AN INVERSE PROBLEM FOR A NONLINEAR
SCHRODINGER EQUATION

BUI AN TON

Received 10 January 2002

We study the dependence on the control g of the interval of definition of the so-
lution u of the Cauchy problem 1/’ + Au=—A|ul?u — 1quin R? x (0, T), u(x,0) =
w in R?, and we prove a version of Fibich’s conjecture. Feedback laws for an in-
verse problem of the above equation with experimental data, measured on a
portion of the boundary of an open, bounded subset of R? are established.

1. Introduction

In this paper, we consider the Cauchy problem

w' +Au=-AMulPu—1qu inR*x (1, T),
u(x,7)=w=w +1w, inR?% (1.1)

q(x) = qj(x) +192(x); q; € H*(R?), 1 >0.

The existence of a local (in time) solution of (1.1) has been established by
Ginibre and Velo [4], Kato [5], and others.

For positive constant g, (1.1) may be considered as a model equation for the
propagation of an intense laser beam through a medium with Kerr nonlinearity.
The square of the transverse width of the incoming laser beam is proportional
to q. Extensive investigations on the formation of the singularities of (1.1), with
positive constant g, have been made by Fibich [3], Landman et al. [6], Landman
et al. [7], LeMesurier et al. [8, 9], and others.

In this paper, we consider g as a control and we study the following:

(1) the dependence of the interval of definition of u on q. It will be shown
that there exists a threshold value guyes € H?(IR?) such that
(i) the interval of definition (7, T4) increases with ||ql| g2 (r2) for [|qll (=)
< ”qthresHHZ(]Rz);
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(i) the interval (7,T;) remains constant for all g with |qllm®:) =
”qthres”Hz(Rz);
(2) an inverse problem for (1.1). We wish to find g and hence u, given the
observed values of # on a portion of the boundary of an open, bounded
subset of R2.

The inverse problem for the linear Schrodinger equation in a bounded do-
main, namely finding the potential q from the given spectra data, was solved by
the celebrated Gelfand, Levitan, and Marchenko method. Recently, Advdonin
et al. [1] introduced a new approach: finding the real-valued g from the ob-
served values of u on a portion of the boundary of an open, bounded set. They
applied the boundary control method and the exact controllability technique.
In [12], the author used feedback control techniques to determine the com-
plex potential from the observed values of u on a portion of the boundary of
an open subset of R". It is the purpose of this paper to extend the method
used in [12] to the case of the whole space. It is known that to get feedback
laws, we must solve a nonlinear partial differential, involving the Clarke sub-
gradients of the value function of the associated problem. As there are few in-
formation available on the Clarke subgradients and as there is no compact in-
jection mapping in R?, difficulties arise when we wish to establish the weak
continuity in some appropriate spaces of the Clarke subgradients. In this pa-
per, we circumvent the problem by using an extension operator € of H2(G) into
H*(R?).

Pioneering works on feedback laws for distributed systems of nonlinear par-
abolic equations, were done by Popa [10, 11] using a Trotter-type formula and
the Clarke-Vinter optimization problem. Necessary conditions for the optimal-
ity were derived earlier by Barbu [2]. It turns out that by a suitable modification
of the laws given by Popa, we can treat a wide range of problems with interacting
state and control variables.

In Section 2, we give the notations, some known results, and we prove the
Fibich conjecture. We study the value function in Section 3 and feedback laws
are established in Section 4.

2. Notations Fibich’s conjecture

Throughout the paper, H is the Hilbert space L?>(R?) with inner product (-, -),
norm || - ||, and H is the usual Sobolev space HF(IR?). From the Sobolev imbed-
ding theorem, we deduce that H? is an algebra with respect to pointwise multi-
plication. We may rewrite (1.1) as
U+ Auy + MulPuy = guo — quuy inR* x (7, T),
uy — Auy — AMulPuy = —(qrup + qour)  inR?x (7, T), (2.1)

uj(x,7) = wj(x) in R?% j=1,2.
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Let
2
9 ={q:llgjlle <o}, =D ad=1+lwlipj=12 (22
j=1

Then 2 is a closed convex subset of H.

