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Let �T be some bounded simply connected region in R
2 with ∂�T = �̄1 ∩ �̄2.

We seek a function u(x, t), ((x, t) ∈ �T ) with values in a Hilbert space H

which satisfies the equation ALu(x, t) = Bu(x, t)+f (x, t,u,ut ), (x, t) ∈ �T ,
where A(x, t), B(x, t) are families of linear operators (possibly unbounded)
with everywhere dense domain D (D does not depend on (x, t)) in H and
Lu(x, t) = utt +a11uxx +a1ut +a2ux . The values u(x, t); ∂u(x, t)/∂n are given
in �1. This problem is not in general well posed in the sense of Hadamard. We
give theorems of uniqueness and stability of the solution of the above problem.

1. Introduction

Let ϕi(t) ∈ C1 (t ≥ t0, i = 1,2), t ∈ [t0,T ], and |ϕ′
i (t)|(t−t0)

1/2 < µ (i = 1,2),
where µ is a constant. Let �T be a bounded simply connected region in R

2

defined as follows:

�T = {
(x, t) : 0 ≤ t0 < t < T, ϕ1(t) < x < ϕ2(t), ϕ1

(
t0

) = ϕ2
(
t0

)}
, (1.1)

and ∂�T = �̄1 ∪ �̄2, �1 ∩�2 = ∅, where

�1 = [
(x, t) : x = ϕi(t) (i = 1,2), t0 ≤ t < T

]
,

�2 = [
(x, t) : t = T , ϕ1(t) < x < ϕ2(t)

]
.

(1.2)

Let D (D does not depend on (x, t)) be an everywhere dense domain in H ,
and A(x, t), B(x, t) are families of linear operators (possibly unbounded) with
domain D, let u(x, t), ((x, t) ∈ �T ) be a function with values in the space H .
Let u(x, t) satisfy the equation

A(x, t)Lu(x, t) = Bu(x, t)+f (x, t,u,ut ), (x, t) ∈ �, (1.3)
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where Lu(x, t) ≡ utt +a11uxx +a2ux +a1ut ,

a11 ∈ C2(�T

) (
a11 > 0

)
, a1(x, t), a2(x, t) ∈ C1(�̄T

)
, (1.4)

and in the part �1 of the bound ∂�T are given

∂u(x, t)

∂n

∣∣∣∣
�1

= g, u(x, t)
∣∣
�1

= f1, (1.5)

where

f1 ∈ C1(�1;H
)
, g ∈ C

(
�1;H

)
. (1.6)

Definition 1.1. A solution of (1.3) is called a two times smooth differentiable
function which belongs to the domain of operators A, B for every (x, t) ∈ �T

and satisfies (1.3).

The Cauchy problem is the problem to find the solution of (1.3) which satis-
fies condition (1.5) with f,g ∈ D(A)∩D(B).

The Cauchy problem (1.3), (1.4), and (1.5) is not in general well posed in the
sense of Hadamard. This type of problems for differential-operator equations
were studied by Kreı̆n [3], Levine [5], Buchgeim [1], and others. We will prove
theorems of uniqueness and stability of the solution of the Cauchy problem
using Lavrent’ev’s method [2, 4].

2. Uniqueness

Theorem 2.1. Let A = 1, Lu ≡ 	u ≡ uxx + utt , and let B be a selfadjoint
constant operator. Suppose w(x, t) satisfies

	w = Bw+f
(
t,x,w,wt

)
, (2.1)

v ∈ C1(�T ;H )∩C2(�T ;H )∩L2
(
�T ;D)

(2.2)

is such that

	v = Bv+f
(
t,x,v,vt

)−ε(v) (2.3)

is defined, and w|�1 = 0, v|�1 = 0. Let u = w−v, and

∥∥f (
t,x,v,vt

)−f
(
t,x,w,wt

)∥∥2 ≤c1

∫ t

t0

∥∥u(τ)
∥∥2

dτ+c2

∫ t

t0

∥∥uτ (τ )
∥∥2

dτ, (2.4)

where c1, c2 are positive constants. Then there exist constants �i ≥ 0, i = 1,2,
such that with

γ = �1

(
max
�1

(∥∥ut

∥∥2 +∥∥ux

∥∥2
))

+�2

∫ t

t0

∥∥ε(v)
∥∥2

dτ (2.5)
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the function

	(t) = ln

(∫∫
�t

‖u‖2ds dτ +γ

)
(2.6)

satisfies

	 ′′(t)+p	 ′(t)+q ≥ 0 (2.7)

for some nonnegative computable constants p and q which depend on T , ci (i =
1,2).

