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We show the existence of a nontrivial solution to the semilinear elliptic equation
—Au+u=b(x)ulPu, u >0, u € H(RY) under some suitable conditions.
1. Introduction

In this paper, we study the following problem:
—Autu=bx)ulf?u, u>0, ueH)(RY), (1.1)

where 2 < p < 2*,2* =2N/(N -2) when N >2 and 2* = +oo when N = 2, RY =
{(x1,x2,...,xN) | xxy > 0} is the upper half space of RN. We put the following
conditions on b:

(B;) b e C(RY), and

1=inf b(x)= lim b(x); (1.2)

xeRY x| —+o0, xeRY
(B,) there exists § € (0, 1), such that

lim (b(x)-1)e"" M = o0, (1.3)

|x|—00

Our main result is the following result.
TaeoREM 1.1. If b satisfies (By) and (B,), then (1.1) has a nontrivial solution.

Similar problems have been studied extensively. In [3], Esteban and Lions
showed that —Au+u = |u|?~?u, u € Hj(RY) does not have nontrivial solution.
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30 Positive solutions in upper half space

However, with the help of the potential b(x) and the comparison technique de-
rived in [2], we proved the existence of a nontrivial solution to problem (1.1).
2. Proof of Theorem 1.1

Let

o(u) = IM <%|Vu|2 ; %|u|2> dx— % IM b(x) [P dx. 2.1)

LemMA 2.1. Denote Sp = inf 1 ) i, -1 [[ull*. Then

inf ull>=S,. 2.2
ueH(;<M>,\u\P=1” 1°=S, (2.2)

LemMMA 2.2. If 0<c<c*:=(1/2— l/p)Sﬁ/(p_z), then ¢ satisfies (PS). condition.
One can see [2] or [5] for the proof of Lemmas 2.1 and 2.2.

LEMMA 2.3. The equation —Au+u = |u|P~>u has a unique positive solution w in
RN and satisfies the following conditions:
(i) w>0in RN, we C*(RN).
(ii) w(x) = w(|x]).
(iii) w(r)r™-D2exp(r) — C > 0 and w'(r)r'N"V"2exp(r) — —~C, where r =
|x| = +oo.

Proof. See [1, 4]. O

Proof of Theorem 1.1. By Lemma 2.2, we need only to prove that the Mountain
Pass value of ¢,

(/11 Iv|? P
c=1nf{<§—;><(j b(x)|v|de)2/p> ; ve Hy (RY), v;ée}, (2.3)
RY

satisfies that 0 < ¢ < c¢*.

Set
1, x| <n-1,
Yu(x)=qn-lx, n-1<lx|<n, (2.4)
0, |x| > n.

Let x, = (0,0,...,0,1), tty = Y (- —x,)w(-—x,,). Then u, € H}(RY), n=1,2,....



C. Shaowei and L. Yongging 31

Notice that

||un||2=f |wn|2dx+f w2 dx
RN RN
=J.RN|V(1//n(.—xn)w(-_xn))|2dx+IRN|y/n(.—xn)w(._xn)|2dx

:f |V(wn-w)|2dx+f |1//n~w|2dx
B(6,n) B(0,n)

:f |Vw|2dx+j w?dx
B(6,n-1) B(6,n-1)

+j wﬁ.|Va)|2dx+J‘ |V1//n|2.w2dx

-1, n-1n

+ZJ w-wn-Vw-andx+f V2w’ dx
anl,n

:J‘ Vol dx+J‘ w?dx
RV RN

+j |Vw|2dx+j |w|? dx
RN\B(6,1-1) RN\B(6,1-1)

+I wﬁ-le|2dx+2f 0 Y, -Vo-Vy,dx
n-1,n B

-1, n-1,n

+j |an|2-w2dx+f v2-w®dx,
Bn—l,n n-1,n

where B,,_1,, =B(6,n)\B(6,n-1).
From Lemma 2.3 we know that, when # is big enough,

+oo

J‘ |Vw|2dx=Clj | ()] -rN""dr
RN\B(6,n-1)

n-1

, +co C
< Clj e dr=—-1

el e2(n-1) :

Similarly, when # is big enough, we get

2 2
wdx < —2—. (2.7)
IR‘V\B(O,n—l) e2(n=1)

So

[|eta|* = ||w||2+O< ! ) (2.8)

eZ(n—l)
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Let a(x) = b(x)—1. Then

j b(x)|uy,|pdx:J‘ |un|de+I a(x)|uﬂ|de
RY RY v

+

=I |w|de+j a(x+x,)|w|f dx
B(6,n-1) B(6,n-1)

+j a(x+ %) [Yn() - ()| dx (2.9)
Bu-1,n

=J |w|de+j a(x+x,)|w|f dx
RN

B(6,n-1)

+I a(x+x,) |y (x) - w(x) |p dx+j |w|? dx.
Bn—l,n R

N\B(6,n-1)

Thus

1
|w|? dx = o<—>,
fR‘V\B(G,nl) e2(n=1)

1 (2.10)
P
I ; a(x+x,) |y (x) - w(x)|” dx = 0(62(’171) )
From (B,), we see that there exists a positive constant A, such that
So there exists a positive constant C3, such that
b() |l dxx [ ol drt —S (2.12)
RN " = Jgy e2(1=-8)(n-1)" )

Then

2/p
<I b(x)|u,,|pdx>
RY
Cs 2/p
> p I
- (IRN'“" dx+e2<1—6><"—1>) (2.13)
2/p C 2/p
= P S
([ erde) (v i)
2/p C 1
= P >
<IRN |l dx> <1+ e2(1-8)(n-1) +0<62(1—5)(n—1)>>'
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Thus
2
14 el G +O< 1 ) (2.14)
(o 6 [P d) 7P ([ 0P dr)?? 20-96D 2001 )7
So
2
||u”|| < ||(U||2 (2 15)
P 2/p 2/p’° '
N n N
(S b(x)[un|” dx) (Jpy wP dx)
when # is big enough.
Thus, we come to the conclusion that
c< G—%)sg/“"”. (2.16)
O
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