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Solodkiı̆ (1998) applied the modified projection scheme of Pereverzev (1995)
for obtaining error estimates for a class of regularization methods for solving
ill-posed operator equations. But, no a posteriori procedure for choosing the
regularization parameter is discussed. In this paper, we consider Arcangeli’s
type discrepancy principles for such a general class of regularization methods
with modified projection scheme.

1. Introduction

Regularization methods are often employed for obtaining stable approximate
solutions for ill-posed operator equations of the form

T x = y, (1.1)

where T : X → X is a compact linear operator on a Hilbert space X. It is well
known that if R(T ) is infinite dimensional, then the problem of solving the
above equation is ill-posed, in the sense that the generalized solution x̂ := T †y

does not depend continuously on the data y. Here, T † is the generalized Moore-
Penrose inverse of T defined on the dense subspace D(T †) := R(T )+R(T )⊥
of X, and R(T ) denotes the range of the operator T . A typical example of such
an ill-posed equation is the Fredholm integral equation of the first kind

∫ b

a

k(s, t)x(t) = y(s), a ≤ s ≤ b, (1.2)

with X = L2[a,b], and k(·, ·) a nondegenerate kernel belonging to L2([a,b]×
[a,b]).
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In a regularization method, corresponding to an inexact data ỹ, one looks
for a stable approximation x̃ of x̂ such that ‖x̂ − x̃‖ is “small” whenever the
data error ‖y− ỹ‖ is “small.” A well-studied class of regularization methods for
such a purpose is characterized by a class of Borel functions gα , α > 0, defined
on an interval (0,b] where b ≥ ‖T ‖2. Corresponding to such functions gα , the
regularized solutions are defined by

xα := gα

(
T ∗T

)
T ∗y, x̃α := gα

(
T ∗T

)
T ∗ỹ. (1.3)

(Cf. [1].) In order to perform error analysis, we impose certain conditions on
the functions gα , α > 0. Two primary assumptions are the following.

Assumption 1. There exists ν0 > 0 such that for every ν ∈ (0,ν0], there exists
cν > 0 such that

sup
0≤λ≤b

λν
∣∣1−λgα(λ)

∣∣ ≤ cνα
ν ∀α > 0. (1.4)

Assumption 2. There exists d > 0 such that

sup
0≤λ≤b

λ1/2
∣∣gα(λ)

∣∣ ≤ dα−1/2 ∀α > 0. (1.5)

These assumptions are general enough to include many regularization meth-
ods such as the ones given below.

For applying our discrepancy principle, we would like to impose two addi-
tional conditions.

Assumption 3. There exist α0 > 0 and κ0 > 0 such that∣∣1−λgα(λ)
∣∣ ≥ κ0α

ν0 ∀λ ∈ [0,b], ∀α ≤ α0. (1.6)

Assumption 4. The function f (α) = αq [1−λgα(λ)], q > 0, as a function of α,
is continuous and differentiable and f (α) is an increasing function.

Now we list a few regularization methods which are special cases of the
above procedure.

Tikhonov regularization (
T ∗T +αI

)
xα = T ∗y. (1.7)

Here

gα(λ) = 1

λ+α
. (1.8)

Assumptions 1, 2, 3, and 4 hold with ν0 = 1, and κ0 in Assumption 3 can be
taken as greater than or equal to 1/(α0 +‖T ‖2).
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Generalized Tikhonov regularization((
T ∗T

)q+1 +αq+1I
)
xα = (

T ∗T
)q

T ∗y. (1.9)

Here

gα(λ) = λq

λq +αq+1
. (1.10)

Assumptions 1, 2, 3, and 4 hold with ν0 = q + 1, q ≥ −1/2, and κ0 in
Assumption 3 can be taken greater than or equal to 1/(α

q+1
0 +‖T ‖2(q+1)).

Iterated Tikhonov regularization. In this method, the kth iterated approximation
x

(k)
α is calculated from(

T ∗T +αI
)
x(i)
α = αx(i−1)

α +T ∗y, i = 1, . . . ,k, (1.11)

with x
(0)
α = 0. Here, with

gα(λ) = 1

λ

[
1−

(
α

α+λ

)k]
. (1.12)

Assumptions 1, 2, 3, and 4 hold with ν0 = k and the constant κ0 in Assumption 3
can be taken as any number greater than or equal to 1/(α0 +‖T ‖2)k .

