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We investigate in this paper the global behavior of the following difference equation:
xn+1 = (Pk(xn�i0 ,xn�i1 , . . . ,xn�i2k ) + b)/(Qk(xn�i0 ,xn�i1 , . . . ,xn�i2k ) + b), n = 0,1, . . ., under
appropriate assumptions, where b � [0,�), k � 1, i0, i1, . . . , i2k � �0,1, . . .� with i0 < i1 <
��� < i2k, the initial conditions xi

�2k ,xi�2k+1, . . . ,x0 � (0,�). We prove that unique equilib-
rium x = 1 of that equation is globally asymptotically stable.

Copyright © 2006 H. Xi and T. Sun. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

For some difference equations, although their forms (or expressions) look very simple,
it is extremely difficult to understand thoroughly the global behaviors of their solutions.
Accordingly, one is often motivated to investigate the qualitative behaviors of difference
equations (e.g., see [2, 3, 6, 9, 10]).

In [6], Ladas investigated the global asymptotic stability of the following rational dif-
ference equation:

(E1)

xn+1 = xn + xn�1xn�2

xnxn�1 + xn�2
, n= 0,1, . . . , (1.1)

where the initial values x�2,x�1,x0 �R+ � (0,+�).
In [9], Nesemann utilized the strong negative feedback property of [1] to study the

following difference equation:
(E2)

xn+1 = xn�1 + xnxn�2

xnxn�1 + xn�2
, n= 0,1, . . . , (1.2)

where the initial values x�2,x�1,x0 �R+.
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2 Global behavior of a difference equation

In [10], Papaschinopoulos and Schinas investigated the global asymptotic stability of
the following nonlinear difference equation:

(E3)

xn+1 =
∑

i�Zk�� j�1, j� xn�i + xn� jxn� j+1 + 1
∑

i�Zk xn�i
, n= 0,1, . . . , (1.3)

where k � �1,2,3, . . .�, � j, j � 1� 	 Zk � �0,1, . . . ,k�, and the initial values x�k,x�k+1, . . . ,
x0 �R+.

Recently, Li [7, 8] studied the global asymptotic stability of the following two nonlinear
difference equations:

(E4)

xn+1 = xn�1xn�2xn�3 + xn�1 + xn�2 + xn�3 + a

xn�1xn�2 + xn�1xn�3 + xn�2xn�3 + 1 + a
, n= 0,1, . . . (1.4)

(E5)

xn+1 = xnxn�1xn�3 + xn + xn�1 + xn�3 + a

xnxn�1 + xnxn�3 + xn�1xn�3 + 1 + a
, n= 0,1, . . . , (1.5)

where a� [0,+�) and the initial values x�3,x�2,x�1,x0 �R+.
Let k � 1 and i0, i1, . . . , i2k � �0,1, . . .� with i0 < i1 < ��� < i2k. Let P0(xn�i0 )= xn�i0 and

Q0(xn�i0 )= 1, for any 1
 j 
 k, let

Pj
(
xn�i0 , . . . ,xn�i2 j

)= (xn�i2 j xn�i2 j�1 + 1
)
Pj�1

(
xn�i0 , . . . ,xn�i2 j�2

)

+
(
xn�i2 j + xn�i2 j�1

)
Qj�1

(
xn�i0 , . . . ,xn�i2 j�2

)
,

Qj
(
xn�i0 , . . . ,xn�i2 j

)= (xn�i2 j xn�i2 j�1 + 1
)
Qj�1

(
xn�i0 , . . . ,xn�i2 j�2

)

+
(
xn�i2 j + xn�i2 j�1

)
Pj�1

(
xn�i0 , . . . ,xn�i2 j�2

)
.

(1.6)

In this paper, we consider the following difference equation:

xn+1 = Pk
(
xn�i0 ,xn�i1 , . . . ,xn�i2k

)
+ b

Qk
(
xn�i0 ,xn�i1 , . . . ,xn�i2k

)
+ b

, n= 0,1, . . . , (1.7)

where b � [0,�) and the initial conditions x�i2k ,x�i2k+1, . . . ,x0 � (0,�).
It is easy to see that the positive equilibrium x of (1.7) satisfies

x = Pk(x,x, . . . ,x) + b

Qk(x,x, . . . ,x) + b

=
(
x2 + 1

)
Pk�1(x,x, . . . ,x) + 2xQk�1(x,x, . . . ,x) + b

(
x2 + 1

)
Qk�1(x,x, . . . ,x) + 2xPk�1(x,x, . . . ,x) + b

.

