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We consider a Timoshenko system with memory condition at the boundary and
we study the asymptotic behavior of the corresponding solutions. We prove that
the energy decay with the same rate of decay of the relaxation functions, that is,
the energy decays exponentially when the relaxation functions decays exponen-
tially and polynomially when the relaxation functions decays polynomially.

1. Introduction

The main purpose of this work is to study the asymptotic behavior of the so-
lutions of a Timoshenko system with boundary conditions of memory type. To
formalize this problem, take Ω an open bounded set of Rn with smooth bound-
ary Γ and assume that Γ can be divided into two parts

Γ= Γ0∪Γ1 with Γ̄0∩ Γ̄1 =∅. (1.1)

Denote by ν(x) the unit normal vector at x ∈ Γ outside of Ω and consider the
following initial boundary value problem:

utt −∆u−α
n∑
i=1

∂v

∂xi
+βu= 0 in Ω× (0,∞), (1.2)

vtt −∆v+α
n∑
i=1

∂u

∂xi
+ f (v)= 0 in Ω× (0,∞), (1.3)

u= v = 0 on Γ0× (0,∞), (1.4)
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u+
∫ t

0
g1(t− s)∂u

∂ν
(s)ds= 0 on Γ1× (0,∞), (1.5)

v+
∫ t

0
g2(t− s)∂v

∂ν
(s)ds= 0 on Γ1× (0,∞), (1.6)(

u(0,x),v(0,x)
)= (u0(x),v0(x)

)
,

(
ut(0,x),vt(0,x)

)= (u1(x),v1(x)
)

in Ω.
(1.7)

Here, u is the deflection of the beam from its equilibrium and v is the total rota-
tory angle of the beam at x, for those precise physical meaning, see Timoshenko
[13]. We will assume in the sequel that α is a sufficiently small positive number,
β > nα, and the relaxation functions gi are positive and nondecreasing and the
function f ∈ C1(R) satisfies

f (s)s≥ 0, ∀s∈R. (1.8)

Additionally, we suppose that f is superlinear, that is,

f (s)s≥ (2 + δ)F(s), F(z)=
∫ z

0
f (s)ds, ∀s∈R, (1.9)

for some δ > 0 with the following growth conditions:

∣∣ f (x)− f (y)
∣∣≤ c(1 + |x|ρ−1 + |y|ρ−1)|x− y|, ∀x, y ∈R, (1.10)

for some c > 0 and ρ ≥ 1 such that (n− 2)ρ ≤ n. The integral equations (1.5)
and (1.6) describe the memory effects which can be caused, for example, by the
interaction with another viscoelastic element. Also, we will assume that there
exists x0 ∈Rn such that

Γ0 =
{
x ∈ Γ : ν(x) · (x− x0

)≤ 0
}
,

Γ1 =
{
x ∈ Γ : ν(x) · (x− x0

)
> 0
}
.

(1.11)

As an example of a set Ω satisfying those properties, we can consider the domain
shown in Figure 1.1.

Γ1

Γ0Ω x0
•

Figure 1.1
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Let m(x)= x− x0. Note that the compactness of Γ1 implies that there exists a
small positive constant δ0 such that

0 < δ0 ≤m(x) · ν(x), ∀x ∈ Γ1. (1.12)

Frictional dissipative boundary condition for the Timoshenko system was
studied by several authors, see, for example, [4, 6, 11, 12] among others. Con-
cerning the memory condition at the boundary we can cite the following works:
in [1], Ciarletta established theorems of existence, uniqueness, and asymptotic
stability for a linear model of heat conduction. In this case the memory condi-
tion describes a boundary that can absorb heat and due to the hereditary term,
can retain part of it. In [3], Fabrizio and Morro considered a linear electromag-
netic model and proved the existence, uniqueness, and asymptotic stability of the
solutions. In [7], Muñoz Rivera and Andrade showed exponential stability for a
nonhomogeneous anisotropic system when the resolvent kernel of the memory
is of exponential type. They used multiplier technics and a compactness argu-
ment.