In order to obtain numerical approximations of x̃α = gα(T ∗T )T ∗ỹ, one may
have to replace T by an approximation of it, say by Tn, where (Tn) is a sequence
of finite rank bounded operators which converges to T in some sense, and
consider

x̃α,n := gα

(
T ∗

n Tn

)
T ∗

n ỹ (1.13)

in place of x̃α . One of the well-considered finite rank approximations in the
literature for the case of Tikhonov regularization is the projection method in
which Tn is taken as either T Pn or P�T Pm, where for each n ∈ N, Pn : X → X

is an orthogonal projection onto a finite-dimensional subspace Xn of X.
In [4], Periverzev considered Tikhonov regularization, with

Tn = P1T P22n +
n∑

k=1

(
P2k −P2k−1

)
T P22n−k (1.14)

with R(P2k+1) ⊆ R(P2k+1) and showed that the computational complexity for
obtaining the solution

x̃α,n := (
T ∗

n Tn +αI
)−1

T ∗
n ỹ (1.15)

is far less than that for ordinary projection method when T and T ∗ are having
certain smoothness properties and (Pn) is having certain approximation prop-
erties.
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Recently, Solodkiı̆ [6] applied the above modified projection approxima-
tion to the general regularization method, and obtained error estimate for the
approximation

x̃α,n = gα

(
T ∗

n Tn

)
T ∗

n ỹ (1.16)

under an a priori choice of the regularization parameter α.
In this paper we not only consider the above class of regularization meth-

ods defined by x̃α,n = gα(T ∗
n Tn)T

∗
n ỹ with Tn as in (1.14), but also consider a

modified form of the generalized Arcangeli’s discrepancy principle

∥∥Tnx̃α,n − f̃
∥∥ =

(
δ+an

)p

αq
, p > 0, q > 0, (1.17)

for choosing the regularization parameter α. Here (an) is a sequence of positive
real numbers such that an → 0 as n → ∞. It is to be mentioned that, in [3], the
authors considered the above discrepancy principle for Tikhonov regularization
with Tn as in (1.14). The advantage of having a general sequence (an) instead of
the traditional (εn), where ‖T −Tn‖ = O(εn), is that the order of convergence
of the approximation is in terms of powers of δ+an, in place of powers of δ+εn

with an smaller than εn. By properly choosing (an), it can happen that, for a
small δ, the values of n for which an = O(δ), can be much smaller than that
required for εn = O(δ). In this paper we are going to use the estimate ‖T −Tn‖ =
O(εn), εn = 2−nr , proved in [3], where r > 0 is a quantity depending on the
smoothness property of T , and take (an) such that 2−nr = O(aλ

n) for some
λ > 0. For instance one may take an = 2−nr/λ for any λ ∈ (0,1].

In order to specify the smoothness properties of the operator T and approx-
imation property of (Pn), we adopt the following setting as in [3, 4].

For r > 0, let Xr be a dense subspace of the Hilbert space X and Lr : Xr → X

a closed linear operator. On Xr consider the inner product

〈f,g〉r := 〈f,g〉+ 〈
Lrf,Lrg

〉
, f,g ∈ Xr, (1.18)

and the corresponding norm

‖f ‖r := ‖f ‖+∥∥Lrf
∥∥, f ∈ Xr. (1.19)

It can be seen that, with respect to the above inner product 〈·, ·〉r , Xr is a Hilbert
space.

If A : X → X, B : Xr → X, C : X → Xr are bounded operators, then we
will denote their norms by

‖A‖, ‖B‖r,0, ‖C‖0,r , (1.20)

respectively.
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We assume that T : X → X is a compact operator having the smoothness
properties

R(T ) ⊆ Xr, R
(
T ∗) ⊆ Xr, R

((
LrT

)∗) ⊆ Xr, (1.21)

with

T : X −→ Xr, T ∗ : X −→ Xr,
(
LrT

)∗ : X −→ Xr (1.22)

being bounded operators, so that there exist positive real numbers γ1,γ2,γ3 such
that

‖T ‖0,r ≤ γ1,
∥∥T ∗∥∥

0,r
≤ γ2,

∥∥(
LrT

)∗∥∥
0,r

≤ γ3. (1.23)

Further, we assume that (Pn) is a sequence of orthogonal projections having
the approximation property ∥∥I −Pn

∥∥
r,0 ≤ crn

−r , (1.24)

where cr > 0 is independent of n.

2. Error estimate and discrepancy principle

2.1. Error estimate. Let T : X → X be a compact operator having the smooth-
ness properties specified by (1.21) and (1.23) and (Pn) a sequence of orthogonal
projections having the approximation property (1.24). For each n ∈ N, let Tn be
defined by (1.14).