(1.8)
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Thus, we have

(x� 1)
[(
x2 + x

)
Qk�1(x,x, . . . ,x) + (x+ 1)Pk�1(x,x, . . . ,x) + b

]= 0, (1.9)

from which one can see that (1.7) has the unique positive equilibrium x = 1.

Remark 1.1. Let k = 1, then (1.7) is (1.4) when (i0, i1, i2) = (1,2,3) and is (1.5) when
(i0, i1, i2)= (0,1,3).

2. Properties of positive solutions of (1.7)

In this section, we will study properties of positive solutions of (1.7). Since

Pk
(
xn�i0 ,xn�i1 , . . . ,xn�i2k

)
�Qk

(
xn�i0 ,xn�i1 , . . . ,xn�i2k

)

= (xn�i2k � 1
)(
xn�i2k�1 � 1

)[
Pk�1

(
xn�i0 , . . . ,xn�i2k�2

)
�Qk�1

(
xn�i0 , . . . ,xn�i2k�2

)]

= ���
= (xn�i2k � 1

)(
xn�i2k�1 � 1

)
���

(
xn�i2 � 1

)(
xn�i1 � 1

)[
P0
(
xn�i0

)
�Q0

(
xn�i0

)]

= (xn�i0 � 1
)(
xn�i1 � 1

)
���

(
xn�i2k � 1

)
,

(2.1)

it follows from (1.7) that for any n� 0,

xn+1� 1=
(
xn�i0 � 1

)(
xn�i1 � 1

)
���

(
xn�i2k � 1

)

Qk
(
xn�i0 ,xn�i1 , . . . ,xn�i2k

)
+ b

. (2.2)

Definition 2.1. Let �xn��n=�i2k be a solution of (1.7) and �an��n=�i2k a sequence with an �
��1,0,1� for every n � �i2k. �an��n=�i2k is called itinerary of �xn��n=�i2k if an = �1 when
xn < 1, an = 0 when xn = 1, and an = 1 when xn > 1.

From (2.2), we get the following.

Proposition 2.2. Let �xn��n=�i2k be a solution of (1.7) whose itinerary is �an��n=�i2k , then
an+1 = an�i0an�i1 ���an�i2k for any n� 0.

Proposition 2.3. Let �xn��n=�i2k be a solution of (1.7), then it follows that xn �= 1 for any

n� 1�
∏i2k

j=0(x� j � 1) �= 0.

Proof. Let itinerary of �xn��n=�i2k be �an��n=�i2k , then it follows from Proposition 2.2 that

xn �= 1 for any n� 1� an �= 0 for any n� 1�
∏i2k

j=0 a� j �= 0�
∏i2k

j=0(x� j � 1) �= 0. �

Proposition 2.4. If gcd(is + 1, i2k + 1) = 1 for some s � �0,1, . . . ,2k� 1�, then a positive
solution �xn��n=�i2k of (1.7) is eventually equal to 1� xp = 1 for some p ��i2k.

Proof. “If” part is obvious.
“Only if” part. If xp = 1 for some p ��i2k, then ap = 0, where �an��n=�i2k is itinerary

of �xn��n=�i2k . By Proposition 2.2, we have aj(i2k+1)+p = aj(is+1)+p = 0 for any j � 0. Since
gcd(is+ 1, i2k+ 1)= 1, we see that for any t � �0,1, . . . , i2k�, there exist jt � �1,2, . . . , i2k+ 1�
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and mt � �0,1, . . . , is+ 1� such that

jt
(
is + 1

)=mt
(
i2k + 1

)
+ t. (2.3)

Together with Proposition 2.2, it follows that

a(is+1)(i2k+1)+t+p = 0. (2.4)

Again by Proposition 2.2, we have an = 0 for any n � (is + 1)(i2k + 1) + p, which implies
xn = 1 for any n� (is + 1)(i2k + 1) + p. �

