbitrary closed subinterval of T
and J° = [a,b) N T; we state some of their properties whose proofs can be found in [6-8].

THEOREM 2.5. Let p € R be such that p > 1. Then, the set L} (J°) is a Banach space together
with the norm defined for every f € LX(J°) as

1/p
» .
11l = [, rns] FreR (2.6)
inf{CeR:|f| <CA-ae on]°}, ifp=+co.

Moreover, L3 (J°) is a Hilbert space together with the inner product given for every (f,g) €
LAJ°) X Ly (J°) by

(Frg)iz = LO F(s) - gs)As. (2.7)

PROPOSITION 2.6. Suppose p € R and p > 1. Let p’ € R be such that 1/p+1/p’ = 1.
Then, if f € LY(J°) and g € LK (J°), then f - g € LA(J°) and

If-glley < Ufllg - lighye (2.8)

This expression is called Hélder’s inequality and Cauchy-Schwarz’s inequality whenever
p=2

ProrosiTioN 2.7. If p € R and p = 1, then, the set C.(J°) of all continuous functions on J°
with compact support in J° is dense in LY (J°).

As a consequence of Proposition 2.2, one can establish the following equivalence be-
tween the Lﬁ (J°) spaces and the usual LP([a, b]) spaces linked to the Lebesgue measure.

COROLLARY 2.8. Let p € Rwithp=1,let f :] — R, and let f : [a,b] — R be the extension
of f to [a,b] defined as

~ { £, ifte],

ft):= f(&), ifte (t,o(t;)), forsome i€l 2

withlj:={iel:t; €]} and {ti}icr, I CN, is the set of all right-scattered points of T.
Then, f € Li(]") ifand only if f € LP([a,b]). In this case,

1l = 1F 1 (2.10)

As we know from general theory of Sobolev’s spaces, another important class of func-
tions is just the absolutely continuous functions.

Definition 2.9. A function f : ] — R is said to be absolutely continuous on J, f € AC(]),
if for every € > 0, there exists a § >0 such that if {[a,bx) N T}7_,, with ax,bx €], is
a finite pairwise disjoint family of subintervals of J satisfying >;_;(bx — ax) < 8, then

Sy | f(br) = flar)l <e.
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These functions are precisely that for which the fundamental theorem of Calculus
holds.

THEOREM 2.10 [3, Theorem 4.1]. A function f :] — R is absolutely continuous on J if and
only if f is A-differentiable A-a.e. on J°, f* € Ly(J°) and

£(6) = fla) +j Fs)As, ViE] (2.11)

[a,t)nT
Absolutely continuous functions on T verify the integration by parts formula.

TaeoreM 2.11. If f,g:] — R are absolutely continuous functions on J, then f - g is abso-
lutely continuous on | and the following equality is valid:

Lo (ng"'f"gA)(S)AS = f(b)g(b)— f(a)g(a) = LO (ng +ng0)(s)As. (2.12)

They are linked to the class of absolutely continuous functions on [a, b] as the follow-
ing property shows.
COROLLARY 2.12 [3, Corollary 3.1]. Assume that f :J — R and define f : [a,b] — R as

] 1), ifte],
FW=9 ¢y 4 o)~ fl8) (2.13)

f(t o (t) — t t—t;), ifte (t,0(t)), forsome i€},

withlj:={ie€l:t; €]} and {t;i}ier, I C N, is the set ofall right-scattered points of T.
Then, f is absolutely continuous on J if and only if f is absolutely continuous on [a, b].

Moreover, for every n € N, n = 1, we will denote as
AC(]):= {xe AC(J) :x* € AC(J¥) Vj € {1,...,n}}, (2.14)
where for every j €N, j > 1,9 = la,p/(b)] N T.

3. First-order Sobolev’s spaces

The aim of this section is to study the first-order Sobolev’s spaces on ] equipped with the
Lebesgue A-measure.