Let y ∈ R(T ) and ỹ ∈ X be such that∥∥y − ỹ
∥∥ ≤ δ. (2.1)

Let {gα : α > 0} be a set of Borel measurable functions defined on (0,b], where

b ≥ max
{‖T ‖2,

∥∥Tn

∥∥2} ∀n ∈ N, (2.2)

and satisfying Assumptions 1, 2, 3, and 4. Let

x̂ := T †y, xα := gα

(
T ∗T

)
T ∗y,

xα,n := gα

(
T ∗

n Tn

)
T ∗

n y, x̃α,n := gα

(
T ∗

n Tn

)
T ∗

n ỹ.
(2.3)

Further we assume that x̂ ∈ R((T ∗T )ν) for some ν ∈ (0,ν0], and

x̂ = (
T ∗T

)ν
û, û ∈ X. (2.4)

In order to find an estimate for the error ‖x̂ − x̃α,n‖, first we observe that∥∥x̂ − x̃α,n

∥∥ ≤ ∥∥x̂ −xα,n

∥∥+∥∥xα,n − x̃α,n

∥∥. (2.5)
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By the definition of xα,n, x̃α,n, and using spectral results, we have

xα,n − x̃α,n = gα

(
T ∗

n Tn

)
T ∗

n

(
y − ỹ

) = T ∗
n gα

(
TnT

∗
n

)(
y − ỹ

)
. (2.6)

Therefore, using Assumption 2 on gα , we get∥∥xα,n − x̃α,n

∥∥ = ∥∥T ∗
n gα

(
TnT

∗
n

)(
y − ỹ

)∥∥
= ∥∥(

TnT
∗
n

)1/2
gα

(
TnT

∗
n

)(
y − ỹ

)∥∥
≤ sup

0≤λ≤b

λ1/2
∣∣gα(λ)

∣∣∥∥y − ỹ
∥∥ ≤ d

δ√
α

.

(2.7)

Thus, we have ∥∥x̂ − x̃α,n

∥∥ ≤ ∥∥x̂ −xα,n

∥∥+d
δ√
α

. (2.8)

The following theorem supplies an estimate for ‖x̂ −xα,n‖. For its proof we
will make use of the result∥∥A� −A�

n

∥∥ ≤ a�

∥∥A−An

∥∥min{1,�}
, � > 0, (2.9)

proved in [7] for positive, selfadjoint, bounded operators A and An on X, with
(An) uniformly bounded, where a� > 0 is independent of n.

Proposition 2.1. Let x̂ and xα,n be as in (2.3). Then

∥∥x̂ −xα,n

∥∥ ≤ c
(
αν +∥∥T ∗T −T ∗

n Tn

∥∥min{1,ν} +α−1/2
∥∥(

Tn −P2nT
)(

T ∗T
)ν∥∥)

.

(2.10)

Proof. We observe that

x̂ −xα,n = x̂ −gα

(
T ∗

n Tn

)
T ∗

n T x̂

= [
I −gα

(
T ∗

n Tn

)
T ∗

n Tn

]
x̂ +gα

(
T ∗

n Tn

)
T ∗

n

(
T −Tn

)
x̂,

(2.11)

so that∥∥x̂ −xα,n

∥∥ ≤ ∥∥[
I −gα

(
T ∗

n Tn

)
T ∗

n Tn

]
x̂
∥∥+∥∥gα

(
T ∗

n Tn

)
T ∗

n

(
T −Tn

)
x̂
∥∥. (2.12)

Since x̂ = (T ∗T )νû,∥∥[
I −gα

(
T ∗

n Tn

)
T ∗

n Tn

]
x̂
∥∥ = ∥∥[

I −T ∗
n Tngα

(
T ∗

n Tn

)](
T ∗T

)ν
û
∥∥

≤ ∥∥[
I −T ∗

n Tngα

(
T ∗

n Tn

)][(
T ∗T

)ν −(
T ∗

n Tn

)ν]
û
∥∥

+∥∥[
I −T ∗

n Tngα

(
T ∗

n Tn

)](
T ∗

n Tn

)ν
û
∥∥.

(2.13)
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Now, using Assumption 1 on gα ,∥∥[
I −T ∗

n Tngα

(
T ∗

n Tn

)](
T ∗

n Tn

)ν
û
∥∥ ≤ sup

0<≤λ≤b

λν
∣∣1−λgα(λ)

∣∣∥∥û
∥∥ ≤ cν

∥∥û
∥∥αν,

(2.14)
and by Assumption 1 on gα and the result (2.9) with A = T ∗T , An = T ∗

n Tn and
� = ν,∥∥rα

(
T ∗

n Tn

)[(
T ∗T

)ν −(
T ∗

n Tn

)ν]
û
∥∥ ≤ ∥∥rα

(
T ∗

n Tn

)∥∥∥∥[(
T ∗T

)ν −(
T ∗

n Tn

)ν]∥∥∥∥û
∥∥

≤ c0
∥∥û

∥∥∥∥[(
T ∗T

)ν −(
T ∗

n Tn

)ν]∥∥
≤ c0aν

∥∥û
∥∥∥∥T ∗T −T ∗

n Tn

∥∥min{1,ν}
.