Proof. From (2.1) and (2.3) we find

	u = Bu+α
(
t,x,u,ut

)+ε(u). (2.8)

We denote the estimating integral by

ϕ(t) =
∫∫

�t

∥∥u(s,τ )
∥∥2

ds dτ. (2.9)

We differentiate ϕ(t), and take into account the condition u|�1 = 0. We get

ϕ′(t) = 2
∫∫

�t

Re
(
uτ ,u

)
ds dτ,

ϕ′′(t) = 2
∫∫

�t

Re
(
uττ ,u

)
ds dτ +2

∫∫
�t

(
uτ ,uτ

)
ds dτ.

(2.10)

Taking into account (2.1) we receive

ϕ′′(t) =−2
∫∫

�t

Re
(
uss,u

)
ds dτ +2

∫∫
�t

(Bu,u)ds dτ

+2
∫∫

�t

(
ε(v),u

)
ds dτ +2

∫∫
�t

Re
(
α
(
τ,s,u,uτ

)
,u

)
ds dτ

+2
∫∫

�t

(
uτ ,uτ

)
ds dτ,

(2.11)

where α(t,s,u,ut ) = f (t, s,w,wt )−f (t, s,v,vt ).
Using the integration by part and taking into account the condition u|�1 = 0,

(2.8) we get from (2.11)

ϕ′′(t) =−2
∫∫

�t

[(
us,us

)+(
uτ ,uτ

)+(Bu,u)
]
ds dτ

+2
∫∫

�t

Re
(
α
(
τ,s,u,uτ

)+ε(v),u
)
ds dτ.

(2.12)
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We differentiate

p(t) =
∫ ϕ2(t)

ϕ1(t)

∥∥us(s, t)
∥∥2

ds (2.13)

and obtain

p′(t) =
∫ ϕ2(t)

ϕ1(t)

∂

∂t

(
us,us

)
ds +

2∑
i=1

(−1)iϕ′
i (t)

∥∥us

(
ϕi(t), t

)∥∥2

= −
∫ ϕ2(t)

ϕ1(t)

2Re
(
ut ,uss

)
ds +2

2∑
i=1

(−1)i Re
(
ut

(
ϕi(t), t

)
us

(
ϕi(t), t

))

+
2∑

i=1

(−1)iϕ′
i (t)

∥∥us

(
ϕi(t), t

)∥∥2

= d

dt

∫ ϕ2(t)

ϕ1(t)

[(
ut ,ut

)+(Bu,u)
]
ds−2

∫ ϕ2(t)

ϕ1(t)

Re
(
α
(
t, s,u,ut

)+ε(v),ut

)
ds

+
2∑

i=1

(−1)i
{
ϕ′

i (t)
[∥∥us

(
ϕi(t), t

)∥∥2 −∥∥ut

(
ϕi(t), t

)∥∥2
]

+2Re
(
ut

(
ϕi(t), t

)
,us

(
ϕi(t), t

))}
.

(2.14)

By deducing this formula we use (2.8) and integration by parts. Integrating
(2.14) from t0 till t we get the following:

∫ ϕ2(t)

ϕ1(t)

(∥∥us

∥∥2 +(Bu,u)
)
ds

=
∫ ϕ2(t)

ϕ1(t)

∥∥ut

∥∥2
ds −2

∫∫
�t

Re
(
α
(
τ,s,u,uτ

)+ε(v),uτ

)
ds dτ +b0(t),

(2.15)

where

b0(t) =
2∑

i=1

(−1)i
∫ t

t0

ϕ′
i (τ )

[∥∥us

(
ϕi(t), t

)∥∥2 −∥∥ut

(
ϕi(τ ),τ

)∥∥2
]

+2Re
(
uτ

(
ϕi(τ ),τ

)
,us

(
ϕi(τ ),τ

))
dτ.