Nonlinear one-dimensional wave equation with memory condition on the
boundary was studied by Qin [9]. He showed existence, uniqueness, and stability
of global solutions provided the initial data is small in H3×H2. This result was
improved by Muñoz Rivera and Andrade [8]. They only supposed small initial
data in H2×H1. See also de Lima Santos [2].

In this paper, we show that the solutions of the coupled system (1.2)–(1.7)
decays uniformly in time with the same rate of decay of the relaxation functions.
More precisely, denoting by k1 and k2 the resolvent kernels of −g′1/g1(0) and
−g′2/g2(0), respectively, we show that the solution decays exponentially to zero
provided k1 and k2 decays exponentially to zero. When the resolvent kernels k1

and k2 decays polynomially, we show that the corresponding solution also decays
polynomially to zero. The method used is based on the construction of a suitable
Lyapunov functional � satisfying

d

dt
�(t)≤−c1�(t) + c2e

−γt (1.13)

or

d

dt
�(t)≤−c1�(t)1+1/α +

c2

(1 + t)α+1
(1.14)

for some positive constants c1, c2,γ, and α. Note that, because of condition (1.4)
the solution of system (1.2)–(1.7) must belong to the following space:

V := {v ∈H1(Ω) : v = 0 on Γ0
}
. (1.15)

The notations we use in this paper are standard and can be found in Lions’ book
[5]. In the sequel, by c (sometimes c1, c2, . . .) we denote various positive constants
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independent of t and on the initial data. The organization of this paper is as
follows. In Section 2, we establish an existence and regularity result. In Section 3,
we prove the uniform rate of exponential decay. Finally, in Section 4, we prove
the uniform rate of polynomial decay.

2. Existence and regularity

In this section, we study the existence and regularity of solutions for the Tim-
oshenko system (1.2)–(1.7). First, we use (1.5) and (1.6) to estimate the terms
∂u/∂ν and ∂v/∂ν on Γ1. Denoting by

(g ∗ϕ)(t)=
∫ t

0
g(t− s)ϕ(s)ds, (2.1)

the convolution product operator and differentiating (1.5) and (1.6), we arrive
to the following Volterra equations:

∂u

∂ν
+

1
g1(0)

g′1∗
∂u

∂ν
=− 1

g1(0)
ut,

∂v

∂ν
+

1
g2(0)

g′2∗
∂v

∂ν
=− 1

g2(0)
vt.

(2.2)

Applying the Volterra’s inverse operator, we get

∂u

∂ν
=− 1

g1(0)

{
ut + k1∗ut

}
,

∂v

∂ν
=− 1

g2(0)

{
vt + k2∗ vt

}
,

(2.3)

where the resolvent kernels satisfy

ki +
1

gi(0)
g′i ∗ ki =−

1
gi(0)

g′i for i= 1,2. (2.4)

Denoting by τ1 = 1/g1(0) and τ2 = 1/g2(0) the normal derivatives of u and v can
be written as

∂u

∂ν
=−τ1

{
ut + k1(0)u− k1(t)u0 + k′1∗u

}
,

∂v

∂ν
=−τ2

{
vt + k2(0)v− k2(t)v0 + k′2∗ v

}
.

(2.5)

Reciprocally, taking initial data such that u0 = v0 = 0 on Γ1, identities (2.5) imply
(1.5) and (1.6). Since we are interested in relaxation functions of exponential or
polynomial type and identities (2.5) involve the resolvent kernels ki, we want to
know if ki has the same properties. The following lemma answers this question.
Let h be a relaxation function and k its resolvent kernel, that is,

k(t)− k∗h(t)= h(t). (2.6)



Mauro de Lima Santos 535

Lemma 2.1. If h is a positive continuous function, then k also is a positive contin-
uous function. Moreover,

(1) if there exist positive constants c0 and γ with c0 < γ such that

h(t)≤ c0e
−γt, (2.7)

then the function k satisfies

k(t)≤ c0(γ− ε)
γ− ε− c0

e−εt , (2.8)

for all 0 < ε < γ− c0.
(2) Given p > 1, denote by cp := supt∈R+

∫ t
0(1 + t)p(1 + t− s)−p(1 + s)−p ds. If

there exists a positive constant c0 with c0cp < 1 such that

h(t)≤ c0(1 + t)−p, (2.9)

then the function k satisfies

k(t)≤ c0

1− c0cp
(1 + t)−p. (2.10)