(2.15)

Since T ∗
n P2n = T ∗

n , x̂ = (T ∗T )νû and using Assumption 2 on gα , we have∥∥gα

(
T ∗

n Tn

)
T ∗

n

(
Tn −T

)
x̂
∥∥ = ∥∥gα

(
T ∗

n Tn

)
T ∗

n

(
Tn −P2nT

)
x̂
∥∥

= ∥∥(
TnT

∗
n

)1/2
gα

(
TnT

∗
n

)(
Tn −P2nT

)
x̂
∥∥

≤ ∥∥(
TnT

∗
n

)1/2
gα

(
TnT

∗
n

)∥∥∥∥(
Tn −P2nT

)(
T ∗T

)ν
û
∥∥

≤ d
∥∥û

∥∥α−1/2
∥∥(

Tn −P2nT
)(

T ∗T
)ν∥∥.

(2.16)

Using the above estimates for ‖[I −gα(T ∗
n Tn)T

∗
n Tn]x̂‖ and ‖gα(T ∗

n Tn)T
∗
n (T −

Tn)x̂‖ in relation (2.12) we get the required result. �

In view of relation (2.8) and Proposition 2.1, we have to find estimates for
the quantities ∥∥T ∗T −T ∗

n Tn

∥∥,
∥∥(

Tn −P2nT
)(

T ∗T
)ν∥∥. (2.17)

It is proved in [4] (also see [6]) that∥∥T ∗T −T ∗
n Tn

∥∥ = O
(
2−2nr

)
(2.18)

so that ∥∥T ∗T −T ∗
n Tn

∥∥min{1,ν} = O
(
2−2nrν1

)
, ν1 = min{ν,1}. (2.19)

Also, the estimate for ‖(Tn −P2nT )(T ∗T )ν‖ given in the following lemma can
be deduced from a result of Solodkiı̆ [6]. Here we will give an independent and
detailed proof for the same. We will use the estimates∥∥T

(
I −Pm

)∥∥ = O
(
m−r

)
,

∥∥T
(
I −Pm

)∥∥
0,r

= O
(
m−r

)
(2.20)

obtained by Pereverzev [4] (cf. also [3]) and the estimate∥∥(
I −Pm

)|T |�∥∥ = O
(∥∥T

(
I −Pm

)∥∥min{�,1})
, � > 0, (2.21)

given in [5].
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Lemma 2.2. For ν > 0,∥∥(
Tn −P2nT

)(
T ∗T

)ν∥∥ = O
(
2−nr(2+ν2)

)
, ν2 = min{2ν,1}. (2.22)

Proof. It can be seen that

P2nT −Tn = P1T
(
I −P22n

)+
n∑

k=1

(
P2k −P2k−1

)
T

(
I −P22n−k

)
. (2.23)

Therefore,∥∥(
P2nT −Tn

)(
T ∗T

)ν∥∥
≤ ∥∥T

(
I −P22n

)(
T ∗T

)ν∥∥+
n∑

k=1

∥∥(
I −P2k−1

)
T

(
I −P22n−k

)(
T ∗T

)ν∥∥
≤ ∥∥T

(
I −P22n

)∥∥∥∥(
I −P22n

)(
T ∗T

)ν∥∥
+

n∑
k=1

∥∥(
I −P2k−1

)
T

(
I −P22n−k

)∥∥∥∥(
I −P22n−k

)(
T ∗T

)ν∥∥
≤ ∥∥T

(
I −P22n

)∥∥∥∥(
I −P22n

)(
T ∗T

)ν∥∥
+

n∑
k=1

∥∥(
I −P2k−1

)∥∥
r,0

∥∥T
(
I −P22n−k

)∥∥
0,r

∥∥(
I −P22n−k

)(
T ∗T

)ν∥∥.

(2.24)

Now using (1.24), (2.20), and (2.21), it follows that∥∥(
P2nT −Tn

)(
T ∗T

)ν∥∥
≤ κ12−2nr

(
2−2nr

)min{2ν,1} +κ2

n∑
k=1

2−(k−1)r2−(2n−k)r
[
2−(2n−k)r

]min{2ν,1}

≤ κ2−2nr2−2nrν2

n∑
k=0

2krν2 , ν2 = min{2ν,1},

= O
(
2−nr(2+ν2)

)
.