Definition 3.1. Let p € R be such that p > 1 and u:] — R. Say that u belongs to W4 (J)
ifand only if u € Li(]") and there exists g : J* — R such that g € L‘Z(]") and

[ e p@as== | (g-97)0ns Voecl, ) 6.1
with
Chral1%) = F 1] — Rs £ € CL(1). f@) =0= f(b)} (.2

and Crld( J¥) is the set of all continuous functions on J such that they are A-differentiable
on J* and their A-derivatives are rd-continuous on J.
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The integration by parts formula for absolutely continuous functions on J establishes
that the relation

VP =[x e AC(J) : x* € LR (J°)} c WP () (3.3)

is true for every p € R with p > 1. We will show that both sets are, as class of functions,
equivalent; for this purpose, we need the following lemmas.

LemMMA 3.2, Let f € L)(J°) be such that the following equality is true:

Jﬂ(f-u)(s)As:O, VueC.(°), (3.4)
then
f=0 A-aeonj°. (3.5)

Proof. Fix & >0, the density of C.(J°) in L} (J°) guarantees the existence of f; € C.(J°)
such that [| f — f; IILIA < ¢, and so, by (3.4), we deduce that for every u € C.(J°), it is true
that

‘ LD (fi-u)(s)As

< lullegey - [1f = filly < e Nullcge). (3.6)

Because the sets
Ari={s€J’: fils)=¢},  Ary:i={s€]°: fi(s) < —¢} (3.7)

are compact and disjoint subsets of /°, Urysohn’s lemma allows to construct a function
up : J° — R which belongs to C.(J°) and it verifies

1; onAj,
Uy = |ug| <1 on J% (3.8)
—1; onA,,

so that, by defining A := A; U A;, we have that

J |f1|($)As:J (fl'uo)(S)AS_J (fi - uo)(s)As
Jo Jo Jo\A (3.9)

+J | fi| (s)As < e+2¢e(b—a).
Jo\A

As a consequence of the arbitrary choice of € > 0, we achieve (3.5). O

Lemma 3.3. Let f € L)(J°). Then, a necessary and sufficient condition for the validity of the
equality

LO (f-¢*)(s)As =0, forevery ¢ € Cy,;U"), (3.10)

is the existence of a constant ¢ € R such that

f=c A-aeon]°. (3.11)
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Proof. The necessary condition is consequence of the fundamental theorem of Calculus.
Conversely, fix u € C.(J°) arbitrary; by defining h,¢: ] — R as

. A
u(t) - % ift e,
h(t) := Jrou(r)Ar ,
- ift =0, (3.12)
b—a

o(t) = J h(s)As, Vte],
la,t)nT

the fundamental theorem of Calculus establishes that ¢ € C(l)),d (J*) and so, equality (3.10)

yields to
0 A
0= J [+ (=150 ) oo
Jjo f(r)Ar G
_ J°
= Ja [(f_ - > -u](s)As.
Therefore, Lemma 3.2 allows to deduce (3.11) with ¢ = f][, f(r)Ar/(b - a). O

. . . . 1, .
Now, we are able to prove the characterization of functions in WAP (J) in terms of
. . 1,
functions in VAP ).

THEOREM 3.4. Suppose that u € Wi’p(]) for some p € R with p > 1 and that (3.1) holds

forg e LZ (J). Then, there exists a unique function x € Vi’p (J) such that the equalities
xX=u, =g A-aeon]° (3.14)

are satisfied.
Moreover, if g € C,4(J*), then there exists a unique function x € C.,(J*) such that

x=u A-aeonj’ x" =g on]J~ (3.15)

Proof. Definev:] — R as
v(t) := J g(s)As, Vte]; (3.16)
la,t)nT

the fundamental theorem of Calculus guarantees that v € Vi’P (J) and by the integration
by parts formula, we have that for every ¢ € C; ,;(J),

[ 1= g2 0ns =] 16%-g)- ¢l =0 (3.17)

so that, Lemma 3.3 ensures the existence of a constant ¢ € R such that v — u = ¢ A-almost
everywhere on J°. As a consequence of the fundamental theorem of Calculus we conclude
that function x: ] — R defined as x(t) := v(t) — ¢ for all ¢ € ] is the unique function in
VAP () for which (3.14) is valid.
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Furthermore, if g € C,q(J*), then the fundamental theorem of Calculus establishes
thatx € C!;(J*) and x* = g on J*. O

By identifying every function in Wi’p (J) with its absolutely continuous representative
in Vi’P (J) for which (3.14) holds, the set Wi’p (J) can be endowed with the structure of
Banach space.