THEOREM 2.1. Let {wj,qj,A,0} bein H?x 9 x R* X (0,1). Then there exist
(1) a nonempty interval (t, T)(ax)),
(i) a unique solution u of (2.1) with

{u,u'} € L (1, Th(a); H*) x L™ (1, Ty (a); H) (2.3)

for lgllp2r2) < o Furthermore, To(a) = T and there exists a constant C,
independent of A and q such that

7112
||u||%°°(T,TA(D¢);H2) +|u ||L°°(T,TA(a);H) (2.4)
< Cllol: {1+ g3 + ol fexp (Ca?(1 - 0) ' Ta(@))

for all solutions u of (2.1) with l|qllm> < a.

Proof. The existence of a local (in time) solution of (2.1) is well known. We will
establish the estimates and show the dependence of the solution on the control g.
(1) With (2.1), we have

%IIu(-J)IIz+2A||u(-,t)||iA(R2) < gl ey (- )] (2.5)
It follows from the Gronwall lemma that
NuC O +Mullfsgpiey < ClwlPexp (CTlql@).  (26)
(2) We obtain, by differentiating (2.1) with respect to t
u) + Aub + Mulub + 20 (uy vy + wouh) us = oy — quuy, 07

uy — Auy = Mul®ul = 2 (uyuy + uauh)uy = — (quus + qaud}).

Taking the H-inner product of the first equation with u}, and the second
equation with u5, we get

d 712 7112 7112
11 = e o P+ o Pl | (2.8)

(3) Taking the H-inner product of the first equation of (2.1) with Au}, and
the second equation with —Au], we obtain

%HAL{(-J)HZ < AC|[ |y + Clla el (2.9)
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Adding (2.6), (2.8), and (2.9), we get

Ll 1P + 0] < gl

5 W G0+ luC, 0l

+ O [ (-, )] [P+ [, )7

(2.10)

We have applied the Holder inequality in (2.10). It is clear that when A = 0,
we get

[l )+ [, Dl < Cllwla (1+1q12)

+ (1 1qie) [ {9+l 1P ds
! (2.11)

The Gronwall lemma gives

12
[ 112 iy + 18 ey < Cllole (1411113 ) exp {T(1+ llqli3) .
(2.12)
Now we consider the case when A > 0. Set

o(t) = ||u(-, D)1 + || 1)) (2.13)

then (2.10) may be rewritten as

%{sv(t)eXp (= Ctligliie)} = C(1+2?) exp (Ctliqlle) {g(t) exp (— Ctliglle) }.

(2.14)
It follows that
Co(t){lIqll 2 +A2p(1)[1 — exp (C(t = T)lIqllm2) |} (2.15)
< Co(1)lIqllm2 exp [C(t = T)lIqll 2] '
forallt € [1, Ta(llqlla2)] with
Ty (ligllse) = #m{u ollqll: } o e (0,1).
Cligllz: Clwld: (1+ @l + lql3: )
(2.16)

We will write Ty (q) for Ty(llglln2) when there is no possible confusion.

(4) Now we consider T)(q), given by (2.16), and wish to find the maximum
interval of definition (7, Ty (q)) of u for all ¢ with [|gllm2 < aand for a fixed A > 0.
We are led to the study of the function

f@= (142 ) abaso (2.17)

1+b+x
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A calculation gives

f,(x):{ ax(1+b—x2) —ln(l L)}x_2=x_2g(x).

(1+b+ax+x2)(1+b+x2) b+
(2.18)

Thus,
f'(x)<0 fora<x, fx)< fla); o>=1+b=1+]wlf.. (2.19)
Since

inf {f(llqllr=) Vlqllm: < a} (2.20)
exists, we will take
Ta(a) = inf {T; inf {f (lIqlls=) Vqllinz < at}. (2.21)
(5) From (2.15), (2.16), (2.17), and (2.21), we deduce that
[u(-, t)”ip + ||”,(':t)||2 < Clloll}: (1+a*) exp (Cta?) (2.22)

forall t € (1, Ta(«)) and for all g with [Igllm2 < a.
It is trivial to show that the solution is unique. The theorem is proved. O

Thus for a given g € H?, there exists a unique solution of (2.1) on the interval
(7, Ta(q)). We wish to find § € H? with

Ty(q) = inf {T; sup{Ti(q) Yq, llqllae < /|Gl }}- (2.23)

We are led to the study of Fibich’s conjecture. Let (7, T(§)) be the interval
of definition of (2.1) corresponding to the constant potential g = § > 0. Fibich
conjectures that T(J) increases with § up to a threshold value Sihres and then
T(8) = T (Sthres) for 6 > Othres.