(2.25)

Thus the lemma is proved. �

Now, the estimates in (2.19) and (2.22) together with Proposition 2.1 and
relation (2.8) gives the following result.

Theorem 2.3. Suppose that x̂ ∈ R((T ∗T )ν) and y ∈ R(T ). Then

∥∥x̂ − x̃α,n

∥∥ ≤ c

(
αν +2−2nrν1 + 2−nr(2+ν2)

√
α

+ δ√
α

)
, (2.26)
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where

ν1 = min{ν,1}, ν2 = min{2ν,1}. (2.27)

2.2. Discrepancy principle. We consider the discrepancy principle

∥∥Tnx̃α,n − ỹ
∥∥ =

(
δ+an

)p

αq
, p > 0, q > 0, (2.28)

where (an) is a sequence of positive reals such that an → 0 as n → 0.
Let

fn

(
α, ỹ

) = αq
∥∥Tnx̃α,n − ỹ

∥∥. (2.29)

We observe that

Tnx̃α,n − ỹ = [
TnT

∗
n gα

(
TnT

∗
n

)−I
]
ỹ. (2.30)

Hence, by Assumptions 1 and 3 on gα , α > 0, and using spectral theory, we have

∥∥Tnx̃α,n − ỹ
∥∥ = ∥∥[

TnT
∗
n gα

(
TnT

∗
n

)−I
]
ỹ
∥∥ ≤ sup

0<λ≤b

∣∣1−λgα(λ)
∣∣∥∥ỹ

∥∥ ≤ c0,

∥∥Tnx̃α,n − ỹ
∥∥2 = ∥∥[

TnT
∗
n gα

(
TnT

∗
n

)−I
]
ỹ
∥∥2 =

∫ b

0

[
1−λgα(λ)

]2
d
∥∥Eλỹ

∥∥2

≥
∫ b

0

(
κ0α

ν0
)2

d
∥∥Eλỹ

∥∥2 ≥ (
κ0α

ν0
∥∥ỹ

∥∥)2
.

(2.31)

Therefore, it follows that

lim
α→0

fn

(
α, ỹ

) = 0, lim
α→∞fn

(
α, ỹ

) = ∞. (2.32)

Hence by the intermediate value theorem and Assumption 4 on {gα}, there exists
a unique α satisfying the discrepancy principle (2.28). It also follows that(

δ+an

)p

αq
= ∥∥Tnx̃α,n − ỹ

∥∥ ≥ κ0α
ν0

∥∥ỹ
∥∥ (2.33)

so that

α = O
(
δ+an

)p/(q+ν0). (2.34)

For the next result we make use of the estimate∥∥T −Tn

∥∥ = O
(
2−nr

)
(2.35)

proved in [3].
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Proposition 2.4. Suppose that x̂ ∈ R(T ∗T )ν for some ν with 0 < ν ≤ ν0, (an)

is such that 2−nr = O(aλ
n) for some λ > 0 and α is chosen according to the

discrepancy principle (2.28). Then(
δ+an

)p

αq
= O

((
δ+an

)s)
, (2.36)

where

s = min

{
1,λ,

pω

q +ν0
,

p

2
(
q +ν0

) +2λν2

}
,

ν2 = min{v,1}, ω = min

{
v+ 1

2
,ν0

}
.

(2.37)

Proof. From the discrepancy principle (2.28) we have(
δ+an

)p

αq
= ∥∥Tnx̃α,n − ỹ

∥∥ = ∥∥[
I −gα

(
TnT

∗
n

)
TnT

∗
n

]
ỹ
∥∥

= ∥∥[
I −gα

(
TnT

∗
n

)
TnT

∗
n

]
y
∥∥+∥∥[

I −gα

(
TnT

∗
n

)
TnT

∗
n

](
ỹ −y

)∥∥.

(2.38)

We observe that∥∥[
I −gα

(
TnT

∗
n

)
TnT

∗
n

]
y
∥∥ = ∥∥[

I −gα

(
TnT

∗
n

)
TnT

∗
n

](
T −Tn

)
x̂
∥∥

+∥∥[
I −gα

(
TnT

∗
n

)
TnT

∗
n

]
Tnx̂

∥∥
= ∥∥[

I −TnT
∗
n gα

(
TnT

∗
n

)](
T −Tn

)
x̂
∥∥

+∥∥[
I −TnT

∗
n gα

(
TnT

∗
n

)]
Tnx̂

∥∥.