Proof. Note that k(0) = h(0) > 0. Now, we take t0 = inf{t ∈ R+ : k(t) = 0}, so
k(t) > 0 for all t ∈ [0, t0[. If t0 ∈ R+, from (2.6) we get that −k∗ h(t0) = h(t0)
but this is contradictory. Therefore k(t) > 0 for all t ∈R

+
0 . Now, fix ε, such that

0 < ε < γ− c0 and denote by

kε(t) := eεtk(t), hε(t) := eεth(t). (2.11)

Multiplying (2.6) by eεt we get kε(t)= hε(t) + kε ∗hε(t), hence

sup
s∈[0,t]

kε(s)≤ sup
s∈[0,t]

hε(s) +

(∫∞
0
c0e

(ε−γ)s ds

)
sup
s∈[0,t]

kε(s)

≤ c0 +
c0

(γ− ε)
sup
s∈[0,t]

kε(s).

(2.12)

Therefore,

kε(t)≤ c0(γ− ε)
γ− ε− c0

, (2.13)

which implies our first assertion. To show the second part consider the following
notations:

kp(t) := (1 + t)pk(t), hp(t) := (1 + t)ph(t). (2.14)
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Multiplying (2.6) by (1 + t)p, we get

kp(t)= hp(t) +
∫ t

0
kp(t− s)(1 + t− s)−p(1 + t)ph(s)ds, (2.15)

hence

sup
s∈[0,t]

kp(s)≤ sup
s∈[0,t]

hp(s) + c0cp sup
s∈[0,t]

kp(s)≤ c0 + c0cp sup
s∈[0,t]

kp(s). (2.16)

Therefore,

kp(t)≤ c0

1− c0cp
, (2.17)

which proves our second assertion. �

Remark 2.2. The finiteness of the constant cp can be found in [10, Lemma 7.4].

Due to Lemma 2.1, in the remainder of this paper, we will use (2.5) instead of
(1.5) and (1.6). Denote by

(g�ϕ)(t) :=
∫ t

0
g(t− s)∣∣ϕ(t)−ϕ(s)

∣∣2
ds. (2.18)

The next lemma gives an identity for the convolution product.

Lemma 2.3. For g,ϕ∈ C1([0,∞[: R),

(g ∗ϕ)ϕt =−1
2
g(t)

∣∣ϕ(t)
∣∣2

+
1
2
g′�ϕ− 1

2
d

dt

[
g�ϕ−

(∫ t
0
g(s)ds

)
|ϕ|2

]
. (2.19)

The proof of this lemma follows by differentiating the term g�ϕ.
The well-posedness of system (1.2)–(1.7) is given by the following theorem.

Theorem 2.4. Let ki ∈ C2(R+) be such that

ki,−k′i ,k′′i ≥ 0 for i= 1,2. (2.20)

If (u0,v0) ∈ (H2(Ω)∩V)2 and (u1,v1) ∈ V ×V satisfy the compatibility condi-
tions

∂u0

∂ν
+ τ1u1 = 0 on Γ1,

∂v0

∂ν
+ τ2v1 = 0 on Γ1,

(2.21)

then there exists only one strong solution (u,v) of the Timoshenko system (1.2)–
(1.7) satisfying

u,v ∈ L∞(0,T ;H2(Ω)∩V)∩W1,∞(0,T ;V)∩W2,∞(0,T ;L2(Ω)
)
. (2.22)
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This theorem can be proved using the standard Galerkin method, for this
reason we omit it here.