(2.16)

Substituting (2.15) in (2.12) we get

ϕ′′(t) = 4
∫∫

�t

∥∥uτ

∥∥2
ds dτ −4

∫ t

t0

∫∫
�t

Re
(
α+ε(v),uτ

)
ds dτ1 dτ

+2
∫∫

�t

Re
(
α+ε(v),u

)
ds dτ +

∫ t

t0

b0(τ )dτ.

(2.17)
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We notice that

∣∣∣∣
∫ t

t0

b0(τ )dt

∣∣∣∣ ≤ �0

2∑
i=1

∫ t

t0

(t −τ)
∣∣ϕ′

i (τ )
∣∣[∥∥uτ

∥∥2 +∥∥us

∥∥2
]
s=ϕi(t)

dτ ≤ γ,

(2.18)
where γ is defined by (2.3). From (2.17) we can write

4
∫ t

t0

∫∫
�t

∥∥uτ1

(
τ1, s

)∥∥2
ds dτ1 dτ

≤ ϕ′(t)+4

∣∣∣∣
∫ t

t0

∫∫
�t

(
α+ε(v),uτ2

)
ds dτ2 dτ1 dτ

∣∣∣∣

+2

∣∣∣∣
∫ t

t0

∫∫
�t

Re
(
α+ε(v),u

)
ds dτ1 dτ

∣∣∣∣+
∣∣∣∣
∫ t

t0

∫ τ

t0

b0
(
τ1

)
dτ1 dτ

∣∣∣∣.
(2.19)

Using the Cauchy and Bellman inequalities and the inequality

|ab| ≤ a2

2
β + b2

2β
, β > 0, (2.20)

from (2.19) we receive the following inequality:

∫ t

t0

∫∫
�t

∥∥uτ1

(
τ1, s

)∥∥2
ds dτ1 dτ

≤ k1ϕ
′(t)+k2ϕ(t)+k3

∫ t

t0

∫∫
�t

∥∥ε(v)
∥∥2

ds dτ1 dτ +T γ,

(2.21)

where k1, k2, and k3 are nonnegative constants which depend on T and the
constants c1 and c2. Then for ϕ′′(t) we get the following:

ϕ′′(t) ≥ 4
∫∫

�t

∥∥uτ (s,τ )
∥∥2

ds dτ

−k4ϕ
′(t)−k5ϕ(t)−k6

∫∫
�t

∥∥ε(v)
∥∥2

dτ ds −k7γ.

(2.22)

We consider now the function ψ(t) = ln[ϕ(t)+γ ], using the Cauchy inequality,

|ab| ≤ a2

2
β + b2

2β
, β > 0, (2.23)
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and (2.22) we transform the second derivative

ψ ′′(t) = ϕ′′(t) ·(ϕ(t)+γ
)−(

ϕ′(t)
)2

(
ϕ(t)+γ

)2

≥ 1(
ϕ(t)+γ

)2

{(
4
∫∫

�t

∥∥uτ (s,τ )
∥∥2

ds dτ −k4ϕ
′(t)

−k5ϕ(t)−k6

∫∫
�t

∥∥ε(u)
∥∥2

ds dτ −k7γ

)

×
(∫∫

�t

‖u‖2ds dτ+γ

)
−4

(∫∫
�t

Re
(
uτ ,u

)
ds dτ

)2}

≥ −k8
ϕ′

ϕ(t)+γ
−k9,

(2.24)

or

ψ ′′ +pψ ′ +q ≥ 0, (2.25)

where p, q are nonnegative constants that depend on T and the constants c1, c2.
Theorem 2.1 is proved. �

Remark 2.2. It is known from the theory of ordinary differential equations if
the function ψ(t) satisfies the inequality (2.7), then it satisfies the following
inequality:

ψ(t) ≤ ψ0(t), (2.26)

where ψ0(t) is a solution of the differential equation

ψ ′′
0 (t)+pψ ′

0(t)+q = 0 (2.27)

with boundary conditions ψ0(t0) = ψ(t0), ψ0(T ) = ψ(T ). It is not difficult to
see that