THEOREM 3.5. Assume p € R and p > 1. The set Wi’p (J) is a Banach space together with
the norm defined for every x € WAI’p (J) as

lacllyre 2= Nl g + [z (3.18)

Moreover, the set HL(J) := Wi’z(] ) is a Hilbert space together with the inner product
given for every (x,y) € HA(J)x HA()) by

(6 )y = (6 p)ps + (xA,yA)Li. (3.19)

Proof. Let {x,}nen be a Cauchy sequence in Wi’p (J); Theorem 2.5 guarantees the exis-
tenceof u,g € Lg (J°) such that {x,} nen and {x}},en converge strongly in L‘Z (J°) touand
g, respectively, and so, by taking limits in the equality

[, ey @ms == | (s 90005 g€ Clyt), (3:20)

we conclude that u € Wi’p (J). Thereby, it follows from Theorem 3.4, that there exists
x € WX’P (J) such that {x,},en converges strongly in WX’P (J) to x. O

3.1. Some properties. We will derive some properties of the Banach space WQ’P (J); the
first one asserts that Wi’p (J) is continuously inmersed into C(J) equipped with the supre-
mum norm || - [l¢).

PROPOSITION 3.6. Assume p € R with p > 1, then there exists a constant K > 0, only de-
pendent on b — a, such that the inequality

lxllcgy < K- llxllye (3.21)

holds for all x € Wi’p (J) and hence, the immersion Wi’P (J) = C(J) is continuous.

Proof. Fix x € Wi’p(]). Let t,T € ] be such that |x(t)| := minser |x(s)| and |x(T)| :=
maxer |x(s)]; there is no harm in assuming t < T. The fundamental theorem of Calculus
and Holder’s inequality lead to

Ixlleg) < 1x(0)] +j
[, T)NT

[x2](s)As < K - ||X||WALP) (3.22)
for some K >0, only dependent on b — a. O

The strong compactness criterion in C(J) and Proposition 3.6 allow to prove the fol-
lowing compactness property in C(J).
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PROPOSITION 3.7. Let p € R be such that p > 1. Then, the following statements are true.
(1) If p > 1, then the immersion Wi’p(]) — C(]) is compact.
(2) If p = 1, then the immersion Wi’p(]) — C(J) is compact if and only if every point of
J is isolated.

Proof. Denote by F? the closed unit ball in Wi’P (J); we know from Theorem 3.4 that %P
is closed and bounded in C(J).

If p > 1, then the fundamental theorem of Calculus and Hélder’s inequality ensure
that &P? is equicontinuous.

On the other hand, if p = 1, then it is clear that F? is equicontinuous whenever every
point of J is isolated, while if there exists t, € T such that ¢, is not isolated, then we will
prove that %2 is not equicontinuous.

Let S:=1/(b—a+1), let § >0 be arbitrary and let ss € (fop — J,t,+ &) N T be such that
ss # to; it is not a loss of generality assuming s; < to.

Define f5:] — R as

, ifte ([ss,t0) N ),

foi=qt =55 (3.23)
0, if t € ([ss,t0) N )3
the fundamental theorem of Calculus asserts that F5 : ] — R given by
Fs(t) := f f(s)ds, te, (3.24)
la,t)nT
belongs to %?; so that, as
Fst) ~Es(ss) = | fotns=s, (3.29)
s§,t0)NT
we conclude that F? is not equicontinuous.
Therefore, Arzela-Ascoli theorem establishes our claims. O

As a consequence of Proposition 3.6, we achieve the following sufficient condition for
strong convergence in C(J).

COROLLARY 3.8. Let p € R be such that p > 1, let {x} men C Wi’p(]), and let x € Wi’p(]).

