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We investigate in this paper the global behavior of the following difference equation:
Xn1 = (Pe(Xn—ig>Xniys- o> Xning) + 0)/(Qk(Xnziy>Xn—iy>---»Xn=i,) + b), n =0,1,..., under
appropriate assumptions, where b € [0,0), k = 1, iy, ij,...,ik € {0,1,...} with iy < i} <
-+ + <y, the initial conditions x; ,,Xi ,,+1,..,%0 € (0,0). We prove that unique equilib-
rium X = 1 of that equation is globally asymptotically stable.

Copyright © 2006 H. Xi and T. Sun. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

For some difference equations, although their forms (or expressions) look very simple,
it is extremely difficult to understand thoroughly the global behaviors of their solutions.
Accordingly, one is often motivated to investigate the qualitative behaviors of difference
equations (e.g., see [2, 3, 6, 9, 10]).

In [6], Ladas investigated the global asymptotic stability of the following rational dif-
ference equation:

(E1)

Xn +Xn—1Xn—2

Xpy1 = ———, n=0,1,..., (1.1)
XnXn—1+Xn-2

where the initial values x_,,x_1,x0 € Ry = (0,+00).
In [9], Nesemann utilized the strong negative feedback property of [1] to study the
following difference equation:
(E2)
Xn—1t+XnXn—2

Xpp1 = ———, n=0,1,..., (1.2)
XnXn—-11 Xn-2

where the initial values x_,,x_1,x € R;.
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2 Global behavior of a difference equation

In [10], Papaschinopoulos and Schinas investigated the global asymptotic stability of
the following nonlinear difference equation:
(E3)

Zielkf{j—l,j} Xn—itXn—jXp—j+1+1

Z-ezk Xn—i

Xptrl = , n=0,1,..., (1.3)

where k € {1,2,3,...}, {j,j — 1} € Zx = {0,1,...,k}, and the initial values x_i,x_s1,...,
X0 € R

Recently, Li [7, 8] studied the global asymptotic stability of the following two nonlinear
difference equations:

(E4)
Xpn—1Xn-—2Xn—3+Xy-1t+X,-2+x,-3+a
Xnp1 = n—1An—2An—3 n—1 n—2 n—3 , l’l=0,1,... (1'4)
Xp-1Xp-2 + Xn-1Xn-3 + Xp—2Xp-3+1+a
(E5)
XnXn-1Xn—3+Xyn+Xp_1+X,3+a
Xpyy = e T on T 2n 3 n=0,1,..., (1.5)

XnXn—1 + XpXn—3+Xn-1Xpn—3+1+a’
where a € [0,+00) and the initial values x_3,x_5,x_1,x0 € Ry.

Let k = 1 and ig,ij,...,i% € {0,1,...} with ig <i; < - - - <. Let Po(xn,i(,) = Xn—i, and
Qo(xy—i,) =1, forany 1 < j <k, let

Pi(Xn—igs+-sXn—in;) = (Xn—injXn—inyy + 1) Pj1 (Xnigs- o> Xn—in; )

+ (Xniy; + %y ) Qi1 (Xnigse s Xni 5)s

(1.6)
Qj (-xnfio)-'-:xnfizj) = (Xﬂfizjxnfizj,1 +1)Qj1 (-xf’lfio)"'>xn*izj,2)
+ (xn,,-zj +xn7i2j,1 )ijl (x,,,,'o,. .. ,anizjfz).
In this paper, we consider the following difference equation:
Pr(Xp—ii s Xn—iiseresXn—in) +b
snpt = DEnzis i oS ¥ oy (1.7)
Qk (xn—ioyxn—il yeee :xn—iZk) +b
where b € [0, o) and the initial conditions x_;,,X i, +1,...,%0 € (0,00).
It is easy to see that the positive equilibrium X of (1.7) satisfies
oo P®%..0)+b
Q%X X)+b
(1.8)

(@ +1)P (XK., X) + 2% Q1 (X,X,...,X) + b
(X +1)Qr1(%,%,...,%) + 2XPk_1 (%, %,...,%) + b




H.Xiand T. Sun 3
Thus, we have
(x—1)[ (3 +%) Qo1 (%,%,...,X) + (X + 1) Pr_ (%, X,...,X) +b] = 0, (1.9)

from which one can see that (1.7) has the unique positive equilibrium X = 1.

