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We consider the stability problem for the difference system x,, = Ax,_; + Bx,_k, where A,
B are real matrixes and the delay k is a positive integer. In the case A = —I, the equation
is asymptotically stable if and only if all eigenvalues of the matrix B lie inside a special
stability oval in the complex plane. If k is odd, then the oval is in the right half-plane,
otherwise, in the left half-plane. If ||Al| + | B|| < 1, then the equation is asymptotically
stable. We derive explicit sufficient stability conditions for A ~ T and A =~ —1.

Copyright © 2006 M. Kipnis and D. Komissarova. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Our purpose is to investigate the stability of the system
Xn = Ax,_1+Bx,_k, (1.1)

where A, B are (m X m) real matrixes, x, : N — R™, a positive integer k is a delay. The
structure of the solution of equation x,, = Ax,_ + Bx,_k + f, with commutative matrixes
A, B is considered in [6]. A similar scalar equation

Xp = aXp_1+bxn_k, (1.2)

where a, b are real numbers, was studied by Kuruklis [8] and Papanicolaou [15]. The
following assertion describes the boundaries of the stability domain for (1.2) in the (a,b)
plane (see also Figure 1.1).

THEOREM 1.1 (see [7, Theorem 2]). The zero solution of (1.2) with k > 1 is asymptotically
stable if and only if the pair (a,b) is the internal point of the finite domain bounded by the
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2 Stability of a delay difference system

Figure 1.1. The stability domains of (1.2). (a) k is odd, k > 1. (b) k is even. The Cohn domain bound-
ary |al + |b| = 1 are shown both in (a), (b).

following lines:
D a+b=1,
(II) a = —sinkw/sin(k — Dw, b = (=1)*!sinw/sin(k — 1)w,
WD (-Dkb—a=1,
(IV) a = sinkw/sin(k — 1)w, b = —sinw/sin(k — 1)w,
where w varies between 0 and m/k.

It follows from Cohn’s results [3] that (1.2) is asymptotically stable provided that
lal +|b] < 1. (1.3)

A special case of (1.2), namely, the scalar equation x,, = x,,1 + bx,_, was studied by Levin
and May [9]. They established that the equation is asymptotically stable if and only if
2sin(7/2(2k — 1)) > —b > 0. Scalar equation with two delays x,, = ax,,_, + bx,_k, more
compound than (1.2), was investigated by Dannan [5], Kipnis and Nigmatulin [7], and
Nikolaev [13, 14].

The matrix equation

Xn = Xn_1+Bxu_1, (1.4)

where B is an (m X m) real matrix, x, : N — R™, a positive integer k is a delay, was inves-
tigated by Levitskaya [10]. She transferred Rekhlitskii’s result [16] about the differential
equation x = Ax(t — 1), where a positive 7 is a delay, A is a real matrix, to the difference
equations. She established that (1.4) is asymptotically stable if and only if any eigenvalue
of the matrix B lies inside the oval of the complex plane bounded by a curve

IA

Fz{ZGC:ZzZisinzk_lei‘P,—g <psg}. (1.5)

Our first problem is to obtain a characteristic equation for (1.1). Second problem is to
obtain the necessary and sufficient condition in terms of the eigenvalues location of the
matrix B for the asymptotic stability of the equation

Xn = —Xn-1 +an—k, (16)
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where Bisareal (m X m) matrix. Further, we give a sufficient condition for the asymptotic
stability of (1.1) similar with the Cohn condition (1.3). Finally, we give explicit sufficient
stability conditions for (1.1) in cases A ~ I and A =~ —I, that is, when (1.1) looks like (1.4)
and (1.6), respectively.

2. Characteristic equation of (1.1)

The following theorem deals with the stability of the linear system:

k
Xn = zAixnfi’ (21)
i=1

where A; are (m X m) real matrixes (i = 1,2,...,k), x, : N — R™. The equations of type
(2.1) in a Banach space were investigated in [1].

THEOREM 2.1. Equation (2.1) is asymptotically stable if and only if all roots of the equation

k
det (Izk - zAizki) =0 (2.2)

i=1

lie inside the unit disk. If at least one root of (2.2) lies outside of the unit disk, then (2.1) is
unstable.

