

AN INVERSE PROBLEM FOR EVOLUTION INCLUSIONS

BUI AN TON

Received 18 May 2001

An inverse problem, the determination of the shape and a convective coefficient on a part of the boundary from partial measurements of the solution, is studied using 2-person optimal control techniques.

1. Introduction

Let $H, \mathcal{H}_j, \mathcal{U}_j; j = 1, \dots, N$ be Hilbert spaces and let φ be a lower semi-continuous (l.s.c.) function from $H \times \prod_{j=1}^N \mathcal{U}_j$ into \mathbb{R}^+ with $\varphi(\cdot; u)$ convex on H .

Consider the initial-value problem

$$y' + \partial\varphi(y; u) + f(t, y; u) \ni 0 \quad \text{on } (0, T), \quad y(0) = y_0. \quad (1.1)$$

With some conditions on φ and on f , the set $\mathcal{R}(u)$ of all “strong” solutions of (1.1) is nonempty. Let f_j be mappings of $L^2(0, T; \mathcal{H}_j) \times \mathcal{U}$ into \mathbb{R}^+ and associate with (1.1) the cost functionals

$$J_j(y; u) = \int_0^T f_j(y(s); u) ds, \quad j = 1, \dots, N, \quad (1.2)$$

with $D(\varphi(\cdot, u)) \subset \mathcal{H}_j$ for all $u \in \mathcal{U} = \prod_{j=1}^N \mathcal{U}_j$.

The existence of an open loop of (1.1), (1.2) with φ independent of the control u , has been established in Ton [7]. With optimal shape design and with inverse problems in mind, we will consider the case when φ depends on the control u as it appears in the top order term of the partial differential operators involved in the problems.

Optimal design of domains has been investigated by Barbu and Friedman [1], Canadas et al. [2], Gunzburger and Kim [3], Pironneau [6], and others. Inverse

problems have been studied by Canadas et al. [2], Lenhart et al. [4], Lenhart and Wilson [5], and others.

In contrast with all the cited works where a single cost functional is involved, we will consider the N -person optimal control approach. It is well known that for N -control, open and closed loops are two different notions. In this paper, the existence of an open loop of (1.1), (1.2) is established in [Section 3](#), that is, there exists $\tilde{u} \in U$ such that

$$J_j(\tilde{y}; \pi_j \tilde{u}, \tilde{u}_j) \leq J_j(y; \pi_j \tilde{u}, v_j), \quad \forall y \in \mathcal{R}(\pi_j \tilde{u}, v_j), \quad \forall v_j \in U_j; \quad j = 1, \dots, N, \quad (1.3)$$

where U_j are given compact convex subsets of the control spaces \mathcal{U}_j and π_j is the projection of \mathcal{U} onto $\prod_{k \neq j}^N \mathcal{U}_k$.

With a cost functional f_j defined by

$$f_j(y) = \|y(\cdot, t) - h(\cdot, t)\|_{L^2(0, T; L^2(\Omega))}^2, \quad (1.4)$$

where Ω is a proper subset of the domain and where h is a measurement of the solution y of (1.1) in the subdomain Ω , then (1.1), (1.2) becomes an inverse problem.

Applications to parabolic inequalities are carried out in [Section 4](#) and the notation and the main assumptions of the paper are given in [Section 2](#).

2. Notation and assumptions

Let $H, \mathcal{H}_j, \mathcal{U}_j; j = 1, \dots, N$ be Hilbert spaces. The norm in H is denoted by $\|\cdot\|$ and (\cdot, \cdot) is the inner product in the space. Throughout, U is a given compact convex subset of the control space $\mathcal{U} = \prod_{j=1}^N \mathcal{U}_j$.

Assumption 2.1. Let φ be a mapping of $H \times \mathcal{U}$ into \mathbb{R}^+ . We assume that

- (1) for each $u \in \mathcal{U}$, $D(\varphi(\cdot; u))$ is dense in H ;
- (2) $\varphi(y; u)$ is an l.s.c. function from $H \times \mathcal{U}$ into \mathbb{R}^+ and is convex on H for each given $u \in \mathcal{U}$;
- (3) there exists a positive constant c such that

$$c\|y\|^2 \leq \varphi(y; u), \quad \forall y \in D(\varphi(y; u)), \quad \forall u \in \mathcal{U}; \quad (2.1)$$

- (4) for each positive constant C ,

$$\{y : \varphi(y; u) \leq C\} \quad (2.2)$$

is a compact convex subset of H for each given $u \in \mathcal{U}$;

- (5) if $u_n \rightarrow u$ in \mathcal{U} , then

$$\int_0^T \varphi(y(s); u) ds = \lim_n \int_0^T \varphi(y(s); u_n) ds, \quad \forall y \in \bigcap_{u_n \in \mathcal{U}} D(\varphi(\cdot; u_n)) \cap L^2(0, T; H). \quad (2.3)$$

The subdifferential of $\varphi(y; u)$ at y is the set

$$\partial\varphi(y; u) = \{g : g \in H, \varphi(x; u) - \varphi(y; u) \geq (g, x - y), \forall x \in D(\varphi(\cdot; u))\}. \quad (2.4)$$

It is known that $A(y; u) = \partial\varphi(y; u)$ is maximal monotone in H . The images of $A(y; u)$ are closed, convex subsets of H .

Let $f(y; u)$ be a mapping of $L^2(0, T; H) \times \mathcal{U}$ into $L^2(0, T; H)$ satisfying the following assumption.

Assumption 2.2. We assume that there exists a constant C such that

$$\|f(y; u)\|_H^2 \leq C\{1 + \|u\|_{\mathcal{U}}^2 + \varphi(y; u)\} \quad (2.5)$$

for all $y \in D(\varphi(\cdot; u))$, all $u \in \mathcal{U}$.

Throughout, the set of solutions of (1.1) is denoted by $\mathcal{R}(u)$.

Assumption 2.3. Let f_j be mappings of $L^2(0, T; \mathcal{H}_j) \times \mathcal{U}$ into \mathbb{R}^+ . We assume that

- (1) $D(\varphi(\cdot; u)) \subset \mathcal{H}_j$ for all $u \in \mathcal{U}$;
- (2) suppose that

$$\begin{aligned} \varphi(y^n; u^n) + \|(y^n)'\|_{L^2(0, T; H)} &\leq C, \\ u^n \in U, \{y^n, u^n\} &\longrightarrow \{y, u\} \quad \text{in } L^2(0, T; H) \times \mathcal{U}, \end{aligned} \quad (2.6)$$

then

$$\int_0^T f_j(y; u) dt = \lim_{n \rightarrow \infty} \int_0^T f_j(y^n; u^n) dt. \quad (2.7)$$

3. Open loop control

The main result of this section is the following theorem.