Remark 1.1. Let k =1, then (1.7) is (1.4) when (ig,i1,%2) = (1,2,3) and is (1.5) when
(iO:il’iZ) = (03 1;3)'

2. Properties of positive solutions of (1.7)

In this section, we will study properties of positive solutions of (1.7). Since

Py (xn—ioixn—i1)~~ . )xn—izk) - Qk (-xn—io:xn—ipn . axn—izk)

= (xn*izk - 1) (xﬂ*izk—l - 1) [Pkfl (xn*io) e ’xﬂ*izk—z) - Qk*l (xn*io’ s Xn—iy, )]

= (Xnmie = 1) (Knig, = 1) =+ (i, = 1) (%0miy = 1) [Po (n-iy) — Qo (%04 ) ]

= (xnfio - 1) (xnfil - 1) e (xnfiy( - 1))
(2.1)

it follows from (1.7) that for any n = 0,

(xnfio - 1)(xn*l‘1 - l) U (xn*izk - 1)
Qk (xn*igixn*l'l)"')xn*izk) +b .

Xpt1— 1= (22)

Definition 2.1. Let {x,},__;, be a solution of (1.7) and {a,},__;, a sequence with a, €
{—1,0,1} for every n = —iy. {an},‘f:,izk is called itinerary of {x,} if a, = —1 when

x,<1,a, =0whenx, =1, and a, = 1 when x,, > 1.

0
n=—iy

From (2.2), we get the following.

ProposITION 2.2. Let {x,},_ ; be a solution of (1.7) whose itinerary is {a,} then

Al = yigGn-i, * * * An—iy, for any n = 0.

[o0]
n=—iy>

PROPOSITION 2.3. Let {x,},__;  be a solution of (1.7), then it follows that x,, # 1 for any
n=1e[[%y(x;—1)#0.

[e]

Proof. Let itinerary of {x,},__;, be {a.},__,,, then it follows from Proposition 2.2 that

Xy #1foranyn>=1ea,#0foranyn=1e H?ﬁoa_j #0eo ]_[§2io(x_j -1)+0. O

ProrosITION 2.4. If gcd(is+ 1,iax + 1) = 1 for some s € {0,1,...,2k — 1}, then a positive

solution {x,},__;, of (1.7) is eventually equal to 1 & x, = 1 for some p > —i.

Proof. “If” part is obvious.
“Only if” part. If x, = 1 for some p = —iy, then a, = 0, where {a,},”_ ;, isitinerary
of {x,},__;,. By Proposition 2.2, we have a;(,+1)+p = @j(i.+1)+p = 0 for any j > 0. Since

ged(is+ 1,70+ 1) = 1, we see that for any t € {0, 1,...,ix }, there exist j, € {1,2,...,i%+ 1}



4 Global behavior of a difference equation
and m; € {0,1,...,i,+ 1} such that
Ge(is+1) = my (i +1) +¢. (2.3)
Together with Proposition 2.2, it follows that
Qi 1) (ige+ 1 +t+p = 0. (2.4)

Again by Proposition 2.2, we have a, = 0 for any n = (i;+ 1)(i2x + 1) + p, which implies
Xp, = 1 forany n > (is+ 1) (i + 1) + p. O

Example 2.5. Consider the equation

Xn—igXn—iyXn=3 + Xn—ig + Xn—iy + Xu-3+b
b
Xn—igXn—i; + Xn—igXn-3 + Xpn—iy Xn—3+ 1+ b

Xp1 = n=0,1,..., (2.5)

where b e [0,+), 0 < iy < i < 3, and the initial values x_3,x_5,x_1,x9 €R4. Let {x,} - 3
be a solution of (2.5) whose itinerary is {a,},-_3, then the following hold.

(1) If (ip,71) € {(0,1),(1,2)} and {x,},—_3 is not eventually equal to 1, then {a,},-_;
is a periodic sequence of period 7.

(2) If (ig,i1) = (0,2) and {x,},-_5 is not eventually equal to 1, then {a,},__; is a peri-
odic sequence of period 6.

(3)x, #1foranyn>1< ]_[?:,3(3@- —1)#0.

(4) {x,},-_5 is eventually equal to 1 ¢ x, = 1 for some p > —3.

Proof. (1) If (ip,i1) = (0, 1), then from Proposition 2.2, it follows that for any n > 0,

An+4 = Ap+3p+20n = Ap+20n+10n-10n+20n
= Ap+10nQp-1 = Anlp-10n-3Aanan-1 (26)

= dany-3.

If (i9,i1) = (1,2), then in a similar fashion, it is true that a,44 = a,_3 for any n > 0.
(2) If (dg,i1) = (0,2), then from Proposition 2.2, it follows that for any n > 0,
An+3 = Ap+20nAn-1 = Ap+10n—10n-20n0n-1
= Ap+10nQn-—2 = AnQn-—20n-30nAn-2 (27)

=duy-3.