Proof. Consider a generating function x(z) = >.,_(x,2" of the sequence x, (n > 0). For
the solution of (2.1), the following equality holds:

k i-1
x(z) = > A (Z xj_iz) +x(z)zf> =0. (2.3)

i=1 =0

Here x_1,...,x_k are the initial conditions. From (2.3), we have (I — zleAizi)x(z) =
F(z), where F(z) is an (m X 1) matrix whose elements are polynomials. Hence,

1
et(I-3F Aizi)

x(z) = q Q(2), (2.4)

where Q(z) is another (m X 1) matrix whose elements are polynomials. If all roots of (2.2)
lie inside the unit disk, then all roots of the denominator of (2.4) lie outside the unit disk,
and consequently, x(z) may be expanded in a power series with the radius of convergence
greater than 1. Hence, x, tends to 0 exponentially with n — oo regardless of the initial
conditions. It follows that (2.1) is asymptotically stable.

Let there exist a root z of (2.2), such that |z| > 1. We will seek for the solution of (2.1)
in the form x, = Dz", where D € C", D # 0. Then we obtain (Iz* — Zf=1Aizk‘i)D = 0.
This system is degenerate. Hence, there exists nonzero solution D, and x,, = Dz" does not
tend to zero as n — co. Both real sequences x,, = Re Dz" and x,, = Im Dz" are solutions of
(2.1), and at least one of them does not tend to zero. Hence, (2.1) is not asymptotically
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stable. If, in addition, |z| > 1, then the solution x,, = Dz" is unbounded. At least one of
the real sequences x,, = ReDz" or x,, = Im Dz" is unbounded, and (2.1) is unstable. [

CoROLLARY 2.2. Equation (1.1) is asymptotically stable if and only if all roots of the equation
det(B+ Az —1zF) =0 (2.5)

lie inside the unit disk. If at least one root of (2.5) lies outside the unit disk, then (1.1) is
unstable.

A question arises: can we formulate a necessary and sufficient condition for the as-
ymptotic stability of (1.1) in terms of restrictions on the eigenvalues of matrixes A and B?

The answer is no, as indicated by the following example.
Example 2.3. Consider the equation x,, = Ax,_ + Bx,_3, where B= ("% 33). In case A =

(%L "28), the equation is asymptotically stable by the Corollary 2.2. However, if A =

(%2 09), then it is unstable, although eigenvalues of the matrix A are A; = 0.8, 1, = —0.5

in both cases.

If k > 1 and |b] > 1, then the scalar equation (1.2) is unstable (Figure 1.1). We obtain a
similar result for the matrix equations (1.1) and (2.1).

THEOREM 2.4. If |detAk| > 1, then (2.1) is unstable.

Proof. The characteristic equation (2.2) has the form

k km
det (Izk - ZAizki) =P(z) = > aiz =0, (2.6)
i=0

i=1

where ag,, = 1. We put z = 0 in (2.6) and obtain |ag| = | det Ax| > 1. Hence, there exists a
root of the polynomial P(z) outside of the unit disk, since |ao| is the modulus of product
of all roots of P(z). O

CoOROLLARY 2.5. Ifk > 1 and |detB| > 1, then (1.1) is unstable.

3. Stability ovals for (1.6)

THEOREM 3.1. The system (1.6) is asymptotically stable if and only if all eigenvalues of the
matrix B lie inside the region of the complex plane bounded by the curve

I=4zeCiz=(-1)2isin—2—eiv, -2 < sz}. 1
{z C:z=(-1) 131n2k_1e 5 0 > (3.1)
Proof. We first consider the scalar equation

Xp = —Xp—1+AXn—k> (3.2)

where A € C. The characteristic equation for (3.2) is

2Kyt = (3.3)
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Writing z = —v in (3.3) gives
vE—pk=l = (—1)k) (3.4)

But all roots of the equation
K- l=) (3.5)

lie inside the unit disk if and only if A lies inside the region of the complex plane bounded
by the curve (1.5). A proof of this fact had been given in [10, Theorem 1]. Therefore, all
roots of (3.4), as well as (3.3), lie inside the unit disk if and only if A lies inside the oval
(3.1).