3. Exponential decay

In this section, we study the asymptotic behavior of the solutions of system
(1.2)–(1.7) when the resolvent kernels k1 and k2 are exponentially decreasing,
that is, there exist positive constants b1 and b2 such that

ki(0) > 0, k′i (t)≤−b1ki(t), k′′i (t)≥−b2k
′
i (t), for i= 1,2. (3.1)

Note that these conditions imply that

ki(t)≤ ki(0)e−b1t for i= 1,2. (3.2)

Our point of departure will be to establish some inequalities for the strong solu-
tion of Timoshenko system (1.2)–(1.7). For this end, we introduce the functional

E(t) :=E(t,u,v)= 1
2

∫
Ω

∣∣ut∣∣2
+ (β−αn)|u|2 + |∇u|2dx

+
α

2

n∑
i=1

∫
Ω

∣∣∣∣ ∂v∂xi −u
∣∣∣∣

2

dx+
1
2

∫
Ω

∣∣vt∣∣2
+ (1−α)|∇v|2+2F(v)dx

+
τ1

2

∫
Γ1

(
k1(t)|u|2− k′1�u

)
dΓ1 +

τ2

2

∫
Γ1

(
k2(t)|v|2− k′2�v

)
dΓ1.

(3.3)

Lemma 3.1. Any strong solution (u,v) of system (1.2)–(1.7) satisfies

d

dt
E(t)≤−τ1

2

∫
Γ1

∣∣ut∣∣2
dΓ1 +

τ1

2
k2

1(t)
∫
Γ1

∣∣u0
∣∣2
dΓ1

+
τ1

2
k′1(t)

∫
Γ1

|u|2dΓ1− τ1

2

∫
Γ1

k′′1 �udΓ1

− τ2

2

∫
Γ1

∣∣vt∣∣2
dΓ1 +

τ2

2
k2

2(t)
∫
Γ1

∣∣v0
∣∣2
dΓ1

+
τ2

2
k′2(t)

∫
Γ1

|v|2dΓ1− τ2

2

∫
Γ1

k′′2 �vdΓ1.

(3.4)

Proof. Multiplying (1.2) by ut and integrating by parts over Ω, we get

1
2
d

dt

∫
Ω

{∣∣ut∣∣2
+ |∇u|2 +β|u|2

}
dx−α

n∑
i=1

∫
Ω

∂v

∂xi
ut dx =

∫
Γ1

∂u

∂ν
ut dΓ1. (3.5)
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Similarly, we have

1
2
d

dt

∫
Ω

{∣∣vt∣∣2
+ |∇v|2 + 2F(v)

}
dx+α

n∑
i=1

∫
Ω

∂u

∂xi
vt dx =

∫
Γ1

∂v

∂ν
vt dΓ1. (3.6)

Summing the above identities, substituting the boundary terms by (2.5), and
using Lemma 2.3 our conclusion follows. �

Let θ > 0 be a small constant and define the following functional:

ψ(t)=
∫
Ω

{
m ·∇u+

(
n

2
− θ

)
u
}
ut dx+

∫
Ω

{
m ·∇v+

(
n

2
− θ

)
v
}
vt dx. (3.7)

The following lemma plays an important role for the construction of the Lya-
punov functional.

Lemma 3.2. For any strong solution of system (1.2)–(1.7),

d

dt
ψ(t)≤ 1

2

∫
Γ1

m · ν
(∣∣ut∣∣2

+
∣∣vt∣∣2

)
dΓ1− θ

∫
Ω

∣∣ut∣∣2
+
∣∣vt∣∣2

dx

− (1− θ)
2

∫
Ω
|∇u|2dx− (1− θ)

2

∫
Ω
|∇v|2dx

−
(
nδ

2
− θ(2 + δ)

)∫
Ω
F(v)dx

− c
n∑
i=1

∫
Ω

∣∣∣∣ ∂v∂xi −u
∣∣∣∣

2

dx+
∫
Γ1

∂u

∂ν
m ·∇udΓ1

+
∫
Γ1

∂v

∂ν
m ·∇vdΓ1− 1

2

∫
Γ1

m · ν|∇u|2dΓ1

− 1
2

∫
Γ1

m · ν|∇v|2dΓ1− β

2

∫
Γ1

m · ν|u|2dΓ1.

(3.8)

Proof. From (1.2) we obtain

d

dt

∫
Ω
ut

{
m ·∇u+

(
n

2
− θ

)
u
}
dx

=
∫
Ω
utm ·∇ut dx+

(
n

2
− θ

)∫
Ω

∣∣ut∣∣2
dx+

∫
Ω
∆um ·∇udx

+
(
n

2
− θ

)∫
Ω
∆uudx+α

n∑
i=1

∫
Ω

∂v

∂xi

{
m ·∇u+

(
n

2
− θ

)
u
}
dx

−β
∫
Ω
u
{
m ·∇u+

(
n

2
− θ

)
u
}
dx.