THEOREM 3.1. Let φ, f be as in Assumptions 2.1 and 2.2, and let f_j be continuous mappings of $L^2(0, T; \mathcal{H}_j) \times \mathcal{U}$ into \mathbb{R}^+ . Suppose that $y_0 \in D(\varphi(\cdot; u))$ for all $u \in U$. Then there exists $\{\tilde{y}, \tilde{u}\} \in \{L^2(0, T; H) \cap \mathcal{R}(\tilde{u})\} \times U$ such that

$$J_j(\tilde{y}; \pi_j \tilde{u}, \tilde{u}_j) \leq J_j(y; \pi_j \tilde{u}, v_j), \quad \forall y \in \mathcal{R}(\pi_j \tilde{u}, v_j), \forall v_j \in U_j, j = 1, \dots, N. \quad (3.1)$$

Moreover, there exists a positive constant C , independent of u such that

$$\begin{aligned} \text{ess sup } \varphi(\tilde{y}(t); \tilde{u}) + \|\tilde{y}'\|_{L^2(0, T; H)}^2 + \|A(\tilde{y}; \tilde{u})\|_{L^2(0, T; H)}^2 \\ \leq C \left\{ 1 + \sup_{u \in U} \varphi(y_0; u) \right\}, \end{aligned} \quad (3.2)$$

where $A(\tilde{y}; \tilde{u})$ is an element of the set $\partial\varphi(\tilde{y}; \tilde{u})$.

First, we will show that the set $\mathcal{R}(u)$ is nonempty.

THEOREM 3.2. *Suppose all the hypotheses of Theorem 3.1 are satisfied. Then for each given $u \in U$, there exists a solution y of (1.1) with*

$$\|y'\|_{L^2(0,T;H)}^2 + \|A(y;u)\|_{L^2(0,T;H)}^2 + \text{ess sup}_{t \in [0,T]} \varphi(y(t);u) \leq C\{1 + \|u\|_{\mathcal{U}}^2\}. \quad (3.3)$$

The constant C is independent of u and $A(y;u)$ is an element of $\partial\varphi(y;u)$.

Proof. For a given $u \in U$, the existence of a solution y of (1.1) with

$$\{y, y', A(y;u)\} \in L^\infty(0, T; H) \times (L^2(0, T; H))^2 \quad (3.4)$$

is known (cf. Yamada [8]).

We will now establish the estimate of Theorem 3.2. We have

$$(y', \partial\varphi(y;u)) + \|\partial\varphi(y;u)\|^2 + (f(y;u), \partial\varphi(y;u)) = 0. \quad (3.5)$$

With our hypotheses on f , we get

$$\frac{d}{dt} \varphi(y;u) + \|\partial\varphi(y;u)\|^2 \leq C\{1 + \|u\|_{\mathcal{U}}^2 + \varphi(y(t);u)\}. \quad (3.6)$$

It follows from the Gronwall lemma that

$$\text{ess sup}_{t \in [0,T]} \varphi(y(t);u) + \|\partial\varphi(y;u)\|_{L^2(0,T;H)}^2 \leq C\{1 + \|u\|_{\mathcal{U}}^2\}. \quad (3.7)$$

The different constants C are all independent of u .

With the estimate (2.1), we deduce from (1.1) and from Assumption 2.2 that

$$\|y'\|_{L^2(0,T;H)}^2 \leq C\{1 + \|u\|_{\mathcal{U}}^2\}. \quad (3.8)$$

The theorem is thus proved. \square

Set

$$\mathcal{B}_C = \left\{ y : \|y'\|_{L^2(0,T;H)} + \sup_{u \in U} \text{ess sup}_{t \in [0,T]} \varphi(y(t);u) \leq C \left(1 + \sup_{u \in U} \|u\|_{\mathcal{U}} \right) \right\}. \quad (3.9)$$

Consider the evolution inclusion

$$y' + \partial\varphi(y;u) + f(x;u) \ni 0 \quad \text{on } (0, T), \quad y(0) = y_0 \quad (3.10)$$

with $x \in \mathcal{B}_C$.

In view of Theorem 3.2, inclusion (3.10) has a unique solution which we will write as $y = R(x;u)$.

Denote by

$$J_j(x; y; u) = \int_0^T f_j(y(s); u) ds, \quad j = 1, \dots, N, \quad (3.11)$$

the cost functionals associated with (3.10) and where $y = R(x; u)$ is the unique solution of (3.10).

Let

$$\Psi(x; u, v) = \sum_{j=1}^N J_j(x; y_j; \pi_j u, v_j), \quad (3.12)$$

where $y_j = R(x; \pi_j u, v_j)$.

LEMMA 3.3. *Suppose all the hypotheses of Theorem 3.1 are satisfied. Then for each given $\{x, u\} \in \mathcal{B}_C \times U$, there exists $v^* \in U$ such that*

$$\Psi(x; u, v^*) = d(x; u) = \inf \{\Psi(x; u, v) : v \in U\}. \quad (3.13)$$

Proof. Let $\{v^n\}$ be a minimizing sequence of (3.13) with

$$d(x; u) \leq \Psi(x; u, v^n) \leq d(x; u) + n^{-1}. \quad (3.14)$$

Since $v^n \in U$ and U is a compact subset of \mathcal{U} , we obtain by taking subsequences that $v^{n_k} \rightarrow v^*$ in \mathcal{U} . Let $y_j^n = R(x; \pi_j u, v_j^n)$, then from the estimates of Theorem 3.2 we obtain, by taking subsequences, that

$$\begin{aligned} & \{y_j^{n_k}, (y_j^{n_k})', A(y_j^{n_k}; \pi_j u, v_j^{n_k})\} \\ & \longrightarrow \{y_j^*, (y_j^*)', \chi_j\} \quad \text{in } L^2(0, T; H) \times (L^2(0, T; H))_{\text{weak}}. \end{aligned} \quad (3.15)$$

From the definition of subdifferential, we have

$$\begin{aligned} & \int_0^T \varphi(z(t); \pi_j u, v_j^{n_k}) dt - \int_0^T \varphi(y_j^{n_k}(t); \pi_j u, v_j^{n_k}) dt \\ & \geq \int_0^T (A(y_j^{n_k}(t); \pi_j u, v_j^{n_k}), z - y_j^{n_k}) dt, \end{aligned} \quad (3.16)$$

for all $z \in L^2(0, T; H)$.