Return to the matrix equation (1.6). It follows from Corollary 2.2 that the character-
istic equation for the system (1.6) is

det(B—-I(zF+251)) =0. (3.6)
Let A1,A2,...,A;m be the eigenvalues of B. Consider the equation (cf. (3.3))
Ky =N, i=1,2,...,m (3.7)

If each root of any equation (3.7) lies inside the unit disk, then each solution of (3.6) lies
inside the unit disk, and conversely. The inclusion of all solutions of (3.7) in the unit disk
is the condition for number A; to belong to the interior of oval (3.1). Thus, system (1.6)
is asymptotically stable if and only if all eigenvalues of B lie inside the oval bounded by
the curve (3.1). O

Stability ovals for (1.6) are displayed in Figure 3.1.
Projection of the results of Theorem 3.1 onto the real axis gives the following addition
to the classical result of Levin and May [9], mentioned in the introduction.

CoROLLARY 3.2. The scalar equation (3.2) with A € R is asymptotically stable if and only if
28in ———— > (= 1)F 1L > 0. (3.8)
2(2k—1)
Remark 3.3. If k = 1, then the stability oval is the disk of radius 1 centered at (1 + 0i). If
k is odd in (1.6), then stability oval is located in the right half-plane, if k is even, then
it is located in the left half-plane. Therefore, it is necessary for asymptotic stability of
(1.6) that the condition Re; > 0 with k odd and the condition ReA; < 0 with k even hold.
Here A; (1 < i < m) are the eigenvalues of B. Compare it with scalar equation (1.2) and
its stability domain in Figure 1.1. We see that with a = —1 in (1.2), the condition b > 0 is
necessary for asymptotic stability with k odd, while b < 0 is necessary with k even. The
similarity is evident.

CoROLLARY 3.4. If there exist eigenvalues A1, A, of B, such that Re), >0, Rel, <0, then
(1.6) is unstable with any k.
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Figure 3.1. Stability ovals for the system (1.6). The arrows represent the eigenvalues of a matrix B in
Example 3.6.

Now we are in a position to strengthen Corollary 2.5 for (1.4) and (1.6).

THEOREM 3.5. If the system (1.4) (the system (1.6)) is asymptotically stable, then all eigen-
values of B lie inside the unit disk.

Proof. 1t is sufficient to consider the stability ovals (1.5) and (3.1) and to remark that
|2sin(/2(2k —1))| < 1fork > 1. O

Example 3.6. Consider (1.6) with B = ( % %?). Eigenvalues of the matrix B are A,, =
—0.3 £ 0.1i. Configuration of the A, A5, and the stability ovals (see Figure 3.1) indicates
that the equation is asymptotically stable for k = 2,4 and unstable for k = 1,3, and for any
k>4.

4. Explicit stability conditions for (1.1)

In what follows, || - || is any matrix norm which satisfies the following conditions:
(I) 1Al = 0, and [|A]| = 0 ifand only if A = 0,
(IT) for each c € R, ||cAll = |c] - |A]],
(D) 1A+ Bl < [[All +11Bll,
(IV) |ABJ| < ||A]l - ||B|| for all (m x m) matrices A, B.
In addition, matrix norm should be concordant with the vector norm || - ||, that is,

[Ax|ls < 1Al - llxll« (4.1)

for all x € R™ and any (m X m) matrix A.

For real (mx m) matrix A, we define, as usual, [|A||; = max;<j<m > laij| and [|A]l& =
maXij<i<m Z;nzl |aij l.

We will give a Cohn-type sufficient stability condition [3] for (2.1) (see also [2, Theo-
rem 2.1] and [11, Theorem 2]).

THEOREM 4.1. Ifzf:1 lA;ll < 1, then (2.1) is asymptotically stable.
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Proof. Assume that max(|[x_;|l,...,[lx—¢ll) = M and Zf:l Al = b < 1. Sequentially for
n=0,1,...,k— 1, we have

k
<> ||Ai||M =bM < M. (4.2)

i=1

[lxall =

k
ZAixnfi
i=1

Then for n =k, k+1,...,2k — 1, we derive sequentially

k k
1xal] = || D Aixuil| = D ||Ail|bM = b*M < bM. (4.3)
i=1 i=1
Furthermore, for n > rk, r € N, we deduce similarly that ||x, || < b™"'M. O

Next Corollary gives a delay-independent Cohn-type stability condition for (1.1).
CoRrOLLARY 4.2. If

IAlI+1IBII <1, (4.4)

then (1.1) is asymptotically stable.