Let f(x) beasin (2.17) and let

T(B)=sup{f(x):0<x<p}. (2.24)

From (2.15), it is clear that (7, T(f5)) is the maximum interval of definition of
the solution u of (2.1) with [Igll g2 < 8.

THEOREM 2.2. Suppose that all the hypotheses of Theorem 2.1 are satisfied. Then
there exists qnres € H? such that

(i) T(B) < T(y) for B <y < I qthres 2>

(ii) T(Gthres) = sup{f(x) Vx, x = [l Genres |12}

Proof. With f as in (2.17), we know that f'(x) <0 for x = +/1+b where b =
llwll}.. So the function f is decreasing for x > +/1+b.
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Using a maximizing sequence, it is trivial to show that
To(x)=sup{f(§):0<é <x<a}=f(x) forsomex e (0,x). (2.25)
Set
S ={x: f(x) =Talx), 0<x<a}. (2.26)

Clearly ¥ is nonempty and sup ¥ exists. Using a maximizing sequence, we
obtain

supd =% f(%) =sup{f(§):0<{<al. (2.27)
Let
Tou= f(%), (2.28)
then
f<fR) =T, Vy<a (2.29)

It follows from the definition of T, (x) that
Ta(x) < To(x), Vx,ywithx<y<a. (2.30)
In particular,
Ti(x) < Te(y), Vx,ywithx<y<z. (2.31)
Since £ < &, we have from the definition of %,
fy) = f(®), Vy x<y=<aw (2.32)

On the other hand, f is decreasing on [«, c0) and thus

f(y) < fla) < f(%). (2.33)
Combining inequalities (2.32) and (2.33), we get
f<fR), Vy y>z (2.34)
Therefore,
sup {f(y) Vy >z} = f(%) = Ts. (2.35)

From Theorem 2.1, we know that (7, T}) is the maximum interval of defini-
tion of the solution u of (2.1) with potential ||g||g2 < %. Thus % is the threshold
value of the potential, as conjectured by Fibich. O
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Let G be a bounded open subset of R? with a smooth boundary 9G. It is
known that there exists an extension mapping ¢ of H2(G) into H2(IR?) with
(i) €u(x) = u(x) a.e. in G;
(ii) €ullmre) < Kllullmz(c)-
For a given f € HF, there exists a unique v € H**? such that

v—Av=f inR%. (2.36)

Moreover, ||v]| g2+ < Cl| f|lg«. The linear mapping S of H k into H**2, defined
by Sf = v where v as in (2.36), is well defined and is bounded.
Let I be a closed nonempty subset of G and let

x=xi+tuo  xj €L(0,TsLA(D)), j=1,2 (2.37)

be a function representing the measurement of the solution u of (2.1) on I'. With
(2.1) we associate the cost function

2 T\
J(1;u;q50) = ZJ L |xi (1) —uj(-,1) |2dadt. (2.38)
=1t
The purpose of this paper is to find § € 9 so that the solution i of (2.1), with
potential g = g, satisfies the relation
V(tsw) =J(1305g;w) = inf {J(T;u3q;0) Vg € 2}. (2.39)

We are led to the study of the feedback laws for the optimization problem
(2.39).

Clearly, when y represents the experimental values of the solution u of (2.1),
corresponding to some potential g € H?, then the value function V(7;w) is equal
to zero.

Let k' be the mapping of L*(z, Ty; H) into R defined by the equation

ki (vj) = sup{(qj, Vi) e V45 € SZJ-}; j=12 (2.40)

Then kj‘ is a lower semi-continuous (L.s.c.) convex mapping of L?(z, Ty; H)
into R. A trivial argument shows that there exists g7 € 2; such that

k]* (Vj) = (q]*> Vj)LZ(T,TA;H)‘ (2.41)

Since k} are Ls.c. convex mappings of L*(z, T); H) into R, its subdifferentials
exist and are mappings of L?(t, T); H) into L?(t, Ty; H). We have

ki wi) = k7 (vi) = (o wi) oo = (455 Vi) oy (2.42)

= (a4 wj = Vi) prgmy VP E2)

Hence q}" € ak;“(vj).
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3. The value function

In this section, we show that the value function of problem (2.1), (2.38), given by
(2.39), has Clarke subgradients. The main results of this section are the following
two theorems.