(3) It follows from Proposition 2.3.
(4) It follows from Proposition 2.4 since either ged(ip +1,4) = 1 or ged(i; +1,4) = 1.
O

3. Global asymptotic stability of (1.7)

In this section, we will study global asymptotic stability of (1.7). To do this, we need the
following lemmas.
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LemMA 3.1. Let (Y0, Y1>-.->Vin) € [R"Jkarl -{(1,1,...,1)} and M = max{y;,1/y; |0 < j <
i}, then

i < Pk(yioayila-~-7yi2k)

<M. (3.1)
M Qk(yiwyil"">yi2k)

i+l

Proof. Since (yo, y15...,yiy) € R¥ = {(1,1,...,1)} and M = max{y;,1/y; | 0 < j < ix},
we have M > 1 and either M > a>1/M or M >a = 1/M forany a € {y;,1/y; |0<j <
ir}.

It is easy to verify that
Py (yipoyii>yi) = (yiryio + 1) yig + (i + i)
< iy, + DM+ (yi, + i) yieM
= Q1 (Yi» Yir> yi )M,
Py (yips yins yi )M = [ (i yi, + 1) yig + (i +35,) IM
> iy + 1)+ (i + i) vio
= Qi (i ii» Vi)

(3.2)

From that we have

Py (ig» Yiv> Vi Vi Vi) = (Vi yi + ) P1(Yig» yiv> yin) + (Vi + yi) Q1 (Vo> Yy ¥io)
< iy + 1) Q1 ig» yiv» Y M+ (yi + yi) P (Yig» yiv> yi ) M
= Qa2 (Yip» ir> Yirs Vi Yis )M,
P2 (yi> Yiv> Vi Vi Vi) M = [ (yi yiy + D) P1(Yigs yii> yia) + (7 + yi) Qu (Yig» yiv> i) IM
> (¥is yis + D) Q1 (Yig» Yir> ¥i) + (i + i) Pr (ig» Yiv» yio)
= Q2 (Yios Yir> Yirs Yins Vi )-

(3.3)
By induction, we have that forany 1 < j <k,
Pj(yi()’yil""’yizj) < Qj(yio)yil""’yizj)M’
(3.4)
Pj(}’io)}’iw---a)’iz,-)M>Qj()’io>yi1>---))’i2j)-
Thus
i< Pk()’io:)’iu--w)’iu) <M. (3.5)

M Qk(yioiyili”"yizk)



6  Global behavior of a difference equation

Let n be a positive integer and let p denote the part-metric on R? (see [11]) which is
defined by

% Y
’,

i Xi

l<i< n} forx = (x1,...,%1), ¥ = (¥1,-..,¥n) € RIL.
(3.6)

p(x,y) = —logmin {

It was shown by Thompson [11] that (R%,p) is a complete metric space. In [4], Krause
and Nussbaum proved that the distances indicated by the part-metric and by the Eu-
clidean norm are equivalent on R”.

LemMa 3.2 [5]. Let T : R — R” be a continuous mapping with unique fixed point x* € R.
Suppose that there exists some | = 1 such that for the part-metric p,

p(Thx,x*) <p(x,x*)  Vx#x*. (3.7)

Then x* is globally asymptotically stable.
THEOREM 3.3. The unique equilibrium X = 1 of (1.7) is globally asymptotically stable.

Proof. Let {x,},;__;, be a solution of (1.7) with initial conditions x_,,X i, +1,...,X0 €
R?*! such that {x, =iy, is not eventually equal to 1 since otherwise there is nothing to

show. Denoted by T : R**! — R?*! the mapping

Pk (xi’l*io)xnfil Yoo )xn*izk) + b
T(xn—izk)xn—izk+l)- .- :xn) =\ Xn—igp+1>Xn—ip+25+ > Xn> .
Qk (xn—ioaxn—il yeee axn—iZk) + b

3.8)

Then solution {x,},_; of (1.7) is represented by the first component of the solution
{¥n}n=o of the system y,.1 = Ty, with initial condition yy = (x_i,,X_i5 +1,...,X0). It fol-
lows from Lemma 3.1 that for all n > 0, the following inequalities hold:

. 1 . 1 ..
min {xn,i, o |0<i< zzk} < Xp+1 < Max {xn,i, o |0<i< zzk}. (3.9)

n—i n—i

Inductively, we obtain that foralln > 0 and all 1 < j < i + 1,

. 1 .. 1 ..
min {xn_,-, —|0<i< zzk} < Xptj < max{xn_,-, —|0<i< zzk}, (3.10)
Xn—i Xn—i

from which it follows that

. 1 .. . 1 .
mln{xn,i, — |0<i=< 12k} <m1n{x,,+i, — |1<i< 12k+1}. (3.11)

n—i n+i
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iok+1

Thus, for x* = (1,1,...,1) and the part-metric p of RZ*™ we have

p (T (y,),x*) = —logmin {xnﬂ-, % [11<i<in+ 1}
i
< —logmin {xn,i, ! [0<i< iZk} (3.12)
n—i
=p(ymx")
for all n = 0. It follows from Lemma 3.2 that the positive equilibrium ¥ = 1 of (1.7) is
globally asymptotically stable. O
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