(2.39)

Now, using the fact that x̂ = (T ∗T )νû, Assumption 1 on gα , α > 0, and spectral
results, we have∥∥[

I −TnT
∗
n gα

(
TnT

∗
n

)]
Tnx̂

∥∥ = ∥∥(
T ∗

n Tn

)1/2[
I −T ∗

n Tngα

(
T ∗

n Tn

)](
T ∗T

)ν
û
∥∥

= ∥∥(
T ∗

n Tn

)1/2[
I −T ∗

n Tngα

(
T ∗

n Tn

)](
T ∗

n Tn

)ν
û
∥∥

+∥∥(
T ∗

n Tn

)1/2[
I −T ∗

n Tngα

(
T ∗

n Tn

)]
×[(

T ∗T
)ν −(

T ∗
n Tn

)ν]
û
∥∥

≤ ĉνα
ω
∥∥û

∥∥+c1/2α
1/2

∥∥û
∥∥∥∥(

T ∗T
)ν −(

T ∗
n Tn

)ν∥∥,

(2.40)

where ĉν = cν+1/2 if ν + 1/2 ≤ ν0 and ĉν = cν0 if ν + 1/2 ≥ ν0, and ω =
min{ν +1/2,ν0}. Hence∥∥[

I −gα

(
TnT

∗
n

)
TnT

∗
n

]
y
∥∥ ≤ c0

∥∥(
T −Tn

)
x̂
∥∥+cνα

ω
∥∥û

∥∥
+c1/2α

1/2
∥∥û

∥∥∥∥(
T ∗T

)ν −(
T ∗

n Tn

)ν∥∥.
(2.41)
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Also, we have ∥∥(
I −gα

(
TnT

∗
n

))
TnT

∗
n

(
ỹ −y

)∥∥ ≤ c0δ. (2.42)

Thus (
δ+an

)p

αq
≤ c0

∥∥(
T −Tn

)
x̂
∥∥+cνα

ω
∥∥û

∥∥+c1/2α
1/2

∥∥û
∥∥

×∥∥(
T ∗T

)ν −(
T ∗

n Tn

)ν∥∥+c0δ.

(2.43)

Now by the results (2.9), (2.34), (2.35), and the assumption that 2−nr = O(aλ
n),

we have(
δ+an

)p

αq
≤ c

(
aλ
n +αω +α1/2a2λν2

n +δ
)

≤ c
((

δ+an

)λ +αω +α1/2(δ+an

)2λν2 +(
δ+an

))
≤ c

((
δ+an

)λ +(
δ+an

)pω/(q+νo)

+(
δ+an

)(p/2(q+ν0))+2λν2 +(
δ+an

))
,

(2.44)

where ν2 = min{ν,1}, ω = min{ν +1/2,νo}. Thus(
δ+an

)p

αq
= O

((
δ+an

)s)
,

s = min

{
1,λ,

p

2
(
q +ν0

) +2λν2,
pω

q +ν0

}
.

(2.45)

�

Theorem 2.5. In addition to the assumptions in Proposition 2.4, suppose that

p < s +2q min
{
1,λ

(
2+ν2

)}
, (2.46)

where

s = min

{
1,λ,

pω

q +ν0
,

p

2
(
q +ν0

) +2λν2

}
,

ω = min

{
v+ 1

2
,ν0

}
, ν1 = min{ν,1}, ν2 = min{2ν,1}.

(2.47)

Then

µ := min

{
pν

q +ν0
,1− p

2q
+ s

2q
,λ

(
2+ν2

)− p

2q
+ s

2q

}
> 0,

∥∥x̂ − x̃α,n

∥∥ = O
((

δ+an

)µ)
.

(2.48)
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Proof. Clearly, p ≤ s +2q min{1,λ(2+ν2)} implies µ > 0. Now to obtain the
estimate for ‖x̂ − x̃α,n‖, first we recall from Theorem 2.3 that

∥∥x̂ − x̃α,n

∥∥ ≤ c

(
αν +2−2nrν1 + 2−nr(2+ν2)

√
α

+ δ√
α

)
. (2.49)

Now, using the assumption that 2−nr = O(aλ
n) for some λ > 0, and relation

(2.34), we have

∥∥x̂ − x̃α,n

∥∥ ≤ c

((
δ+an

)pν/(q+ν0) +a2λν1
n + a

λ(2+ν2)
n√

α
+ δ√

α

)

≤ c

((
δ+an

)pν/(q+ν0) +(
δ+an

)2λν1 +
(
δ+an

)λ(2+ν2)

√
α

+ δ+an√
α

)
.