It follows from Assumption 2.1 that

$$\int_0^T \varphi(z(t); \pi_j u, v_j^*) dt - \int_0^T \varphi(y_j^*(t); \pi_j u, v_j^*) dt \geq \int_0^T (\chi_j, z - y_j^*(t)) dt. \quad (3.17)$$

Hence

$$\chi_j = A(y_j^*; \pi_j u, v_j^*). \quad (3.18)$$

It is clear that $y_j^* = R(x; \pi_j u, v_j^*)$ and thus,

$$d(x; u) = \Psi(x; u, v^*) = \sum_{j=1}^N J_j(x; y_j, \pi_j u, v_j^*), \quad (3.19)$$

where $y_j = R(x; \pi_j u, v_j^*)$.

The lemma is proved. \square

Let

$$X(x; u) = \{v^* : \Psi(x; u, v^*) \leq \Psi(x; u, v), \forall v \in U\}. \quad (3.20)$$

LEMMA 3.4. *Let g_j be a continuous mapping of U_j into \mathbb{R}^+ and suppose that g_j is 1-1. Then there exists a unique $\hat{v} \in X(x; u)$ such that*

$$g_j(\hat{v}_j) = \inf \{g_j(v_j^*) : v^* \in X(x, u)\}. \quad (3.21)$$

Proof. The set $X(x; u)$ is nonempty and with our hypothesis on g_j , it is clear that

$$d_j(x; u) = \inf \{g_j(v_j^*) : v^* \in X(x; u)\} \quad (3.22)$$

exists.

Let v_j^n be a minimizing sequence of the optimization problem (3.22) with

$$d_j(x; u) \leq g_j(v_j^n) \leq d_j(x; u) + n^{-1}, \quad j = 1, \dots, N, \quad (3.23)$$

and $v^n \in X(x, u)$.

Let $y_j^n = R(x; \pi_j u, v_j^n)$ be the unique solution of (3.10) with controls $\{\pi_j u, v_j^n\}$ and $f(x; \pi_j u, v_j^n)$. Then from the estimates of Theorem 3.2, we obtain, by taking subsequences, that

$$\{y_j^n, (y_j^n)', A(y_j^n; \pi_j u, v_j^n)\} \rightharpoonup \{\hat{y}_j, \hat{y}'_j, \chi_j\} \quad \text{in } L^2(0, T; H) \times (L^2(0, T; H))^2_{\text{weak}}. \quad (3.24)$$

Since $v^n \in U$, we get by taking subsequences that $v^n \rightarrow \hat{v}$ in \mathcal{U} .

A proof, as in that of Lemma 3.3, shows that

$$\chi_j = A(\hat{y}_j; \pi_j u, \hat{v}_j), \quad \hat{y}_j = R(x; \pi_j u, \hat{v}_j). \quad (3.25)$$

Hence $\hat{v} \in X(x; u)$. We now have

$$g_j(\hat{v}_j) = d_j(x; u) = \inf \{g_j(v_j^*) : v^* \in X(x; u)\}. \quad (3.26)$$

Since g_j is 1-1, \hat{v} is unique. The lemma is proved. \square

Let \mathcal{L} be the nonlinear mapping of $\mathcal{B}_C \times U$ into $\mathcal{B}_C \times U$, defined by

$$\mathcal{L}(x, u) = \{\hat{y}, \hat{v}\}, \quad (3.27)$$

where \hat{v} is the element of U given by Lemma 3.4 and $\hat{y} = R(x; \pi_j u, \hat{v}_j)$ is the unique solution of (3.10) with control $\{\pi_j u, \hat{v}_j\}$ and $f(x; \pi_j u, \hat{v}_j)$.

LEMMA 3.5. *Suppose all the hypotheses of Theorem 3.1 are satisfied. Then \mathcal{L} , defined by (3.27), has a fixed point, that is, there exists $\{\tilde{y}, \tilde{u}\} \in \mathcal{B}_C \times U$ such that $\mathcal{L}(\tilde{y}, \tilde{u}) = \{\tilde{y}, \tilde{u}\}$.*

Proof. (1) We now show that \mathcal{L} has a fixed point by applying Schauder's theorem. Since $\mathcal{B}_C \times U$ is a compact convex subset of $L^2(0, T; H) \times \mathcal{U}$ and since \mathcal{L} takes $\mathcal{B}_C \times U$ into itself, it suffices to show that \mathcal{L} is continuous.

(2) Let $\{x^n, u^n\}$ be in $\mathcal{B}_C \times U$ and let

$$y_j^n = R(x^n; \pi_j u^n, \hat{v}_j^n), \quad \hat{v}^n \text{ as in Lemma 3.4.} \quad (3.28)$$

Since $\{x^n u^n\} \in \mathcal{B}_C \times U$ and $\mathcal{B}_C \times U$ is a compact subset of $L^2(0, T; H) \times \mathcal{U}$, there exists a subsequence such that

$$\{x^n, u^n, \hat{v}^n\} \rightharpoonup \{x^*, u^*, \hat{v}\} \quad \text{in } L^2(0, T; H) \times \mathcal{U} \times \mathcal{U}. \quad (3.29)$$

From the estimates of [Theorem 3.2](#), we get

$$\{y_j^n, (y_j^n)', A(y_j^n; u^n)\} \rightharpoonup \{y_j^*, (y_j^*)', \chi_j\} \quad \text{in } L^2(0, T; H) \times (L^2(0, T; H))^2_{\text{weak}}. \quad (3.30)$$

A proof, as in that of [Lemma 3.3](#), shows that

$$\chi_j = A(y_j^*; u^*), \quad y_j^* = R(x^*; \pi_j u^*, \hat{v}_j). \quad (3.31)$$

(3) We now show that $u^* \in X(x^*, \hat{v})$. Since

$$\mathcal{L}\{u^n, x^n\} = \{v^n, y^n\}, \quad (3.32)$$

it follows from the definition of \mathcal{L} that

$$\begin{aligned} \Psi(x^n; u^n, v^n) &\leq \Psi(x^n; u^n, v), \quad \forall v \in U, \\ \sum_{j=1}^N J_j(x^n; y_j^n; \pi_j u^n, v_j^n) &\leq \sum_{j=1}^N J_j(x^n; z_j^n; \pi_j u^n, v_j), \quad \forall v \in U, \end{aligned} \quad (3.33)$$

where $z_j^n = R(x^n; \pi_j u^n, v_j)$ is the unique solution of [\(3.10\)](#) with controls $\{\pi_j u^n, v_j\}$ and $f(x^n; \pi_j u^n, v_j)$.