If {xm}men converges weakly in Wi’p(]) to x, then {Xp}men converges strongly in C(])
to x.

Proof. Suppose {Xy}men converges weakly in Wi’p (J) to x; Proposition 3.6 establishes
that {x;}men converges weakly in C(J) to x and so, as {x,}men IS equicontinuous,
{%m} men converges strongly in C(J) to x. O

Moreover, Proposition 3.6 allows to deduce the following equivalence between the
Sobolev’s spaces on ], Wi’p (J), and the usual Sobolev’s spaces on (a,b), W'?((a,b)).

COROLLARY 3.9. Suppose that p€ Rand p> 1, x:] — R and x : [a,b] — R is the exten-
sion of x to [a,b] defined in (2.13). Then, x belongs to Wi’p(]) if and only if X belongs to
Whr((a,b)).
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Moreover, there exist two constants Ky, Ky > 0 which only depend on (b — a) such that the
inequalities

Ky - lIxllwe < llxllyrr < Ko - IXlwre (3.26)

are satisfied for every x € Wi’p(]) and p € R with p > 1.

Proof. Let x,;c\& : [a,b] — R be the extensions of x and x2 to [a,b] defined in (2.13) and
(2.9), respectively; it is not difficult to deduce the following equality:

~

x4 =%" a.e.on [a,b]. (3.27)

Therefore, Corollaries 2.8 and 2.12 and Proposition 3.6 yield to the result. O

As an application of the previous result, we will prove that some properties known
for WP ((a,b)) are directly transferred to Wi’p (J); in order to do this, we will use the
following result.

PropostTION 3.10. If y : [a,b] — R belongs to WP ((a,b)) for some p € R with p > 1,

then y|; belongs to Wi’P (J). Moreover, there exists a constant T > 0 which only depends on
(b — a) such that

Lyillyee < Tyl Yy € WH((a,b)), pER, p= 1. (3.28)

Proof. Let R = {t;}ic1, I C N, be the set of all right-scattered points of T, let I}o = {i € I,
ti € J°} and suppose y € WhP((a,b)) for some p € R with p > 1. The classical funda-
mental theorem of Calculus allows to assert that

A ity ¥’ (s)ds ,
tj)) = —— ~——, forevery i€ Ip,
(yU) ( ) O’(ti) —t Yy J (329)

(yu)A =y aeon J°N(T\R).

Therefore, if p = 400, then it is clear that y|; € Wi’P(]) and (3.28) holds while if p € R,
then, by (2.2), we have that

p ’ ’
Mol = [, 17 1P@dst S|y 1P 6ds <yl 630

°n(T\R) iclo
moreover, as we know that
/ /
Iyl <@ =@)"" - ylgap < C- =) - 1yl (3.31)

for some C >0, it turns out that y; € Wi’p(]) and (3.28) is true. O
Next, we deduce some properties in Wi’p (J) from the analogous ones in W?((a,b)).

COROLLARY 3.11. Let p € R be such that p > 1. Then, for every q € [1,+), the inmersion
WP () = LL(J°) is compact.
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Proof. Fix q € [1,+); as a consequence of Proposition 3.7 and the fact that the inmer-
sion C(J) = Li(] ?) is continuous, it only remains to prove that %! is compact in LZ (Jo)
whenever ] has at least one not isolated point.

Assume the existence of a not isolated point fy € J and let {x,},cn be a sequence
in F!. Corollary 3.9 ensures that {X,},cn, defined in (2.13), is a bounded sequence in
Wh1((a,b)) and hence, there exist {X;, },.n and y € L1([a,b]) such that {X,, },.y con-
verges strongly in L7([a,b]) to y. By defining x := y;, it is not difficult to prove that
{%Xn, }ren converges strongly in L] (J°) to x. O

CoROLLARY 3.12. The Banach space Wi’p (J) is reflexive for every p € (1,+00) and separable
forall p € [1,+0).