ψ0(t) = 
1 +
2 exp(−pt)−q
t

p
;


1 = ψ(T )exp
(−pt0

)−ψ
(
t0
)

exp(−pT )+(q/p)
(
T exp

(−pt0
)−t0 exp(−pT )

)
exp

(−pt0
)−exp(−pT )

;


2 = ψ(0)−ψ(T )+ q

p

(
t0 −T

)(
exp

(−pt0
)−exp(−pT )

);
ψ(t) ≤ (

1−ω(t)
)
ψ

(
t0

)+ω(t)ψ(T )+q
ω(t)

(
T − t0

)+(
t0 − t

)
p

,

(2.28)



K. S. Fayazov and E. Schock 259

where

ω(t) = exp
(−pt0

)−exp(−pt)

exp
(−pt0

)−exp(−pT )
. (2.29)

Further, it is not difficult to see, from (2.7), that
∫∫

�t

‖u‖2ds dτ ≤ c(t)γ 1−ω(t)

{∫∫
�t

‖u‖2ds dτ +γ

}ω(t)

−γ. (2.30)

Corollary 2.3. The solution of the Cauchy problem for (1.3) is unique in the
space

C1(�̄T ;H )∩C2(�T ;H )∩L2
(
�T ;D)

. (2.31)

Proof. Let v, w be solutions of the Cauchy problem for (2.1) and (2.3), respec-
tively. Then u = w−v is the solution of the homogeneous Cauchy problem for
the equation

	u = Bu+α
(
t,u,ut

)
(2.32)

and γ = 0 and from (2.30) follows u ≡ 0 or w ≡ v. Corollary 2.3 is proved. �

From inequality (2.30) it is easy to see that the following corollary follows.

Corollary 2.4. The solution of the Cauchy problem for (1.3) is stable in the
space

C1(�̄T ;H )∩C2(�T ;H )∩L2
(
�T ;D)

,

u ∈
{
u :

∫∫
�t

‖u‖2ds dτ ≤ M

}
.

(2.33)

3. Stability

Let A be a constant selfadjoint operator and (Au,u) > 0 for all u �= 0, (Au,u) =
0 if and only if u = 0. Let B(x, t) be a selfadjoint operator for every (x,y) ∈ D

and with

c = max

[
max

(x,t)∈[�T ]

(∣∣a11r

∣∣+ ∣∣a1/2
∣∣+ ∣∣a11s /2

∣∣)
a11

;

max

(∣∣∣∣a11s

2

∣∣∣∣+
∣∣∣∣
(
a1

)
2

∣∣∣∣+
∣∣(a2

)∣∣+2c1 +β9

)] (3.1)

satisfies (
Btu,u

) ≥ −c(Bu,u). (3.2)

Let w satisfy

ALw = Bw+F
(
x, t,w,wt

)
(3.3)
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and v satisfy

ALv = Bv+f
(
x, t,v,vt

)−ε(v). (3.4)

Let u = w−v and α = f (x, t,w,wt )−f (x, t,v,vt ) and

‖α‖2 ≤ c1‖u‖2 +c2
∥∥ut

∥∥2
, (3.5)

then

ALu = Bu+α
(
x, t,u,ut

)+ε(v), (3.6)

where c1, c2 are constants.

Theorem 3.1. Let the coefficients a11, a1, and a2 satisfy condition (1.4). If the
solution of (3.6) is equal to zero on �1 and satisfies the inequality∫∫

�T

(u,Au)ds dτ ≤ M,

γ = �max
�1

[(
ut ,Aut

)+(
ux,Aux

)]+
∫∫

�T

∥∥ε(v)
∥∥2

ds dτ,

(3.7)

then for u ∈ C1(�̄T ;H)∩C2(�T ;H)∩L2(�T ;D) the following inequality is
true ∫∫

�t

(u,Au)ds dτ ≤ γ 1−ω(t)(M +γ )ω(t)c(t)−γ, (3.8)

where

c(t) = exp
q
(
γ (t)T − t

)
p

,

ω(t) = exp
(−pt0

)−exp(−pt)

exp
(−pt0

)−exp(−pT )
,

(3.9)

and �, p, q are constants that depend on the coefficients T and ci , i = 1,2.