Example 2.5. Consider the equation

xn+1 = xn�i0xn�i1xn�3 + xn�i0 + xn�i1 + xn�3 + b

xn�i0xn�i1 + xn�i0xn�3 + xn�i1xn�3 + 1 + b
, n= 0,1, . . . , (2.5)

where b� [0,+�), 0
 i0 < i1 < 3, and the initial values x�3,x�2,x�1,x0�R+. Let �xn��n=�3

be a solution of (2.5) whose itinerary is �an��n=�3, then the following hold.
(1) If (i0, i1)� �(0,1),(1,2)� and �xn��n=�3 is not eventually equal to 1, then �an��n=�3

is a periodic sequence of period 7.
(2) If (i0, i1)= (0,2) and �xn��n=�3 is not eventually equal to 1, then �an��n=�3 is a peri-

odic sequence of period 6.
(3) xn �= 1 for any n� 1�

∏0
j=�3(xj � 1) �= 0.

(4) �xn��n=�3 is eventually equal to 1� xp = 1 for some p ��3.

Proof. (1) If (i0, i1)= (0,1), then from Proposition 2.2, it follows that for any n� 0,

an+4 = an+3an+2an = an+2an+1an�1an+2an

= an+1anan�1 = anan�1an�3anan�1

= an�3.

(2.6)

If (i0, i1)= (1,2), then in a similar fashion, it is true that an+4 = an�3 for any n� 0.
(2) If (i0, i1)= (0,2), then from Proposition 2.2, it follows that for any n� 0,

an+3 = an+2anan�1 = an+1an�1an�2anan�1

= an+1anan�2 = anan�2an�3anan�2

= an�3.

(2.7)

(3) It follows from Proposition 2.3.
(4) It follows from Proposition 2.4 since either gcd(i0 + 1,4)= 1 or gcd(i1 + 1,4)= 1.

�

3. Global asymptotic stability of (1.7)

In this section, we will study global asymptotic stability of (1.7). To do this, we need the
following lemmas.
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Lemma 3.1. Let (y0, y1, . . . , yi2k ) � R
i2k+1
+ ��(1,1, . . . ,1)� and M =max�yj ,1/y j 
 0 
 j 


i2k�, then

1
M

<
Pk
(
yi0 , yi1 , . . . , yi2k

)

Qk
(
yi0 , yi1 , . . . , yi2k

) <M. (3.1)

Proof. Since (y0, y1, . . . , yi2k )� R
i2k+1
+ ��(1,1, . . . ,1)� and M=max�yj ,1/y j 
 0 
 j 
 i2k�,

we have M > 1 and either M � a > 1/M or M > a � 1/M for any a � �yj ,1/y j 
 0 
 j 

i2k�.

It is easy to verify that

P1
(
yi0 , yi1 , yi2

)= (yi1 yi2 + 1
)
yi0 +

(
yi1 + yi2

)

<
(
yi1 yi2 + 1

)
M +

(
yi1 + yi2

)
yi0M

=Q1
(
yi0 , yi1 , yi2

)
M,

P1
(
yi0 , yi1 , yi2

)
M = [(yi1 yi2 + 1

)
yi0 +

(
yi1 + yi2

)]
M

>
(
yi1 yi2 + 1

)
+
(
yi1 + yi2

)
yi0

=Q1
(
yi0 , yi1 , yi2

)
.

(3.2)

From that we have

P2
(
yi0 , yi1 , yi2 , yi3 , yi4

)= (yi3 yi4 + 1
)
P1
(
yi0 , yi1 , yi2

)
+
(
yi3 + yi4

)
Q1
(
yi0 , yi1 , yi2

)

<
(
yi3 yi4 + 1

)
Q1
(
yi0 , yi1 , yi2

)
M +

(
yi3 + yi4

)
P1
(
yi0 , yi1 , yi2

)
M

=Q2
(
yi0 , yi1 , yi2 , yi3 , yi4

)
M,

P2
(
yi0 , yi1 , yi2 , yi3 , yi4

)
M = [(yi3 yi4 + 1

)
P1
(
yi0 , yi1 , yi2

)
+
(
yi3 + yi4

)
Q1
(
yi0 , yi1 , yi2

)]
M

>
(
yi3 yi4 + 1

)
Q1
(
yi0 , yi1 , yi2

)
+
(
yi3 + yi4

)
P1
(
yi0 , yi1 , yi2

)

=Q2
(
yi0 , yi1 , yi2 , yi3 , yi4

)
.