Again from the estimates of [Theorem 3.2](#), we deduce as above that

$$\{z_j^n, (z_j^n)', A(z_j^n; u^n)\} \rightharpoonup \{z_j, z_j', A(z_j; u^*)\} \quad \text{in } L^2(0, T; H) \times (L^2(0, T; H))^2_{\text{weak}}. \quad (3.34)$$

It then follows from [\(3.33\)](#) that

$$\sum_{j=1}^N J_j(x^*; y_j^*; \pi_j u^*, \hat{v}_j) \leq \sum_{j=1}^N J_j(x^*; z_j; \pi_j u^*, v_j), \quad \forall v \in U, \quad (3.35)$$

that is,

$$\Psi(x^*; u^*, \hat{v}) \leq \Psi(x^*; u^*, v), \quad \forall v \in U. \quad (3.36)$$

Hence

$$d(x^*, u^*) = \Psi(x^*; u^*, \hat{v}) = \inf \{\Psi(x^*; u^*, v) : v \in U\}. \quad (3.37)$$

Moreover, we have

$$\lim_n g_j(v_j^n) = g_j(\hat{v}_j), \quad j = 1, \dots, N. \quad (3.38)$$

By hypothesis, g_j is 1-1 and so \hat{v} , the unique element of $X(x^*; u^*)$, with

$$g_j(\hat{v}_j) = \inf \{g_j(v_j) : v \in X(x^*; u^*)\}, \quad (3.39)$$

is in $X(x^*; u^*)$. It follows that $\mathcal{L}\{x^*, u^*\} = \{y^*, \hat{v}\}$.

The operator \mathcal{L} is continuous and thus, it has a fixed point by Schauder's theorem. The lemma is thus proved. \square

Proof of Theorem 3.1. Let \mathcal{L} be as in (3.33). Then it follows from Lemma 3.5 that \mathcal{L} has a fixed point, that is, there exists $\{\tilde{y}, \tilde{u}\}$ with

$$\mathcal{L}\{\tilde{y}, \tilde{u}\} = \{\tilde{y}, \tilde{u}\}. \quad (3.40)$$

Thus,

$$\tilde{y}' + A(\tilde{y}; \tilde{u}) + f(\tilde{y}; \tilde{u}) = 0 \quad \text{on } (0, T); \quad y(0) = y_0. \quad (3.41)$$

Moreover,

$$\sum_{j=1}^N J_j(\tilde{y}; \pi_j \tilde{u}, \tilde{u}_j) \leq \sum_{j=1}^N J_j(y_j; \pi_j \tilde{u}, v_j), \quad \forall y_j \in \mathcal{R}(\pi_j \tilde{u}, v_j), \quad \forall v \in U. \quad (3.42)$$

Take $v = (\pi_j \tilde{u}, v_j)$ and we obtain from (3.42) that

$$J_j(\tilde{y}; \pi_j \tilde{u}, \tilde{u}_j) \leq J_j(y_j; \pi_j \tilde{u}, v_j), \quad \forall y_j \in \mathcal{R}(\pi_j \tilde{u}, v_j). \quad (3.43)$$

Repeating the process N times we get the theorem. \square

4. Applications

In this section, we give some applications of Theorem 3.1 to parabolic initial boundary value problems. For simplicity, we take $N = 2$.

Let G be a bounded open subset of \mathbb{R}^2 with a smooth boundary and let

$$\begin{aligned} Q &= G \times (0, 2), & \Gamma &= G \times \{2\}, \\ Q(u_1) &= \{(\xi, \eta) : \xi \in G, 0 < \eta < u_1(\xi)\}, \end{aligned} \quad (4.1)$$

where u_1 is a continuous function of G into $[1, 2]$. The top of the cylinders $Q(u_1)$, Q are

$$\Gamma(u_1) = \{(\xi, u_1(\xi)) : \xi \in G\}, \quad \Gamma. \quad (4.2)$$

Make the change of variable $\zeta = 2\eta/u_1$ and set

$$y(\xi, \eta) = y\left(\xi, \frac{u_1 \zeta}{2}\right) = Y(\xi, \zeta). \quad (4.3)$$

As done in great details in [4, pages 946–948], we get

$$\nabla^2 y = \nabla_{\xi, \zeta} F(\xi, \zeta; u_1) \nabla_{\xi, \zeta} Y(\xi, \zeta) + u_1^{-1} F \nabla Y \cdot \nabla u_1, \quad (4.4)$$

where $F(\xi, \zeta; u_1)$ is the matrix

$$\begin{pmatrix} 1 & 0 & -\zeta(\partial_{\xi_1} u_1) u_1^{-1} \\ 0 & 1 & -\zeta(\partial_{\xi_2} u_1) u_1^{-1} \\ -\zeta(\partial_{\xi_2} u_1) u_1^{-1} & -\zeta(\partial_{\xi_1} u_1) u_1^{-1} & \zeta^2 |\nabla u_1|^2 u_1^{-2} + 4u_1^{-2} \end{pmatrix}. \quad (4.5)$$

Set

$$\mu(u_1) = 2u_1^{-1} \sqrt{1 + |\nabla u_1|^2}. \quad (4.6)$$

4.1. An inverse problem for a nonlinear heat equation. Consider the initial boundary value problem

$$\begin{aligned} y' - \Delta y &= \tilde{f}(y) && \text{on } Q(u_1) \times (0, T), \\ y &= 0 && \text{on } \partial Q(u_1) / \Gamma \times (0, T), \\ -\frac{\partial y}{\partial n} &\in u_2 \beta(y) && \text{on } \Gamma(u_1) \times (0, T), \\ y(\cdot, 0) &= y_0 && \text{on } Q(u_1), \end{aligned} \quad (4.7)$$

where $\beta \in \partial j(r)$ and $j(r)$ is an l.s.c. convex function from \mathbb{R}^+ to $[0, \infty]$.

Let

$$\begin{aligned} J_1(y; u_1, u_2) &= \int_0^T \int_G |y(\xi, u_1(\xi))|^2 d\xi dt, \\ J_2(y; u_1, u_2) &= \int_0^T \int_{\Omega} |y - h(\xi, \eta)|^2 d\xi d\eta dt \end{aligned} \quad (4.8)$$

be the cost functionals associated with (4.7) and let h be the measurement of the solution y of (4.7) in the sub-region Ω .

We denote

$$U_j = \{u_j : \|u_j\|_{H^3(G)} \leq C, 1 \leq u_1(\xi) \leq 2, 0 \leq u_2(\xi) \leq C\} \quad (4.9)$$

and let $\mathcal{U}_j = L^2(G)$. It is clear that the U_j are compact convex subsets of the space of controls \mathcal{U}_j .