Proof. Let

F(t) =
∫∫

�t

(u,Au)ds dτ, (3.10)

then

F ′(t) =
∫∫

�t

2Re
(
uτ ,Au

)
ds dτ,

F ′′(t) =
∫∫

�t

2Re
(
uττ ,Au

)
ds dτ +F(t)

=
∫∫

�t

2
(
uτ ,Auτ

)
ds dτ,

(3.11)
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because u|�1 = 0. We transform the first term in the expression for F ′′(t) using
(3.6) and integration by parts∫∫

�t

2Re
(
uττ ,Au

)
ds dτ

=
∫∫

�t

2(Bu,u)ds dτ

∫∫
�t

2a11
(
us,Aus

)
ds dτ

+
∫∫

�t

2Re
(
u,α

(
s,τ,u,uτ

))
ds dτ +

∫∫
�t

2Re
(
u,ε(v)

)
ds dτ

−
∫∫

�t

2Re
(−a11s +a2

)(
us,Au

)
ds dτ −

∫∫
�t

2a1 Re
(
uτ ,Au

)
ds dτ.

(3.12)

After the transform we get

F ′′(t) =
∫∫

�1

2
((

uτ ,Auτ

)+a11
(
us,Aus

)+(u,Bu)
)
ds dτ

+
∫∫

�1

2
[(

a11s −a2
)(

us,Au
)+Re

(
u,α

(
s,τ,u,uτ

))

−Re
(
u,ε(v)

)−a1 Re
(
uτ ,Au

)]
ds dτ.

(3.13)

From here and from (1.4) using the conditions for the coefficients and Hölder’s
inequality, we get

F ′′(t) ≥
∫∫

�t

2
((

uτ ,Auτ

)+a11
(
us,Aus

)+(u,Bu)
)
ds dτ

−2β1

[∫∫
�t

(
us,Aus

)
ds dτF (t)

]1/2

−2β2

[∫∫
�t

(
uτ ,Auτ

)
ds dτF (t)

]1/2

−2β3F(t)−β4

[∫∫
�1

(
uτ ,Auτ

)
ds dτ

∫∫
�1

(u,Au)ds dτ

]1/2

−β5

[∫∫
�t

∥∥ε(v)
∥∥ds dτ

∫∫
�t

(u,Au)ds dτ

]1/2

≥
∫∫

�t

2
((

uτ ,Auτ

)+a11
(
us,Aus

)+(u,Bu)
)
ds dτ

−
(

β2
1

a11
+

((
2β2 +β4

)
2

)2

−2β3 + β2
5

2

)
F(t)

−0.5
∫∫

�t

∥∥ε(v)
∥∥2

ds dτ.

(3.14)
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From the last inequality it follows that

∫ t

t0

∫∫
�t

((
uτ1,Auτ1

)+a11
(
us,Aus

)+(u,Bu)
)
ds dτ1 dτ

≤ F ′(t)+β6F(t)+0.5
∫∫

�t

∥∥ε(v)
∥∥2

ds dτ.

(3.15)

Differentiating the first integral on the right-hand side of (3.12), we get

d

dt

∫∫
�t

a11
(
us,Aus

)
ds dτ

= d

dt

∫∫
�t

{(
uτ ,Auτ

)−(Bu,u)
}
ds dτ

+
∫ t

t0

2∑
i=1

{
(−1)iϕ′

i (t)
[
a11

(
us

(
ϕi(τ ),τ

)
,Aus

(
ϕi(τ ),τ

))

−(
uτ

(
ϕi(τ ),τ

)
,Auτ

(
ϕi(τ ),τ

))]
+a11

(
uτ

(
ϕi(τ ),τ

)
,Aus

(
ϕi(τ ),τ

))}
dτ

+
∫∫

�t

[
a11τ

(
us,Aus

)−a11s

(
uτ ,Aus

)]
ds dτ

+
∫∫

�t

[(
u,Buτ

)+a2
(
uτ ,Auτ

)+a1
(
uτ ,Aus

)

−(
uτ ,α+ε(v)

)]
ds dτ.