(3.9)
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Performing an integration by parts, we get

d

dt

∫
Ω
ut

{
m ·∇u+

(
n

2
− θ

)
u
}
dx

≤ 1
2

∫
Γ1

m · ν∣∣ut∣∣2
dΓ1− θ

∫
Ω

∣∣ut∣∣2
dx+

∫
Γ1

∂u

∂ν
m ·∇udΓ1

− 1
2

∫
Γ1

m · ν|∇u|2dΓ1− (1− θ)
∫
Ω
|∇u|2dx+

αc

2

∫
Ω

{|∇u|2 + |∇v|2}dx
+α
(
n

2
− θ

) n∑
i=1

∫
Ω

∂v

∂xi
udx− β

2

∫
Γ1

m · |u|2dΓ1 +βθ
∫
Ω
|u|2dx.

(3.10)

Similarly, using (1.3) instead of (1.2) we get

d

dt

∫
Ω
vt

(
m ·∇v+

(
n

2
− θ

)
v
)
dx

≤ 1
2

∫
Γ1

m · ν∣∣vt∣∣2
dΓ1− θ

∫
Ω

∣∣vt∣∣2
dx+

∫
Γ1

∂v

∂ν
m ·∇vdΓ1

− 1
2

∫
Γ1

m · ν|∇v|2dΓ1− (1− θ)
∫
Ω
|∇v|2dx−

(
n

2
− θ

)
(2 + δ)

∫
Ω
F(v)dx

+n
∫
Ω
F(v)dx+

αc

2

∫
Ω

{|∇u|2 + |∇v|2}dx+α
(
n

2
− θ

) n∑
i=1

∫
Ω

∂v

∂xi
udx.

(3.11)

Summing these two last inequalities, using Poincaré’s inequality and taking θ
small enough our conclusion follows. �

We introduce the Lyapunov functional

�(t)=NE(t) +ψ(t), (3.12)

with N > 0. Using Young’s inequality and taking N large enough we find that

q0E(t)≤�(t)≤ q1E(t), (3.13)

for some positive constants q0 and q1. We will show later that the functional �
satisfies the inequality of the following lemma.

Lemma 3.3. Let f be a real positive function of class C1. If there exist positive
constants γ0,γ1, and c0 such that

f ′(t)≤−γ0 f (t) + c0e
−γ1t , (3.14)
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then there exist positive constants γ and c such that

f (t)≤ ( f (0) + c
)
e−γt. (3.15)

Proof. First, suppose that γ0 < γ1. Define F(t) by

F(t) := f (t) +
c0

γ1− γ0
e−γ1t . (3.16)

Then

F′(t)= f ′(t)− γ1c0

γ1− γ0
e−γ1t ≤−γ0F(t). (3.17)

Integrating from 0 to t we arrive to

F(t)≤ F(0)e−γ0t =⇒ f (t)≤
(
f (0) +

c0

γ1− γ0

)
e−γ0t . (3.18)

Now, we will assume that γ0 ≥ γ1, and we get

f ′(t)≤−γ1 f (t) + c0e
−γ1t =⇒ [

eγ1t f (t)
]′ ≤ c0. (3.19)

Integrating from 0 to t, we obtain

f (t)≤ ( f (0) + c0t
)
e−γ1t . (3.20)

Since t ≤ (γ1− ε)e(γ1−ε)t for any 0 < ε < γ1 we conclude that

f (t)≤ [ f (0) + c0
(
γ1− ε

)]
e−εt . (3.21)

This completes the proof. �

Finally, we will show the main result of this section.