We will take

$$H = L^2(Q), \quad \mathcal{H}_1 = L^2(G), \quad \mathcal{H}_2 = L^2(\Omega), \quad \Omega \subset Q. \quad (4.10)$$

The main result of this subsection is the following theorem.

THEOREM 4.1. Let y_0 be in $H_0^1(Q)$ and let \tilde{f} be a continuous function of y, u with

$$|\tilde{f}(y; u)| \leq C\{1 + |y| + |u|\}. \quad (4.11)$$

Let h be a given function in $L^2(0, T; L^2(\Omega))$ where Ω is a proper subset of Q and let $j(r)$ be an l.s.c. convex function on \mathbb{R} with values in $[0, +\infty]$. Then there exists

$$\begin{aligned} \{\hat{y}, \hat{y}', \hat{u}\} \in & L^2(0, T; H^1(Q(\hat{u}_1))) \cap L^\infty(0, T; L^2(Q(\hat{u}_1))) \\ & \times L^2(0, T; L^2(Q(\hat{u}_1))) \times U \end{aligned} \quad (4.12)$$

such that \hat{y} is a solution of the initial boundary value problem (4.7) in $Q(\hat{u}_1) \times (0, T)$; and

$$\begin{aligned} J_1(\hat{y}; \hat{u}_1, \hat{u}_2) &\leq J_1(y; \hat{u}_1, v_2), \quad \forall v_2 \in U_2, \\ J_2(\hat{y}; \hat{u}_1, \hat{u}_2) &\leq J_2(x; v_1, \hat{u}_2), \quad \forall v_1 \in U_1, \end{aligned} \quad (4.13)$$

where x, y are the solutions of (4.7) with controls $\{v_1, \hat{u}_2\}, \{\hat{u}_1, v_2\}$ in $Q(v_1) \times (0, T)$ and in $Q(\hat{u}_1) \times (0, T)$, respectively.

Problems of type (4.7) arise in the study of heat transfer between solids and gases under nonlinear boundary conditions.

As carried out in [4], we make the change of variable $\zeta = 2u_1^{-1}\eta$ and set $y(\xi, \eta) = Y(\xi, \zeta)$. Then (4.7) is transformed into the following problem:

$$\begin{aligned} Y' - \nabla(F(u_1) \cdot \nabla Y) + u_1^{-1}F\nabla Y \cdot \nabla u_1 &= \tilde{f}(Y, u) \quad \text{on } Q \times (0, T), \\ Y = 0 &\quad \text{on } \partial Q \cap \Gamma \times (0, T), \\ -\frac{\partial Y}{\partial n} &\in \mu(u_1)u_2\beta(Y) \quad \text{on } \Gamma \times (0, T), \\ Y(\cdot, 0) &= y_0 \quad \text{on } Q \end{aligned} \quad (4.14)$$

with cost functionals

$$J_1(Y; u_1, u_2) = \int_0^T \int_G |Y(\xi, 2)|^2 d\xi dt, \quad (4.15)$$

$$J_2(Y; u_1, u_2) = \int_0^T \int_\Omega \left| Y\left(\xi, \frac{2\eta}{u_1}\right) - h(\xi, \eta; t) \right|^2 d\xi d\eta dt, \quad (4.16)$$

where μ is as in expression (4.6).

Our aim is to find the controls u_1, u_2 so that the solution y of (4.7), if it is unique, is as close to the measurement h in Ω as possible.

Let φ be the mapping of $H \times U_1 \times U_2$ into \mathbb{R}^+ given by

$$\varphi(Y; u_1, u_2) = \begin{cases} \frac{1}{2} \|F(u) \nabla Y\|_{L^2(Q)}^2 + \int_\Gamma \mu(u_1)u_2 j(Y) d\sigma, & j(Y) \in L^1(\Gamma), \\ +\infty, & \text{otherwise,} \end{cases} \quad (4.17)$$

where $j(r)$ is an l.s.c. convex function from \mathbb{R} to $[0, +\infty]$ with $j(0) = 0$.

By abuse of notation, we will write y for $Y(\xi, \zeta, t)$ when there is no confusion possible.

LEMMA 4.2. *Let φ be as in (4.17). Then φ satisfies Assumption 2.1.*

Proof. (1) It is clear that $\varphi(y; u)$ is an l.s.c. function from $H \times U$ into \mathbb{R}^+ and that $C_0^\infty(Q) \subset D(\varphi(\cdot, u))$ for all $u \in U$.

(2) It was shown in [4, pages 949–952] that

$$\int_Q F(u) |\nabla y|^2 d\xi d\zeta \geq c \|y\|_{H^1(Q)}^2, \quad (4.18)$$

for all y with $F(u)\nabla y \in H$, $y = 0$ on $\partial Q/\Gamma$.

Since $j(r)$ and μ are both positive functions, we get

$$c \|y\|_{H^1(Q)}^2 \leq \varphi(y; u), \quad \forall y \in D(\varphi). \quad (4.19)$$

(3) By the Sobolev imbedding theorem, the set

$$\{y : \varphi(y; u) \leq C\} \quad (4.20)$$

is a compact subset of $H = L^2(Q)$.

(4) Suppose that $u_1^n \rightarrow u_1$ in H with $u_1^n \in U_1$. Since u_1^n is in U_1 , it follows from the definition of U_1 and from the Sobolev imbedding theorem that there exists a subsequence such that $u_1^n \rightarrow u_1$ in $H^2(G)$ and in $C^1(\bar{G})$.

With $F(u)$, $\mu(u)$ as above, it is trivial to check that we have

$$\lim_{n \rightarrow \infty} \int_0^T \varphi(y(s); u_1^n) ds = \int_0^T \lim_{n \rightarrow \infty} \varphi(y(s); u_1^n) ds. \quad (4.21)$$

□

LEMMA 4.3. *Let φ be as in (4.16). Then $\partial\varphi(y; u) = -\nabla \cdot (F(u)\nabla y) = A(y; u)$ with*

$$D(A(y; u)) = \left\{ y : \begin{aligned} &\nabla \cdot (F(u)\nabla y) \in H, \quad y = 0 \text{ on } \partial Q/\Gamma, \\ &-\frac{\partial y}{\partial n} \in \mu(u_1)u_2\beta(y) \text{ on } \Gamma \end{aligned} \right\}. \quad (4.22)$$

Proof. For $y \in H^1(Q)$ with $\nabla \cdot F(u)\nabla y$ in $L^2(Q)$, we know that $F(u)\nabla y \cdot n \in H^{-1/2, 2}(\partial Q)$.