Example 4.3. Consider (1.1) with A = (% %), B= (%, %'). We have [|All, + [|Bll; =
1.4 > 1, but [|[All« + [|Bll = 0.9 < 1. By Corollary 4.2, the equation is asymptotically sta-
ble for any delay k.

Some additional domains to the Cohn domain for scalar variant of (2.1) were de-
scribed in [2, Theorem 2.3, Corollary 2.4] employing the Halanay-type inequalities. In
the spirit of [2] and earlier work [4], we will give a sufficient stability condition of (1.1),
additional to Cohn-type condition (4.4). The following result is convenient for applica-
tion to (1.1) when ||A — I|| < 1 and ||B]| < 1.

THEOREM 4.4. If
IA+Bll+(k=1)IBI(IIA=TIII+BI) <1, (4.5)

then (1.1) is asymptotically stable.

Proof. Let us rewrite (1.1),

Xn = (A+B)x, _B(xnfl _xnfk)

k-1
=(A+B)xp-1 —B n—i — Xn—i-
(A+B)xp-1 1:Z1(x Xn-i-1) (4.6)
k-1
=(A+B)x,-1 —B Z ((A —Dxpi +an7k7i)-

i=1

Combining Theorem 4.1 with (4.6), we obtain the conclusion of the theorem. O
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Example 4.5. Consider (1.1) with A = (}3' %2) and B = (%7 _3,). It is easily seen
that ||A[| + [|Bll > 1 for any norm || - [|. The Cohn-type condition (4.4) cannot be ap-
plied. However, [|[A + Bll; + (k— D)IIBlly(I|A —Ill; + [IBlly) = 0.83 4+ (k — 1)0.0504. Hence,
Theorem 4.4 guarantees asymptotic stability of (1.1) for k = 1,2,3,4. Additional calcula-
tions, based on Corollary 2.2, give instability for k > 4.

A lot of explicit stability conditions for scalar equations (see, e.g., [2, 11, 4, 12]) can be
translated to the language of linear systems (1.1). However, we will indicate a new phe-
nomenon. We introduce an additional stability condition for (1.1) depending on whether
the delay k is odd or even. The condition is convenient for applications to (1.1) when
[A+I]| < 1and ||B]| < 1.

THEOREM 4.6. If
A+ (=1)F1B||+ (k= DIBI(IIA+III+]BIl) < 1, (4.7)

then (1.1) is asymptotically stable.

Proof. Assume k is odd. Let us rewrite (1.1) as

= (A+B)xn—l _B('xn—l _Xn—k)

k=1 4.8
= (A-l—B)anl —Bz(—l)i+1((A+I)xn,,-,1+an,k,,-). ( )
i-1

The conclusion of the theorem is a consequence of Theorem 4.1 and (4.8).
Now suppose that k is even. We rewrite (1.1) as

=(A—-B)x,_1+B(xy-1+x,£)

k-1 (4.9)
=(A=B)xy-1+B> (=) (A +D)xpi-1 + Bxy_r—i).
i=1

The proof is completed by the same arguments as in the preceding case. O

Example 4.7. Consider (1.1) with A = (5% 2002y and B = (%7 _9,) (cf. Example 4.5).
The Cohn-type condition (4.4) cannot be apphed. For odd values of k, Theorem 4.6 is
useless: [|A+B|| > 1 for any norm || - ||, hence (4.7) fails when k is odd. For even values of
k,wehave ||A —Bll1+ (k= DIBIli(JA+I|l; +|IBll1) = 0.83+ (k — 1)0.0504. Theorem 4.6
now implies asymptotic stability of the equation for k = 2 and k = 4. Additional calcula-
tions of the roots of characteristic equation (2.5) give instability for k = 1, k = 3, and for
any k > 4.
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