TaEOREM 3.1. Suppose that all the hypotheses of Theorem 2.1 are satisfied. Let x
be an element of L*(t, Ty; L*(1)) and let V(t;0) be as in (2.39). Then there exists
a positive constant C such that

|V(t;0) = V(1;0)| <Cllw—0llg2, Vo, with lwllg:+ 11012 < 1. (3.1)

The Clarke subgradients 0,V (1;w1;w2), 0,V (T;w15w2) of V with respect to wy,
w,, respectively, exist and

||81V||L2(T,T)L;H*2) + ||82V||L2(T,TA;H*2) <C (3.2)
The generic constant C is independent of both A and w.

The following theorem will be needed.

THEOREM 3.2. Suppose that all the hypotheses of Theorem 3.1 are satisfied. Let S
be the bounded linear mapping of H* into H**2, given by (2.36), and let € be the
extension mapping of H*(G) into H*(R?). Then

|V (1;8€(w)) — V(1;8€(0)) | < Cllw—0ll26) (3.3)

for all w,0 with |wl| +110]] < 1.
The Clarke subgradients 0;V (1;S€(w)) of V(1;8€(w)) = V' (1;w) with respect
to w; exist and

110;V (-, S ()l 2z 1226 < € (3.4)
The constant C is independent of A and w.

We have the following lemma.

LemMA 3.3. Suppose that all the hypotheses of Theorem 3.1 are satisfied. Then there
exists

{ai',g} € L° (v, Ti; H?) x L2 (7, Ti; H) x 2 (3.5)

with it being the unique solution of (2.1), corresponding to the potential § and such
that

V(tsw) =J(1355g;0) = inf {J(T;u3q;0) Vg € 2}. (3.6)

Proof. Let {u",q"} be a minimizing sequence with

J(r;u" 9" w) — % < V(nw). (3.7)
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Since q" € 2, there exists a subsequence, denoted again by ¢", such that g" —
g in HZ,, with § € 9. From the estimates of Theorem 2.1, we obtain, by taking
subsequences,

{w', (")} — A a'}in (L% (5, TisH?)) geurr X (L2 (5 T3 H) ) o~ (3-8)

From the Ls.c. of ], we deduce that

The lemma is proved. g

Proof of Theorem 3.1. (1) Let w, O be in H2, then

(3.10)

2
~ 112
= Z ||Vj - uj||L2(T,T,\:L2(F))’
j=1

where v is the solution of (2.1) with potential g, initial value 6. Thus, we have

Wa—v) + A —v)=-AMa—vI*(a—v)—1g(a—v),

3.11
(r;-)—v(t;-) =w—0. ( )
It follows from Theorem 2.1 that
8 = vllL= g rym2) + (@ =) [ o romy < CIIO = @ll2. (3.12)
Therefore,
17 — vl msrey) < Cllit = vl a1 (6)
=< C”ﬂ_V”LZ(T,T,{;HZ) (313)
< Cllw— 0| x.
We obtain

V(t;0) — V(t;0) < Cllw — 0| 12 (3.14)

forall ||w|lg2 + 10|42 < 1.
Reversing the role of w and 0 we get

V(t;w) = V(1;0) < Cllw — Ol p2 (3.15)

for all ||wl||g + 10l g2 < 1.
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Combining (3.14) and (3.15), we obtain
|V(t;0) = V(130)| < Cllw— 0|l (3.16)

forall ||w|lg2 + |10l < 1.
Taking 6 = (6, w>) in the above expression, we obtain

|V (1501502) — V(15601502) | < Cllwy — 61|52 (3.17)

for all ||91 ”HZ + ||w1 ||H2 <1.
Therefore 0, V(7; -;w2), the Clarke subgradient of V(7;-;w;) exists and

[EN I P——o (3.18)

Similarly for 0,V (7;wy; -). Thus the theorem is proved. O
Proof of Theorem 3.2. As in Theorem 3.1, we have
| V(7,8€(w)) = V(1;5€(0)) | < C|[SE(w) —SEO)]|p
<Cl[¢(w-9)||y (3.19)
< Cllw -0l

for all [|0llr2() + lwllr2() < 1.