Let $A(y; u) = -\nabla \cdot F(u)\nabla y$ with

$$D(A(y; u)) = \left\{ y : \begin{aligned} &y \in H, \quad \nabla \cdot (F(u)\nabla y) \in H, \quad y = 0 \text{ on } \partial Q/\Gamma, \\ &-\frac{\partial y}{\partial n} \in \mu(u_1)u_2y \text{ on } \Gamma \end{aligned} \right\}. \quad (4.23)$$

We now show that A is maximal monotone on H and that $A \subset \partial\varphi(y; u)$.

46 An inverse problem for evolution inclusions

(1) It is clear that $A(\cdot; u)$ is monotone in H . For $y \in D(A(\cdot; u))$ and $x \in D(\varphi(\cdot; u))$, we have

$$-(\nabla \cdot F(u) \nabla y, x - y) = (F(u) \nabla y, \nabla x - y) - \left\langle \frac{\partial y}{\partial n}, x - y \right\rangle, \quad (4.24)$$

where $\langle \cdot, \cdot \rangle$ is the pairing between $H^{-1/2, 2}(\Gamma)$ and its dual.

It follows that

$$-(\nabla \cdot F(u) \nabla y, x - y) \leq \varphi(x; u) - \varphi(y; u). \quad (4.25)$$

Hence $A(y; u) \in \partial \varphi(y; u)$.

(2) To show that $A(y; u)$ is maximal monotone, it suffices to show that $I + A(\cdot; u)$ is onto.

Since $\beta(y) \in \partial j(y)$ is maximal monotone, its resolvent operator $(I + \lambda \beta)^{-1}$ is nonexpansive for all $\lambda > 0$.

Consider the elliptic boundary value problem

$$\begin{aligned} -\nabla \cdot (F(u) \nabla y_\lambda) &= f \quad \text{on } Q, \quad y_\lambda = 0 \quad \text{on } \partial Q / \Gamma, \\ \mu(u_1) u_2 y_\lambda + \lambda \frac{\partial}{\partial n} y_\lambda &= \mu(u_1) u_2 (I + \lambda \beta)^{-1} x \quad \text{on } \Gamma. \end{aligned} \quad (4.26)$$

For $(f, x) \in L^2(Q) \times L^2(\Gamma)$, there exists a unique solution y_λ of (4.17) with $y_\lambda \in H^1(Q)$. Let L be the mapping of $L^2(\Gamma)$ into itself given by

$$L\left(\sqrt{\mu(u_1) u_2} x\right) = \sqrt{\mu(u_1) u_2} y_\lambda|_\Gamma. \quad (4.27)$$

(3) We now show that L is a contraction. Let L be as above, then

$$\int_Q F(u) |\nabla(y_\lambda^1 - y_\lambda^2)|^2 - \left\langle \frac{\partial}{\partial n} (y_\lambda^1 - y_\lambda^2), y_\lambda^1 - y_\lambda^2 \right\rangle = 0. \quad (4.28)$$

As shown in [4, pages 949 and 952] we have

$$c \|y_\lambda^1 - y_\lambda^2\|_{H^1(Q)}^2 - \left\langle \frac{\partial}{\partial n} (y_\lambda^1 - y_\lambda^2), y_\lambda^1 - y_\lambda^2 \right\rangle \leq 0. \quad (4.29)$$

Thus,

$$\begin{aligned} c \|y_\lambda^1 - y_\lambda^2\|_{H^1(Q)}^2 + \lambda^{-1} \left\| \sqrt{\mu(u_1) u_2} (y_\lambda^1 - y_\lambda^2) \right\|_{L^2(\Gamma)}^2 \\ \leq \lambda^{-1} (\mu(u_1) u_2 \{(I + \lambda \beta)^{-1} x^1 - (I + \lambda \beta)^{-1} x^2\}, y_\lambda^1 - y_\lambda^2) \\ \leq \left\| \sqrt{\mu(u_1) u_2} \lambda^{-1} (y_\lambda^1 - y_\lambda^2) \right\|_{L^2(\Gamma)} \left\| \sqrt{\mu(u_1) u_2} (x^1 - x^2) \right\|_{L^2(\Gamma)}. \end{aligned} \quad (4.30)$$

We have used the nonexpansive property of $(I + \lambda \beta)^{-1}$ in the above estimate. We know that

$$a \|y_\lambda^1 - y_\lambda^2\|_{L^2(\Gamma)}^2 \leq \|y_\lambda^1 - y_\lambda^2\|_{H^1(Q)}^2, \quad (4.31)$$

where a is a positive constant.

Thus,

$$\begin{aligned} & \lambda ac \|y_\lambda^1 - y_\lambda^2\|_{L^2(\Gamma)}^2 + \left\| \sqrt{\mu(u_1)u_2} (y_\lambda^1 - y_\lambda^2) \right\|_{L^2(\Gamma)} \\ & \leq \left\| \sqrt{\mu(u_1)u_2} (y_\lambda^1 - y_\lambda^2) \right\|_{L^2(\Gamma)} \left\| \sqrt{\mu(u_1)u_2} (x^1 - x^2) \right\|_{L^2(\Gamma)}. \end{aligned} \quad (4.32)$$

It follows that

$$\left\| \sqrt{\mu(u_1)u_2} (y_\lambda^1 - y_\lambda^2) \right\|_{L^2(\Gamma)} \leq \gamma \left\| \sqrt{\mu(u_1)u_2} (x^1 - x^2) \right\|_{L^2(\Gamma)} \quad (4.33)$$

with

$$\gamma = \frac{\|\mu(u_1)u_2\|_{L^\infty(G)}}{\lambda ac + \|\mu(u_1)u_2\|_{L^\infty(G)}} < 1. \quad (4.34)$$

Thus, L is a contraction mapping. There exists a unique y_λ such that

$$\begin{aligned} & -\nabla \cdot (F(u_1) \nabla y_\lambda) = f \quad \text{on } Q, \\ & y_\lambda = 0 \quad \text{on } \partial Q/\Gamma, \\ & \mu(u_1)u_2 y_\lambda + \lambda \frac{\partial y_\lambda}{\partial n} = \mu(u_1)u_2 (I + \lambda \beta)^{-1} y_\lambda \quad \text{on } \Gamma. \end{aligned} \quad (4.35)$$

(4) By a standard argument, we get from (4.35) the following estimate:

$$\|y_\lambda\|_{H^1(Q)}^2 \leq C \|f\|_{L^2(Q)}. \quad (4.36)$$

Let $\lambda \rightarrow 0^+$, and we get by taking subsequences that $y_\lambda \rightarrow y$ in $(H^1(Q))_{\text{weak}} \cap L^2(Q)$. It is clear that $y = 0$ on $\partial Q/\Gamma$. On the other hand,

$$-\frac{\partial y_\lambda}{\partial n} = \mu(u_1)u_2 \lambda^{-1} \{I - (I + \lambda \beta)^{-1}\} y_\lambda = \mu(u_1)u_2 \beta_\lambda(y_\lambda), \quad (4.37)$$

where β_λ is the Yosida approximation of β .