Proof. Let p € R be such that p > 1. We know, from Corollary 3.9, that the operator T, :
Wi’p(]) — WP ((a,b)) given for every x € Wi’p(]) by T, (x) := %, defined in (2.13), is lin-
ear and continuous. It follows from Corollary 3.9 and Proposition 3.10 that TP(Wi’p 7))
is a closed subspace of Wb?((a,b)). Therefore, since W?((a,b)) is reflexive whenever

p € (1,+00) and separable whenever p € [1,+0), Tp(Wi’P (J)) satisfies the same proper-
ties. [l

CoroLLARY 3.13. Ifx € Wi’p(]) for some p € [1,+00), then there exists a sequence of in-
finitely differentiable functions with compact support in R, {yn},cy such that {yn;} _
converges strongly in WAl’p (J) to x.

Proof. Corollary 3.9 asserts that % : [a,b] — R, defined in (2.13), belongs to W?((a,b));
so that, there exists a sequence { y,} ., of infinitely differentiable functions with compact
support in R such that {y”\[a,b]}neN converges to X in W'?((a,b)). Hence, our claim
follows from equality X; = x and Proposition 3.10. O

3.2. The spaces Wol,’g (J). Corollary 3.13 guarantees the density of the set C};(J*) in
Wi’P (J) for every p € [1,+00); however, for an arbitrary bounded time scale it is not true
that the set of test functions defined in (3.2), Cé,rd(] %), is dense in Wi’P (J); this section is
devoted to prove some properties concerning the closure of Cé)rd(] ) in Wi’P ).

Definition 3.14. Let p € R be such that p > 1, define the set Wol,’f (J) as the closure of the
set Cy,4(J*) in WA (J). Denote as HiA() == Wor()).

The spaces W&’ﬁ (J) and HOI’A (J) are endowed with the norm induced by || - || Whes de-
fined in (3.18), and the inner product induced by (-, )y, defined in (3.19), respectively.

Since Wol,’f (J) is closed in Wi’p (J), Theorem 3.5 and Corollary 3.12 ensure that W&)’f (J)is
a separable Banach space and reflexive whenever p > 1 and Hj ,(J) is a separable Hilbert

space. The space Wol,’g (J) is characterized in the following result.

PrOPOSITION 3.15. Assume x € Wi’p(]). Then, x € Wé)’g(]) ifand only if x(a) = 0 = x(b).
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Proof. Firstly, suppose that x € WS)’f (), so that there exists a sequence {x,} ,en C Cy ,40/")
such that {x,},cn converges strongly in Wi’p (J) to x. Therefore, inequality (3.21) allows
to assert that x(a) = 0 = x(b).

Conversely, assume that x(a) = 0 = x(b). We know from Corollary 3.9 that X : [a,b] —
R, defined in (2.13), belongs to WS’P((a,b)) and so, there exists a sequence {y,}, .y C
Ci((a,b)) which converges strongly in W"?((a,b)) to %. By defining x,, := y,;, n € N,
one can deduce that x, € Cj,;(J*) for every n € N and {x,},en converges strongly in
Wi’p (J) to x. O

As a straightforward consequence of the previous result, Corollary 3.9, and the char-
acterization of WO1 "?((a,b)) we obtain the following criterion for belonging to Wol,’i7 ().

COROLLARY 3.16. Let p € R be such that p > 1, let x: ] — R, and let x : [a,b] — R be the
extension of x to [a,b] defined in (2.13). Then, x € W(;”f(]) ifand only if x € W&’p((a,b)).

By using Proposition 3.15, we are able to prove the validity of Poincaré’s inequality.

ProrosiTioN 3.17. Let p € R be such that p = 1. Then, there exists a constant L > 0, only
dependent on (b — a), such that

lellygir < L-[1x*]]5, Vxe Wo (1), (3.32)

. . 1, 1, . .
that is, in Wo)g(]), the norm defined for every x € Wo,ﬁ (J) as IIxAIILZ is equivalent to the
norm || - IIWALP.

Proof. Choose x € W&,’g (J); the fundamental theorem of Calculus and Proposition 3.15
allow to assert that the following inequality

|x(1)| = <[lflly (3.33)

x(a) +J x2(s)As

la,t)nT

= ' J x2(s)As
la,t)nT

is valid for every t € T. Thus, (3.32) follows from Holder’s inequality. O

Remark 3.18. One can check that the function defined for every x, y € H; ,(J) as (x*, yA)Li
is an inner product in Hj 5 (J) and its associated norm is equivalent to the norm associated
to ( " )HA .