Theorem 3.4. Take (u0,v0)∈ V 2 and (u1,v1)∈ [L2(Ω)]2. If the resolvent kernels
k1 and k2 satisfy (3.1), then there exist positive constants α1 and γ1 such that

E(t)≤ α1e
−γ1tE(0), ∀t ≥ 0. (3.22)

Proof. We will prove this result for strong solutions, that is, for solutions with
initial data (u0,v0)∈ (H2(Ω)∩V)2 and (u1,v1)∈ V 2 satisfying the compatibil-
ity conditions (2.21). Our conclusion follows by standard density arguments.
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Using Lemmas 3.1 and 3.2, condition (1.12), and Young’s inequality we get

d

dt
�(t)≤N

{
− τ1β1

2

∫
Γ1

∣∣ut∣∣2
dΓ1 +

τ1β1

2
k2

1(t)
∫
Γ1

∣∣u0
∣∣2
dΓ1

+
τ1β1

2
k′1(t)

∫
Γ1

|u|2dΓ1− τ1β1

2

∫
Γ1

k′′1 �udΓ1

− τ2β2

2

∫
Γ1

∣∣vt∣∣2
dΓ1 +

τ2β2

2
k2

2(t)
∫
Γ1

∣∣v0
∣∣2
dΓ1

+
τ2β2

2
k′2(t)

∫
Γ1

|v|2dΓ1− τ2β2

2

∫
Γ1

k′′2 �vdΓ1

}

+
1
2

∫
Γ1

m · ν
(∣∣ut∣∣2

+
∣∣vt∣∣2

)
dΓ1− θ

∫
Ω

∣∣ut∣∣2
+
∣∣vt∣∣2

dx

− (1− θ)
β1

2

∫
Ω
|∇u|2dx− (1− θ)

β2

2

∫
Ω
|∇v|2dx

− c
n∑
i=1

∫
Ω

∣∣∣∣ ∂v∂xi −u
∣∣∣∣

2

dx−
(
nδ

2
− θ(2 + δ)

)∫
Ω
F(v)dx

+
εc
2

∫
Γ1

∣∣∣∣∂u∂ν
∣∣∣∣

2

dΓ1 +
ε

2δ0

∫
Γ1

m · ν|∇u|2dΓ1

+
c

2ε

∫
Γ1

∣∣∣∣∂v∂ν
∣∣∣∣

2

dΓ1 +
ε

2δ0

∫
Γ1

m · ν|∇v|2dΓ1

− 1
2

∫
Γ1

m · ν|∇u|2dΓ1− 1
2

∫
Γ1

m · ν|∇v|2dΓ1,

(3.23)

for any ε > 0. Choosing N large enough, fixing ε = δ0, and using the inequalities

∫
Γ1

∣∣∣∣∂u∂ν
∣∣∣∣

2

dΓ1 ≤ c
∫
Γ1

∣∣ut∣∣2
+ k2

1|u|2 + k1(0)
∣∣k′1∣∣�u+ k2

1|u|2dΓ1,

∫
Γ1

∣∣∣∣∂v∂ν
∣∣∣∣

2

dΓ1 ≤ c
∫
Γ1

∣∣vt∣∣2
+ k2

2|v|2 + k2(0)
∣∣k′2∣∣�v+ k2

2|v|2dΓ1,

(3.24)

we arrive to

d

dt
�(t)≤−q2E(t) + cR2(t)E(0), (3.25)

where R(t) = k1(t) + k2(t) and q2 > 0 is a small constant. Here we have used
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assumptions (3.1) in order to obtain the following estimates:

−τ1

2

∫
Γ1

k′′1 �udΓ1 ≤ c1

∫
Γ1

k′1�udΓ1,

−τ2

2

∫
Γ1

k′′2 �vdΓ1 ≤ c2

∫
Γ1

k′2�vdΓ1,

τ1

2

∫
Γ1

k′1|u|2dΓ1 ≤−c3

∫
Γ1

k1|u|2dΓ1,

τ2

2

∫
Γ1

k′2|v|2dΓ1 ≤−c4

∫
Γ1

k2|v|2dΓ1,

(3.26)

for some boundary terms in (3.23). Finally, in view of (3.13) we conclude that

d

dt
�(t)≤−q2

q1
�(t) + cR2(t)E(0). (3.27)

From the exponential decay of k1, k2, and Lemma 3.3 there exist positive con-
stants c and γ1 such that

�(t)≤ {�(0) + c
}
e−γ1t , ∀t ≥ 0. (3.28)

From inequality (3.13) our conclusion follows. �

4. Polynomial rate of decay

Here our attention will be focused on the uniform rate of decay when the resol-
vent kernels k1 and k2 decay polynomially like (1 + t)−p. In this case we will show
that the solution also decays polynomially with the same rate. Therefore, we will
assume that the resolvent kernels k1 and k2 satisfy

ki(0) > 0, k′i (t)≤−b1
[
ki(t)

]1+1/p
, k′′i (t)≥ b2

[− k′i (t)]1+1/(p+1)
, for i= 1,2,

(4.1)

for some p > 1 and some positive constants b1 and b2. The following lemmas
will play an important role in the sequel.