(3.16)

After this transformation F ′′(t) takes the form

F ′′(t) = 4
∫∫

�t

(
uτ ,Auτ

)
ds dτ

+2
∫ t

t0

∫∫
�t

[
a11τ

(
us,Aus

)−a11s Re
(
uτ ,Aus

)

+Re
(
u,Buτ

)+a2
(
uτ ,Auτ

)+a1 Re
(
uτ ,Aus

)]
ds dτ

+2
∫ t

t0

∫∫
�t

Re
(
uτ ,α+ε(v)

)
ds dτ

+
∫∫

�t

{(
a11s −a2

)
Re

(
us,Au

)+2Re
(
uτ ,α+ε(v)

)
−2a1 Re

(
uτ ,Auτ

)}
ds dτ +b0(τ ),

(3.17)
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where

b0(τ ) =
∫ t

t0

(t −τ)

2∑
i=1

{
(−1)iϕ′

i (t)
[
a11

(
ux

(
ϕi(τ ),τ

)
,Aux

(
ϕi(τ ),τ

))

−(
uτ

(
ϕi(τ ),τ

)
,Auτ

(
ϕi(τ ),τ

))]
+a11 Re

(
uτ

(
ϕi(τ ),τ

)
,Aux

(
ϕi(τ ),τ

))}
dτ.

(3.18)

We remark that

∣∣b0(τ )
∣∣ ≤

2∑
i=1

∫ t

t0

(t −τ)
{
a11

[∣∣ϕ′
i

∣∣(ux

(
ϕi(τ ),τ

)
,Aux

(
ϕi(τ ),τ

))

+ ∣∣2Re
(
ux

(
ϕi(τ ),τ

)
,Auτ

(
ϕi(τ ),τ

))∣∣]
+ ∣∣ϕ′

i

∣∣(uτ

(
ϕi(τ ),τ

)
,Auτ

(
ϕi(τ ),τ

))}
dτ

≤ γ1.

(3.19)

We denote

s2 =
∫∫

�t

(
uτ ,Auτ

)
ds dτ

∫∫
�t

(u,Au)ds dτ −
(∫∫

�t

(
uτ ,Auτ

)
ds dτ

)2

.

(3.20)
Then using Hölder’s inequality, (1.4), (3.15) we obtain from (3.17)

F ′′(t) ≥ 4
∫∫

�t

(
uτ ,Auτ

)
ds dτ

−2
∫ t

t0

∫∫
�t

{[∣∣a11r

∣∣+
∣∣a11

∣∣
2

+
∣∣a11s

∣∣
2

](
us,Aus

)

+
[∣∣a11s

∣∣
2

+
∣∣a1

∣∣
2

+
∣∣a2

∣∣
2

](
uτ ,Auτ

)

+ ∣∣Re
(
u,Bτu

)∣∣}ds dτ dτ1

−2c2

∫ t

t0

∫∫
�τ1

(
uτ1,Auτ1

)
ds dτ dτ1

−2c1

{∫ t

t0

∫∫
�τ1

(
uτ1,Auτ1

)
ds dτ dτ1F(t)

}1/2

−2

{∫ t

t0

∫∫
�τ1

(
uτ1,Auτ1

)
ds dτ dτ1

∫ t

t0

∫∫
�t

∥∥ε(v)
∥∥2

ds dτ dτ1

}1/2
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−
∫∫

�t

∣∣a11s −a2
∣∣Re(u,Au)ds dτ −2c1

∫∫
�t

Re(u,Au)ds dτ

−c2

{∫∫
�t

Re
(
uτ ,Auτ

)
ds dt

}1/2

−2β

{∫∫
�t

Re
(
uτ ,Auτ

)
ds dτF (t)

}1/2

−γ

≥ 4
∫∫

�t

(
uτ ,Auτ

)
ds dτ

−
∫ t

t0

∫∫
�t

{
ca11

(
us,Aus

)+c
(
uτ ,Auτau

)+c(u,Bu)
}
ds dτ dτ1

−β6F
′(t)−β7F(t)−β8s −γ

≥ 4
∫∫

�t

(
uτ ,Auτ

)
ds dτ −β6F

′(t)−β7F(t)−βs −γ,

(
c = max

{
2
∣∣a11r

∣∣+ ∣∣a1
∣∣+ ∣∣a11s

∣∣
2
∣∣a11

∣∣ ,

[∣∣a11s

∣∣
2

+
∣∣a1

∣∣
2

+ ∣∣a2
∣∣+2c1 +β9

]})
.