Since

$$\beta_\lambda(y_\lambda) \in \beta((I + \lambda \beta)^{-1} y_\lambda), \quad (I + \lambda \beta)^{-1} y_\lambda \rightarrow y \quad \text{in } L^2(\Gamma), \quad (4.38)$$

it follows from the maximal monotonicity of β that

$$-\frac{\partial}{\partial n} y \in \mu(u_1)u_2 \beta(y). \quad (4.39)$$

The lemma is proved. \square

Proof of Theorem 4.1. Consider the optimal control problem

$$\begin{aligned} & Y' - \nabla \cdot (F(u) \nabla Y) + g(Y; u) = 0 \quad \text{on } Q \times (0, T), \\ & Y = 0 \quad \text{on } (\partial Q/\Gamma) \times (0, T), \\ & -\frac{\partial}{\partial n} Y \in \mu(u_1)u_2 \beta(Y) \quad \text{on } \Gamma \times (0, T), \\ & Y(\cdot, 0) = y_0 \quad \text{on } Q \end{aligned} \quad (4.40)$$

with

$$g(Y; u) = -u_1^{-1} F(u_1) \nabla Y \cdot \nabla u_1 - \tilde{f}(Y, u) \quad (4.41)$$

and cost functionals

$$\begin{aligned} J_1(Y; u_1, u_2) &= \int_0^T \int_G |Y(\xi, 2; t)|^2 d\xi dt, \\ J_2(Y; u_1, u_2) &= \int_0^T \int_{\Omega} \left| Y\left(\xi, \frac{2\eta}{u_1}, t\right) - h(\xi, \eta, t) \right|^2 d\xi d\eta dt. \end{aligned} \quad (4.42)$$

It is easy to check that g and J_1, J_2 satisfy Assumptions 2.2 and 2.3, respectively. It follows from Lemmas 4.2 and 4.3 and from Theorem 3.1 that there exists an open loop control \tilde{u} of (4.36) and (4.40), that is, we have

$$\begin{aligned} \tilde{Y} &\in L^2(0, T; H^1(Q)) \cap L^\infty(0, T; L^2(Q)), \\ \{\tilde{Y}', A(\tilde{Y}; \tilde{u})\} &\in (L^2(0, T; L^2(Q)))^2, \end{aligned} \quad (4.43)$$

solution of (4.36) with controls \tilde{u} . Moreover,

$$\begin{aligned} J_1(\tilde{Y}; \tilde{u}_1, \tilde{u}_2) &\leq J_1(y; \tilde{u}_1, v_2), \\ J_2(\tilde{Y}; \tilde{u}_1, \tilde{u}_2) &\leq J_2(x; u_1, \tilde{u}_2), \end{aligned} \quad (4.44)$$

for all $y \in \mathcal{R}(\tilde{u}_1, v_2)$, for all $v_2 \in U_2$, all $x \in \mathcal{R}(u_1, \tilde{u}_2)$, and all $u_1 \in U_1$.

Now set

$$\hat{y}(\xi, \eta) = \tilde{Y}(\xi, \zeta) = \tilde{Y}\left(\xi, \frac{2\eta}{\tilde{u}_1}\right) \quad (4.45)$$

and we get the stated result. \square

4.2. Parabolic variational inequalities. Consider the initial boundary value problem

$$\begin{aligned} y' - \Delta y &= \tilde{f}(y) && \text{on } Q(u_1) \times (0, T), \\ y &= 0 && \text{on } (\partial Q/\Gamma) \times (0, T), \\ y(\cdot, t) &\geq u_2(\xi) && \text{on } \Gamma \times (0, T), \\ y(\cdot, 0) &= y_0 && \text{on } Q \end{aligned} \quad (4.46)$$

with cost functionals

$$\begin{aligned} J_1(y; u_1, u_2) &= \int_0^T \int_G |y(\xi, u_1(\xi); t)|^2 d\xi dt, \\ J_2(y; u_1, u_2) &= \int_0^T \int_{\Omega} |y(\xi, \eta; t) - h(\xi, \eta; t)|^2 d\xi d\eta dt, \end{aligned} \quad (4.47)$$

where h is the partial measurement of the solution y of (4.46) in the subdomain $\Omega \times (0, T)$, U_1 is as before and

$$U_2 = \{v : \|v\|_{H^3(G)} \leq C, 0 \leq v \text{ on } G\}. \quad (4.48)$$

The main result of this subsection is the following theorem.

THEOREM 4.4. *Let y_0 be an element of $H^1(Q)$ with*

$$y_0 = 0 \quad \text{on } \frac{\partial Q}{\Gamma}, \quad y_0 \geq v \geq 0 \quad \text{on } \Gamma, \quad \forall v \in U_2. \quad (4.49)$$

Let $h \in L^2(0, T; L^2(\Omega))$ where Ω is a proper subset of $Q(u_1)$ for all $u_1 \in U_1$ and let \tilde{f} be as in [Assumption 2.2](#). Then there exists

$$\begin{aligned} \{\hat{y}, \hat{y}', \hat{u}\} &\in L^2(0, T; H^1(Q(\hat{u}_1))) \cap L^\infty(0, T; L^2(Q(\hat{u}_1))) \\ &\times L^2(0, T; L^2(Q(\hat{u}_1))) \times U \end{aligned} \quad (4.50)$$

with

$$\begin{aligned} J_1(\hat{y}; \hat{u}_1, \hat{u}_2) &\leq J_1(y; \hat{u}_1; v_2), \\ J_2(\hat{y}; \hat{u}_1, \hat{u}_2) &\leq J_2(x; u_1, \hat{u}_2), \end{aligned} \quad (4.51)$$

for all solutions y of (4.46) with controls \hat{u}_1, v_2 all solutions x of (4.42) with controls u_1, \hat{u}_2 and all $\{u_1, v_2\} \in U_1 \times U_2$.