Lemma 4.1. Let (u,v) be a solution of system (1.2)–(1.7) and denote by (φ1,φ2)=
(u,v). Then, for p > 1, 0 < r < 1, and t ≥ 0,

(∫
Γ1

∣∣k′i∣∣�φi dΓ1

)(1+(1−r)(p+1))/(1−r)(p+1)

≤ 21/(1−r)(p+1)

(∫ t
0

∣∣k′i (s)∣∣r ds∥∥φi∥∥2
L∞(0,t;L2(Γ1))

)1/(1−r)(p+1)

×
∫
Γ1

∣∣k′i∣∣1+1/(p+1)
�φi dΓ1,

(4.2)
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while for r = 0

(∫
Γ1

∣∣k′i∣∣�φi dΓ1

)(p+2)/(p+1)

≤ 2

(∫ t
0

∥∥φi(s,·)∥∥2
L2(Γ1)ds+ t

∥∥φi(s,·)∥∥2
L2(Γ1)

)p+1

×
∫
Γ1

∣∣k′i∣∣1+1/(p+1)
�φi dΓ1, for i= 1,2.

(4.3)

Proof. See [2]. �

Lemma 4.2. Let f ≥ 0 be a differentiable function satisfying

f ′(t)≤− c1

f (0)1/α
f (t)1+1/α +

c2

(1 + t)β
f (0) for t ≥ 0, (4.4)

for some positive constants c1, c2, α, and β such that

β ≥ α+ 1. (4.5)

Then there exists a constant c > 0 such that

f (t)≤ c

(1 + t)α
f (0) for t ≥ 0. (4.6)

Proof. See [2]. �

Theorem 4.3. Take (u0,v0)∈ V 2 and (u1,v1)∈ [L2(Ω)]2. If the resolvent kernels
k1 and k2 satisfy conditions (4.1), then there exists a positive constant c such that

E(t)≤ c

(1 + t)p+1E(0). (4.7)

Proof. We will prove this result for strong solutions, that is, for solutions with
initial data (u0,v0)∈ (H2(Ω)∩V)2 and (u1,v1)∈ V 2 satisfying the compatibil-
ity conditions (2.21). Our conclusion will follow by standard density arguments.
We define the functional � as in (3.12) therefore we have the equivalence rela-
tion given in (3.13) again. Combining Lemmas 3.1 and 3.2 we get

d

dt
�(t)≤−c1

{∫
Ω

∣∣ut∣∣2
+ |u|2 + |∇u|2 +

∣∣vt∣∣2
+ |∇v|2 +F(v)dx

+
n∑
i=1

∫
Ω

∣∣∣∣ ∂v∂xi −u
∣∣∣∣

2

dx

}
−N

{∫
Γ1

k′′1 �u+ k′′2 �vdΓ1

}
+ c2R

2(t)E(0),

(4.8)
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for some positive constants c1 and c2. Using hypothesis (4.1) we obtain

d

dt
�(t)≤−c1

{∫
Ω

∣∣ut∣∣2
+ |u|2 + |∇u|2 +

∣∣vt∣∣2
+ |∇v|2 +F(v)dx

+
n∑
i=1

∫
Ω

∣∣∣∣ ∂v∂xi −u
∣∣∣∣

2

dx

}

−N
{∫

Γ1

[− k′1]1+1/(p+1)
�udΓ1 +

∫
Γ1

[− k′2]1+1/(p+1)
�vdΓ1

}

+ c2R
2(t)E(0).