We have made use of the properties of the extension operator € and of S.
Therefore, the Clarke subgradients 0;V(7;8€(w)) of V(1;w) = V(1;5€(w))
with respect to w; exist and are, moreover, bounded mappings of L*(7, T); L*(G))
into the closed convex subsets of L?>(7; Ty; L>(G)). Furthermore,

HPj||L2(r,TA;L2(G)) <C, ij S ajV(T;S%(w)). (3.20)

The theorem is proved. O

4. Feedback laws

Let k]’-k be asin (2.40) and let V be the value function associated with (2.1), (2.38)
and defined by (2.39). Consider the initial value problem

w' +Au=-AMul*u—1gu inR*x (1, T)),
u(x, 1) = w,
ki (€(p;)) = (€(p).aj) 2wy €(pj) €0;V(5S5E(ulg)),
gj € ok; (€[o;V(5S¢€(ulg))]); j=1L2

(4.1)

Nonlinear problems of the type considered in (4.1), arise in the study of feed-
back laws of nonlinear-parabolic-equation distributed systems. Let

Be = {vlc: IVlearm) V| penum < Ct (4.2)
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with
C=C(l+a+|wl|y)exp(CTa) (4.3)

and « is as in Theorem 2.1.

Since G is a bounded open subset of R?, it is clear that % is a compact convex
subset of L2(1, Ty; L*(G)).

Let v € B, then 0,V (£;S€(vlg)) exists and maps L*(7, Th;L*(G)) into the
closed convex subsets of L*(7, Ty;L*(G)), with 9;V (£;S€(v|s)), being closed
convex subsets of L?(7, Th;L*(G)), there exists a unique element p;(v) €
0;V(t;8€(vlg)) of minimal L*(7, T); L*(G))-norm.

By the same argument, there exists a unique element §; € ok; (Sé(p;)) of the
closed convex set

ki (€pj) = (€pjaj) 2wy 95 €2 (4.4)

with minimal L(z, Ty; H)-norm.
Consider the initial value problem

w' +Au+AulPu=—1g(v)u inR*x (1, Th),
4.5
ulx, 1) =w in R2. (45)

For each v € B, there exists a unique solution u of problem (4.5). Let A
be the nonlinear mapping of B¢, considered as a subset of L*(z, T); L*(G)) into
L2(1, Th; L*(G)) defined by

AW) = ulg. (4.6)

With the estimates of Theorem 2.1, we can check that A maps %B¢ into it-
self. Now we show that A satisfies all the hypotheses of the Schauder fixed point
theorem.

TaEOREM 4.1. Suppose that all the hypotheses of Theorems 2.1 and 3.2 are satisfied.
Then there exists a solution ii of (4.1) with

{a, @'} € L® (7, Th; H?) x L™ (1, Tis H). (4.7)

Proof. Let v be in WB¢, then from Aubin’s theorem there exists a subsequence
such that {v",(v")'} — {v,v'} in (L*(7, Ti; H*(G)))wear* N C(7, Ti; HY(G)) X
(L®(7, Ta; H) )year* and v € B. We have

IS€(v") - S%(V)HC(T,TA;Hs) < Cl[€(v") _%(V)”C(T,TA;HU

(4.8)
< ClV" =Vl o o)

Hence S€(v*) — € (v) in C(t, Ty; H?).
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Let p;j(v") be the unique element of 0;V(tS€(v"|g)) with minimal
L?(z, T); L*(G))-norm. From Theorem 3.2, we get

||pj(vn)||L2(r,T,\;L2(G)) =C (4.9)

Thus there exists a subsequence such that
pi(v") — p;  in (L*(1, Ti;LH(G))) year- (4.10)

Now we show that p; € 9;V(t;S€(v|g)) with minimal L*(z, T); L*(G))-norm.
From the definition of subgradients, we have