As before, we make the change of variables $\zeta = 2\eta/u_1$ and as in [Section 4.1](#), we transform (4.42) into a problem in a fixed domain

$$\begin{aligned} Y' - \nabla \cdot F((u_1) \nabla Y) &= \tilde{f}(Y, u) + u^{-1} F(u_1) \nabla Y \cdot \nabla u_1 \quad \text{on } Q \times (0, T), \\ Y &= 0 \quad \text{on } \partial Q/\Gamma \times (0, T), \\ Y &\geq u_2 \quad \text{a.e. on } \Gamma \times (0, T), \\ Y(\cdot, 0) &= y_0 \quad \text{on } Q. \end{aligned} \quad (4.52)$$

The cost functionals become

$$\begin{aligned} J_1(Y; u_1, u_2) &= \int_0^T \int_G |Y(\xi, 2; t)|^2 d\xi dt, \\ J_2(Y; u_1, u_2) &= \int_0^T \int_\Omega \left| Y\left(\xi, \frac{2\eta}{u_1}; t\right) - h(\xi, \eta; t) \right|^2 d\xi d\eta dt. \end{aligned} \quad (4.53)$$

Set

$$K(u_2) = \{y : y \in L^2(0, T; L^2(Q)), y \geq u_2 \text{ a.e. on } \Gamma \times (0, T)\}. \quad (4.54)$$

Then $K(u_2)$ is a closed convex subset of $L^2(0, T; H)$. Let

$$\varphi(y; u) = \frac{1}{2} \int_0^T \int_Q F(u) |\nabla y|^2 d\xi d\zeta dt + I_{K(u_2)}(y), \quad (4.55)$$

where $I_{K(u_2)}$ is the indicator function of the closed convex set $K(u_2)$ of $L^2(0, T; H)$ and

$$D(\varphi(y; u)) = \left\{ y : y \in L^2(0, T; H^1(Q)), y = 0 \text{ on } (\partial Q/\Gamma) \times (0, T), y \geq u_2 \text{ on } \Gamma \times (0, T) \right\}. \quad (4.56)$$

LEMMA 4.5. *Let φ be as in (4.53). Then φ satisfies Assumption 2.1.*

Proof. As in the proof of Lemma 4.2, we have

$$\varphi(y; u) \geq c \|y\|_{H^1(Q)}^2, \quad \forall y \in D(\varphi(\cdot, u)). \quad (4.57)$$

It is clear that

$$\partial\varphi(y; u) = \nabla(F(u) \cdot \nabla y) + \partial I_{K(u_2)}(y). \quad (4.58)$$

All the other conditions of Assumption 2.1 can be verified without any difficulty. \square

LEMMA 4.6. *Suppose all the hypotheses of Theorem 4.4 are satisfied. Then there exists a solution \tilde{Y} of*

$$\tilde{Y}' + \partial\varphi(\tilde{Y}; \tilde{u}) \ni \tilde{f}(\tilde{Y}, \tilde{u}) + \tilde{u}_1^{-1} F(\tilde{u}_1) \nabla \tilde{Y} \cdot \nabla \tilde{u}_1, \quad \tilde{Y}(\cdot, 0) = y_0, \quad (4.59)$$

$$\begin{aligned} \{\tilde{Y}, \tilde{Y}', \partial\varphi(\tilde{Y}; \tilde{u}), \tilde{u}\} \in & (L^2(0, T; H^1(Q)) \cap L^\infty(0, T; L^2(Q))) \\ & \times (L^2(0, T; L^2(Q)))^2 \times U. \end{aligned} \quad (4.60)$$

Moreover,

$$\begin{aligned} J_1(\tilde{Y}; \tilde{u}_1, \tilde{u}_2) & \leq J_1(y; \tilde{u}_1, v_2), \\ J_2(\tilde{Y}; \tilde{u}_1, \tilde{u}_2) & \leq J_2(x; u_1, \tilde{u}_2), \end{aligned} \quad (4.61)$$

for all solutions y, x of (4.55) with controls $\{\tilde{u}_1, v_2\}$, $\{u_1, \tilde{u}_2\}$, respectively, and for all $\{u_1, v_2\}$ in $U_1 \times U_2$.

Proof. The proof is an immediate consequence of Theorem 3.1 and Lemma 4.5. \square

Proof of Theorem 4.4. Let $\{\tilde{Y}, \tilde{u}\}$ be as in Lemma 4.6 and set $\hat{y}(\xi, \eta; t) = \tilde{Y}(\xi, 2\eta/\tilde{u}_1)$. Then \hat{y}, \tilde{u} is a solution of (4.52) and (4.53). The theorem is proved. \square

References

- [1] V. Barbu and A. Friedman, *Optimal design of domains with free-boundary problems*, SIAM J. Control Optim. **29** (1991), no. 3, 623–637.
- [2] G. Canadas, F. Chapel, M. Cuer, and J. Zolésio, *Shape interfaces in an inverse problem related to the wave equation*, Inverse Problems: An Interdisciplinary Study (Montpellier, 1986), Adv. Electron. Electron Phys., Suppl., vol. 19, Academic Press, London, 1987, pp. 533–551.
- [3] M. D. Gunzburger and H. Kim, *Existence of an optimal solution of a shape control problem for the stationary Navier-Stokes equations*, SIAM J. Control Optim. **36** (1998), no. 3, 895–909.
- [4] S. Lenhart, V. Protopopescu, and J. Yong, *Identification of boundary shape and reflectivity in a wave equation by optimal control techniques*, Differential Integral Equations **13** (2000), no. 7-9, 941–972.
- [5] S. Lenhart and D. G. Wilson, *Optimal control of a heat transfer problem with convective boundary condition*, J. Optim. Theory Appl. **79** (1993), no. 3, 581–597.
- [6] O. Pironneau, *Optimal Shape Design for Elliptic Systems*, Springer Series in Computational Physics, Springer-Verlag, New York, 1984.
- [7] B. A. Ton, *An open loop equilibrium strategy for quasi-variational inequalities and for constrained non-cooperative games*, Numer. Funct. Anal. Optim. **17** (1996), no. 9–10, 1053–1091.
- [8] Y. Yamada, *On evolution equations generated by subdifferential operators*, J. Fac. Sci. Univ. Tokyo Sect. IA Math. **23** (1976), no. 3, 491–515.

BUI AN TON: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC, CANADA V6T 1Z2

E-mail address: bui@math.ubc.ca

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/mpe/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	July 1, 2009
First Round of Reviews	October 1, 2009
Publication Date	January 1, 2010

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliatti Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br