4. Generalization to order n > 2

The aim of this section is to define recursively the nth-order Sobolev’s spaces on ] for
) . - Sy L -1,
n=2, W, P(1), which consist in the A-antiderivatives of functions in Wy Pam).

Definition 4.1. Letn € N,n>2,let p € R, p > 1, and let u: ] — R. Say that u belongs to
WP (J) ifand onlyifu e WZil’P(]) and there exists g1 : J* — R such that g; € szl’p(]")
and

L“ (u-9”)(s)As = — J;a (g1-97)(s)As, Vo ey (5. (4.1)
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It is easy to prove the following characterization of the set W7 (J).

PROPOSITION 4.2. Suppose that u: ] — R is such that u € LX(J°), then u € Wy (J) if and
only if there exist g; : J — R, j € {1,...,n}, such that g; € Lg((]’d_l)n),

[ e yoms == (@-9©ns Voecl ), (42)
and forall j € {2,...,n},

o @ g@as =] (g-0) 088 Vpe Tl (), (3)
with

CoraU¥) = {f ] — R f€CLUY), fl@=0=f(p b))} (44)
and Cﬁd(]"j) is the set of all continuous functions on J¥ ' such that they are A-differentiable

on J¥ and their A-derivatives are rd-continuous on J* .

The integration by parts formula for absolutely continuous functions on closed subin-
tervals of T establishes that the relation

VP = (xe AC () 4™ e LL(U)°)} c WP () (4.5)

is true for every p € R with p > 1; moreover, both sets are, as class of functions, equivalent
as one can check in the following result.

THEOREM 4.3. Suppose thatu € Wy (J) for some n € Nwithn =2, p € R with p = 1 and
that (4.1) holds for g, € L‘Z (J°). Then, there exists a unique function x € Vg’p (J) such that

x=u A-aeon], xV =gj A-ae on (]"H)o, 1<j=<n, (4.6)

where J' = J and g; : J¥ — R, 1 < j < n, are given in Proposition 4.2.

Inductively, one can prove that the set W, (J) is endowed with the structure of Banach

space.

THEOREM 4.4. Assume n € N, n =2, p € R and p = 1. The set W57 (J) is a Banach space
together with the norm defined for every x € W' (J) as

ellyge := D7 1111z (4.7)
j=0

where x2° = x. Furthermore, the set H AJ) = Wg’z (J) is a Hilbert space together with the
inner product given for every (x, y) € HX(J) x Hy(]) by

()= 20 (™) (4.8)
j=0
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Properties proved for the spaces Wi’P (J) can be derived for the spaces W¥ (]); for
instance, we have the following.

PROPOSITION 4.5. The immersion W' (J) — C"1(J<"") is continuous; where C”’l(]""fl)
is the set of all functions defined on ] with n — 1 continuous A-derivatives on J¥, 1 < j <
n—1.

Finally, by extending, whenever it is necessary, the function x2""' to J as
(I (b)) = X2 (p (b)) Ve do,...,n—2}, (4.9)

with p®(b) = b, one can prove inductively the following relation between the Banach
spaces WZ’p(]) and W™?((a,b)).

THEOREM 4.6. Letn eN,n=2,letx:] — R be such that x € C"-1(J" ).
Then, x € Wx¥(]) if and only if the function y : [a,b] — R defined for every t € [a,b] as

y(t):= zxA’ (t_ a) +L XA sy )dsp_y - - - ds (4.10)

belongs to WP ((a,b)), where x> : [a,b] — R is the extension of x" ' : J*"" — R defined
in (2.13) and

Ap = {(51)--~:5n—1) € [a)b]n_l Sp-p < <81 < t}' (411)

Moreover, the following equalities

Anfl n—1

y"=x"" A-ae on J¥, Yyl =x on J¥ (4.12)

hold.
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