(3.21)

Let φ(t) = ln[F(t)+γ ], then

�′′(t) =
(
F ′′(t)

(
F(t)+γ

)−(
F ′(t)

)2)
(
F(t)+γ

)2

≥ 4
∫∫

�t

(
uτ ,Auτ

)
ds dτ

∫∫
�t

(u,Au)ds dτ −(
2
∫∫

�t

(
uτ ,Au

)
ds dτ

)2

(
F(t)+γ

)2

+4

∫∫
�t

(
uτ ,Auτ

)
ds dτγ(

F(t)+γ
)2

− β9F
′(t)+β10F(t)+β11S +γ

F(t)+γ

≥ −p
F ′(t)

F (t)+γ
−q.

(3.22)

Inequality (3.8) follows from (3.22), and the theorem is proved. �

Remark 3.2. We can obtain similar results for arbitrary second order elliptic
operators L, using the methods of [4].

Remark 3.3. For

B(x, t) = B1(x, t)+ iB2(x, t), (3.23)

where B1(x, t) and B2(x, t) are selfadjoint operators for all (x, t) ∈ �T and λ,
µ, c are constants such that (Au,u) ≥ λ(u,u) > 0, ‖B2u‖2 ≤ µ(Au,u), and
−(B1)t ≤ cBt , a similar result is valid.
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Example 3.4. We consider the equation

sgn(y)
(
utt (t,x,y)+uxx(t,x,y)

) = uyy(t,x,y) (3.24)

in the region Q = (−1,1)×�T (�T is defined as above). This equation is a
mixed type equation. We will consider the problem of finding the solution of
this equation in Q (y �= 0) which satisfies the following boundary conditions:

u(t,x,y)|�′
i
= f,

∂u(t,x,y)

∂n
|�′

1
= g, (3.25)

where �′
1 = �1 ×(−1,1), �′

2 = �2 ×(−1,1);

u(t,x,−1) = 0, u(t,x,1) = 0, (t,x) ∈ �T ; (3.26)

u(t,x,−0) = u(t,x,+0),

∂u(t,x,−0)

∂y
= ∂u(t,x,+0)

∂y
.

(3.27)

Here B is a selfadjoint positive definite in L2(−1,1) operator which is gen-
erated by the differential expression

Bu = −∂2u

∂y2
(3.28)

and with boundary conditions u|y=−1 = u|y=1 = 0. We define the operator A

as the operator of multiplication with the function sgn(y). This problem is an
ill-posed problem in the sense of Hadamard, since continuous dependence of
the solution from the data is absent in it.

Using the above described method we can prove the following result.

Theorem 3.5. If a solution of this problem becomes zero on the surface �′
1 and

satisfies ∫ T

0

∫ ϕ2(t)

ϕ1(t)

∫ 1

−1

(
uy(t,x,y)

)2
dy ds dt ≤ M,

�max
�1

(∫ 1

−1

(
uyx

)2
dy +

∫ 1

−1

(
uyt

)2
dy +

∫ 1

−1

∣∣sign(x)
(
uyy

)2
dy

∣∣) = γ,

(3.29)
(� is constant that depends on T , �1), then the inequality∫ t

0

∫ ϕ2(t)

ϕ1(t)

∫ 1

−1

(
uy(t,x,y)

)2
dy ds dt ≤ γ 1−ω1(t)(M +γ )ω1(t)c1(t)−γ (3.30)

is valid, where c1(t) = exp(t (T − t)/2), ω1(t) = (1− t/T ).

From this theorem one can easily see that the uniqueness and the conditional
stability of the solution of this problem follows.
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