(3.3)

By induction, we have that for any 1
 j 
 k,

Pj
(
yi0 , yi1 , . . . , yi2 j

)
< Qj

(
yi0 , yi1 , . . . , yi2 j

)
M,

Pj
(
yi0 , yi1 , . . . , yi2 j

)
M >Qj

(
yi0 , yi1 , . . . , yi2 j

)
.

(3.4)

Thus

1
M

<
Pk
(
yi0 , yi1 , . . . , yi2k

)

Qk
(
yi0 , yi1 , . . . , yi2k

) <M. (3.5)

�
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Let n be a positive integer and let ρ denote the part-metric on Rn
+ (see [11]) which is

defined by

ρ(x, y)=� logmin

{
xi
yi

,
yi
xi

 1
 i
 n

}

for x = (x1, . . . ,xn
)
, y = (y1, . . . , yn

)
�Rn

+.

(3.6)

It was shown by Thompson [11] that (Rn
+,ρ) is a complete metric space. In [4], Krause

and Nussbaum proved that the distances indicated by the part-metric and by the Eu-
clidean norm are equivalent on Rn

+.

Lemma 3.2 [5]. Let T :Rn
+ �R

n
+ be a continuous mapping with unique fixed point x� �Rn

+.
Suppose that there exists some l � 1 such that for the part-metric ρ,

ρ
(
Tlx,x�

)
< ρ
(
x,x�

)
�x �= x�. (3.7)

Then x� is globally asymptotically stable.

Theorem 3.3. The unique equilibrium x = 1 of (1.7) is globally asymptotically stable.

Proof. Let �xn��n=�i2k be a solution of (1.7) with initial conditions x�i2k ,x�i2k+1, . . . ,x0 �

Ri2k+1
+ such that �xn��n=�i2k is not eventually equal to 1 since otherwise there is nothing to

show. Denoted by T :Ri2k+1
+ �Ri2k+1

+ the mapping

T
(
xn�i2k ,xn�i2k+1, . . . ,xn

)=
(

xn�i2k+1,xn�i2k+2, . . . ,xn,
Pk
(
xn�i0 ,xn�i1 , . . . ,xn�i2k

)
+ b

Qk
(
xn�i0 ,xn�i1 , . . . ,xn�i2k

)
+ b

)

.

(3.8)

Then solution �xn��n=�i2k of (1.7) is represented by the first component of the solution
�yn�

�
n=0 of the system yn+1 = Tyn with initial condition y0 = (x�i2k ,x�i2k+1, . . . ,x0). It fol-

lows from Lemma 3.1 that for all n� 0, the following inequalities hold:

min
{

xn�i,
1

xn�i

 0
 i
 i2k

}

< xn+1 < max
{

xn�i,
1

xn�i

 0
 i
 i2k

}

. (3.9)

Inductively, we obtain that for all n� 0 and all 1
 j 
 i2k + 1,

min
{

xn�i,
1

xn�i

 0
 i
 i2k

}

< xn+ j < max
{

xn�i,
1

xn�i

 0
 i
 i2k

}

, (3.10)

from which it follows that

min
{

xn�i,
1

xn�i

 0
 i
 i2k

}

< min
{

xn+i,
1

xn+i

 1
 i
 i2k + 1

}

. (3.11)
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Thus, for x� = (1,1, . . . ,1) and the part-metric ρ of Ri2k+1
+ , we have

ρ
(
Ti2k+1(yn

)
,x�
)=� logmin

{

xn+i,
1

xn+i


 1
 i
 i2k + 1

}

<� logmin
{

xn�i,
1

xn�i

 0
 i
 i2k

}

= ρ
(
yn,x�

)

(3.12)

for all n � 0. It follows from Lemma 3.2 that the positive equilibrium x = 1 of (1.7) is
globally asymptotically stable. �
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