(2.50)

Since (
δ+an

)�

√
α

= (
δ+an

)�−p/2q
[(

δ+an

)p

αq

]1/2q

(2.51)

for any � > 0, by Proposition 2.4,(
δ+an

)
√

α
= O

((
δ+an

)1−(p/2q)+(s/2q)
)
,

(
δ+an

)λ(2+ν2)

√
α

= O
((

δ+an

)λ(2+ν2)−(p/2q)+(s/2q)
)
.

(2.52)

Thus ∥∥x̂ − x̃α,n

∥∥ = O
((

δ+an

)µ)
. (2.53)

�

The following corollary whose proof is immediate from the above theorem,
specifies a condition required to be satisfied by λ, and there by the sequence
(an), so as to yield a somewhat realistic error estimate.

Corollary 2.6. In addition to the assumption in Theorem 2.5, suppose λ,p,q

are such that

p

q +ν0
max

{
ν0,

1

2

}
≤ λ ≤ 1. (2.54)

Then s and µ in Theorem 2.5 are given by

s = pω

q +ν0
, µ = min

{
pν

q +ν0
,1− p

2
(
q +ν0

)(
1+ ν0 −ω

q

)}
. (2.55)
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In particular, with λ as above, we have the following:

µ = pν

q +ν0
whenever

p

q +ν0
≤ 2

2ν +1+(ν0 −ω)/q
, (2.56)

µ = 2ν

2ν +1
whenever

p

q +ν0
= 2

2ν +1
, ν0 − 1

2
≤ ν ≤ ν0, (2.57)

µ = 2ν

2ν0 +1
whenever

p

q +ν0
= 2

2ν0 +1
, q ≥ 1

2
. (2.58)

We may observe that the result in (2.58) of Corollary 2.6 shows that the choice
of p, q in the discrepancy principle (2.28) does not depend on the smoothness
of the unknown solution x̂. Also, from the above corollary we can infer that for
the Arcangeli’s discrepancy principle

∥∥Tnx̃α,n − ỹ
∥∥ = δ+an√

α
, (2.59)

one obtains the error estimate

∥∥x̂ − x̃α,n

∥∥ = O
((

δ+an

)µ)
, µ = 2ν

2ν0 +1
, (2.60)

provided (an) satisfies

2−nr = O
(
aλ
n

)
, max

{
2ν0

2ν0 +1
,

1

2

}
≤ λ ≤ 1. (2.61)

In particular, for Tikhonov regularization, where ν0 = 1, we have the order
O((δ+an)

2ν/3) whenever 2/3 ≤ λ ≤ 1.

3. Numerical example

In this section, we carry out some numerical experiments using JAVA program-
ming for Tikhonov regularization, and implement our discrepancy principle. We
also implement the a priori parameter choice strategy numerically.

Consider the Hilbert space X = Y = L2[0,1] with the Haar orthonormal
basis {e1, e2, . . . , }, of piecewise constant functions, where e1(t) = 1 for all
t ∈ [0,1], and for m = 2k−1 +j , k = 1,2, . . . , j = 1,2, . . . ,2k−1,

em(t) =




2(k−1)/2 if t ∈
[
j −1

2k−1
,
j −1/2

2k−1

)
,

−2(k−1)/2 if t ∈
[
j −1/2

2k−1
,

j

2k−1

)
,

0 if t �∈
[
j −1

2k−1
,

j

2k−1

]
.

(3.1)
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Let T : X → X be the integral operator,

(T x)(s) =
∫ 1

0
k(s, t)x(t)dt, s ∈ [0,1], (3.2)

with the kernel

k(s, t) =
{

t (1−s), t ≤ s,

s(1− t), t > s.
(3.3)

We take Xr with r = 1 as the Sobolev space of functions f with derivative
f ′ ∈ L2[0,1]. In all the following examples, we have x̂ ∈ R((T ∗T )ν) with
2ν ≤ 1. In this case the error estimate in Theorem 2.3 takes the form

∥∥x̂ − x̃α,n

∥∥ ≤ c

(
αν +2−2nν + 2−2n(1+ν)

√
α

+ δ√
α

)
. (3.4)

Taking the a priori choice of the parameter α as

α ∼ 2−2n, α ∼ δ2/(2ν+1), (3.5)

we get the optimal order ∥∥x̂ − x̃α,n

∥∥ = O
(
δ2ν/(2ν+1)

)
. (3.6)