TTA {V(£8€(wilc),S€(v:lc)) = V(5SE(vi16)), SE(Vilg) ) dt

. (4.11)
> L (pr (V") w1 = V) 2y L.
It follows from Theorem 3.2 that
Ty
{V(t:8€(wilg),SE€(n2lg)) = V(£:S€(vilg),S€(v2lg)) } dt
! r (4.12)
A
> I (f)l,Wl _Vl)LZ(G) dt
for all w; € L?(t, Ty; L*(G)). Thus,
preaV(S€(vile, S€(v2l6))). (4.13)

Similarly for p,. Now it remains to show that p; is the unique element of
9;V(t;8€(v|g)) with minimum L*(7, T); L*(G))-norm.
Let

Be(v) = {Vs v EBe, [V - V||L2(T,T,1;H2(G)) + ||(V€)’ - V’||L2(T,T).;L2(G)) =

)
(4.14)
Then

N {%V(t;%(velc)) v E Bs(V)} Co;V(t;SE€(v"|g)) (4.15)

&

since v" € B.(v) for n > ny. Hence

||p]'(vn)||L2(r,T)L;L2(G)) = ||pj(v)||L2(r,T,\;L2(G))’ Vpj€0;V(S€(vlg)). (4.16)

In particular, we have

A

Pj

anee) < PiMeereey  YPiv) €9;V(5S€(vlg)). (4.17)
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Thus, p; is the unique element of the closed convex set 9;V(t;S€(v|g)) with
minimal L2(1, Ty;L*(G))-norm.
By definition, we have

ki (€(pi(v)) = (€(pi(v")),a (V")) 2eismn) (4.18)
for some g;(v*) € 9;. Moreover,
q;(v") € ok} (€(p;(v"))). (4.19)

Since € is a bounded mapping of L*(G) into H, its adjoint is also a bounded
mapping of H into L*(G). With 9 being time-independent, it follows from the
definition of the set 2 ; and from the Sobolev imbedding theorem that

€*(q;(v")) — €*(q;) inL*(t, Ti;LA(G)). (4.20)

We have

It follows that
q; € ok} (€(p)))- (4.22)
From (4.18) we get
ki (€(pj(v")) — (€(p}): i) oemym = ki (€(5))). (4.23)

An argument as done for p; shows that g; is the unique element of the closed
convex set

kX (€(p;)) = (€(pj 1)) 2o ysm) (4.24)

with minimal L2(7, Ty; H)-norm.

Now we have A(v) = ul¢ and therefore the nonlinear operator A of the com-
pact convex set B¢ of L?(z, Th;L*(G)) into B¢ is continuous. Applying the
Schauder fixed point theorem, we deduce the existence of u, solution of (4.1).

The theorem is proved. O

The main result of the paper is the following theorem.

THEOREM 4.2. Suppose that all the hypotheses of Theorem 3.2 are satisfied. Let i
be a solution of (4.1) given by Theorem 4.1. Then

2 Ty
V(T,w)=ZJ L|aj—xj|2dadt. (4.25)
j=177
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Proof. Let i1 be as in Theorem 4.1 and consider the Cauchy problem

w' +Au+AulPu=—1qu inR*x (t,Th),

u(t) =a(-,t) inR2 (4.26)

With i as in Theorem 4.1, then for a given g € 9, there exists a unique solu-
tion u of (4.26). Consider

V() 1nf{2j J lu—y;|*dodt Vqleﬁ’l} (4.27)

Using a minimizing sequence, we get by a trivial argument

2 T\

V(ta(t)) = 1 — i | *dods (4.28)

j=1

for some {#, 4}, solution of (4.26).
From the dynamic programming principle, we deduce that

V(t+hs(t+h) = it — yi | *dods. (4.29)
Hence
d X : X 2
SV (i) =—zj |;(t,) - ;| *do. (4.30)
j=1°r
Since @(-, t) = (-, t) in R?, we get
d 2
v ZJ 1) = xi( 1) o (431)

It follows that
V(Tya(Th)) - Vitw) = -V(t;0)

2 Ty
) _;J; Jr |ﬁj("t)_Xj("t)|2d0d5-

(4.32)

The theorem is proved. O

Remark 4.3. The general case when the cost function depends also on the control
is open.
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