(4.9)

Denote by

�(t) :=
∫
Ω

∣∣ut∣∣2
+ |u|2 + |∇u|2 +

∣∣vt∣∣2
+ |∇v|2 +F(v)dx

+
n∑
i=1

∫
Ω

∣∣∣∣ ∂v∂xi −u
∣∣∣∣

2

dx+ k1(t)
∫
Γ1

|u|2dΓ1 + k2(t)
∫
Γ1

|v|2dΓ1.
(4.10)

Using the following estimates:

k1(t)
∫
Γ1

|u|2dΓ1 ≤ c
∫
Ω
|∇u|2dx,

k2(t)
∫
Γ1

|v|2dΓ1 ≤ c
∫
Ω
|∇v|2dx,

(4.11)

inequality (4.9) can be written as

d

dt
�(t)≤−c1�(t) + c2R

2(t)E(0)

−N
{∫

Γ1

[− k′1]1+1/(p+1)
�udΓ1 +

∫
Γ1

[− k′2]1+1/(p+1)
�vdΓ1

}
.

(4.12)

Fix 0 < r < 1 such that 1/(p+ 1) < r < p/(p+ 1). Under this condition we have

∫∞
0

∣∣k′i∣∣r ≤ c
∫∞

0

1
(1 + t)r(p+1) <∞ for i= 1,2. (4.13)

Using this estimate and Lemma 4.1 we get

∫
Γ1

[− k′1]1+1/(p+1)
�udΓ1 ≥ c

E(0)1/(1−r)(p+1)

(∫
Γ1

[− k′1]�udΓ1

)1+1/(1−r)(p+1)

,

∫
Γ1

[− k′2]1+1/(p+1)
�vdΓ1 ≥ c

E(0)1/(1−r)(p+1)

(∫
Γ1

[− k′2]�vdΓ1

)1+1/(1−r)(p+1)

.

(4.14)
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On the other hand, since the energy is bounded we have

�(t)1+1/(1−r)(p+1) ≤ cE(0)1/(1−r)(p+1)�(t). (4.15)

Substitution of (4.14) and (4.15) into (4.12) we arrive to

d

dt
�(t)≤− c

E(0)1/(1−r)(p+1) �(t)1+1/(1−r)(p+1) + cR2(t)E(0)

− c

E(0)1/(1−r)(p+1)

{(∫
Γ1

[− k′1]�udΓ1

)1+1/(1−r)(p+1)

+

(∫
Γ1

[− k′2]�vdΓ1

)1+1/(1−r)(p+1)}
.

(4.16)

Taking into account inequality (3.13) we conclude that

d

dt
�(t)≤− c

�(0)1/(1−r)(p+1) �(t)1+1/(1−r)(p+1) + cR2(t)E(0). (4.17)

Therefore, from Lemma 4.2 we conclude that

�(t)≤ c

(1 + t)(1−r)(p+1) �(0). (4.18)

Since (1− r)(p+ 1) > 1 we get, for t ≥ 0, the following estimates:

t‖u‖L2(Γ1) + t‖v‖L2(Γ1) ≤ t�(t) <∞,∫ t
0
‖u‖L2(Γ1) +‖v‖L2(Γ1) ≤ c

∫ t
0

�(t) <∞.
(4.19)

Under this condition applying Lemma 4.1 for r = 0 we get

∫
Γ1

[− k′1]1+1/(p+1)
�udΓ1 ≥ c

E(0)1/(p+1)

(∫
Γ1

[− k′1]udΓ1

)1+1/(p+1)

,

∫
Γ1

[− k′2]1+1/(p+1)
�vdΓ1 ≥ c

E(0)1/(p+1)

(∫
Γ1

[− k′2]vdΓ1

)1+1/(p+1)

.

(4.20)

Using these inequalities instead of (4.14) and reasoning in the same way as
above, we conclude that

d

dt
�(t)≤− c

�(0)1/(p+1) �(t)1+1/(p+1) + cR2(t)E(0). (4.21)
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Applying Lemma 4.2 again, we obtain

�(t)≤ c

(1 + t)p+1 �(0). (4.22)

Finally, from (3.13) we conclude

E(t)≤ c

(1 + t)p+1E(0), (4.23)

which completes the present proof. �
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