In a posteriori case, we find α using Newton-Raphson method, namely

αk+1 = αk − g
(
αk

)
g′(αk

) , k = 0,1, . . . , (3.7)

where

g(α) = α2q
(
x̄T MCx̄ −2x̄T CB + 〈

ỹ, ỹ
〉)−(

δ+an

)2p
,

g′(α) = 2qα2q−1(x̄T MCx̄ −2x̄T CB + 〈
ỹ, ỹ

〉)
−α2q

[
x̄T MC(α+M)−1x̄ − x̄T (α+M)−1MCx̄ −2x̄T (α+M)−1CB

]
,

(3.8)

with

x̄ = (
x1,x2, . . . ,xm

)
,

[B]i = 〈
ei, ỹ

〉
, i = 1,2, . . . ,m,

[M]ij =
2n−ν∑
r=1

(
ei,Aer

)(
ej ,Aer

)
, i,j = 1,2, . . . ,2n,

[C]ij = 〈
φi,φj

〉
, φ1 = P22nT

∗e1, φi = P22n−�T
∗ei,

i ∈ (
2�−1,2�

]
, � = 1,2, . . . ,n.

(3.9)
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Here we used the notation [A]ij for the ij th entry of an n×n matrix A and [B]i
for the ith entry of an n×1 (column) matrix B.

In the following examples, we take the perturbed data ỹ as

ỹ(s) = y(s)+δ, 0 ≤ s ≤ 1. (3.10)

For the a posteriori case, we take p and q such that p/(q +1) = 2/3, and an =
(2−n)1/λ with λ = 2/3. As per Corollary 2.6, the rate is O((δ + an)

pν/(q+1)).
We will use the notation ẽα,n for the computed value of ‖x̂ − x̃α,n‖.

Example 3.1. Let y(s) = (1/6)(s−s3). In this case, it can be seen that x̂(t) = t ,
t ∈ [0,1]. It is known (cf. [2]) that x̂ ∈ R(T ∗T )ν for all ν < 1/8. In the following
two cases we take ν = 1/9.

A priori case

δ n m ẽα,n δ
2ν

2ν+1 ẽα,n.δ
−2ν

2ν+1

2 4 0.9059731 0.7371346 1.229047

2−1.22n 3 8 0.7722685 0.6328782 1.220248

4 16 0.4068352 0.5433674 0.7487295

A posteriori case

p, q δ n m ẽα,n (δ+an)
pν

q+1 ẽα,n.(δ+an)
−pν
q+1

p = 1

q = 1/2

2 4 0.5102194 0.89450734 0.5703915

2−1.22n 3 8 0.4890685 0.8196771 0.5966605

4 16 0.3504178 0.7517244 0.4661520

p = 2

q = 2

2 4 0.4000930 0.89450734 0.4482135

2−1.22n 3 8 0.3664487 0.8196771 0.4470647

4 16 0.3294871 0.7517244 0.43830837

p = 1

q = 1/2

2 4 0.5754841 0.8414794 0.6838956

10−10 3 8 0.5430453 0.7719075 0.7035708

4 16 0.2975858 0.7187710 0.4202669

p = 2

q = 2

2 4 0.5395960 0.8414794 0.6412471

10−10 3 8 0.4648603 0.7719075 0.6022228

4 16 0.28503888 0.7187710 0.3965642

Example 3.2. Let y(s) = (1/24)(s−2s3 +s4). In this case, x̂(t) = (1/2)(t − t3), t ∈ [0,1]
and x̂ ∈ R(T ∗T )ν for all ν < 5/8 (cf. [2]).
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A priori case

δ n m ẽα,n δ
2ν

2ν+1 ẽα,n.δ
−2ν
2ν+1

2 4 0.2362887 0.1767766 1.3366517

2−2n/2 3 8 0.09444126 0.08838834 1.0681567

4 16 0.043338350 0.04419417 0.98063492

A posteriori case

p, q δ n m ẽα,n (δ+an)
pν

q+1 ẽα,n.(δ+an)
−pν
q+1

p = 1

q = 1/2

2 4 0.08955768 0.54195173 0.16525029

2−2∗n/2 3 8 0.08927489 0.37696366 0.23682611

4 16 0.08501988 0.26363660 0.32261129

p = 4/3

q = 1

2 4 0.07940677 0.54195173 0.1465200

2−2∗n/2 3 8 0.0774004 0.37696366 0.2053259

4 16 0.0683534 0.26363660 0.2593698

p = 1

q = 1/2

2 4 0.09125593 0.50347777 0.18125116

10−10 3 8 0.09081976 0.35724853 0.25422012

4 16 0.0865327 0.2534898 0.34136562

p = 4/3

q = 1

2 4 0.09045663 0.50347777 0.17966361

10−10 3 8 0.0857890 0.35724853 0.24013831

4 16 0.073404813 0.2534898 0.2895769
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