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Let Q7 be some bounded simply connected region in R? with 3Qr =T NT>.
We seek a function u(x,t), ((x,t) € Qr) with values in a Hilbert space H
which satisfies the equation ALu(x,t) = Bu(x,t)+ f(x,t,u,u;), (x,t) € Qr,
where A(x,t), B(x,t) are families of linear operators (possibly unbounded)
with everywhere dense domain D (D does not depend on (x,?)) in H and
Lu(x,t) = us +ajjuxx +ajus+azuy. The values u(x, t); du(x,t)/on are given
in I'1. This problem is not in general well posed in the sense of Hadamard. We
give theorems of uniqueness and stability of the solution of the above problem.

1. Introduction

Letgi(t) € C' (t = 19, i =1,2),1 € [19, T],and |9} ()| (1 —10)'/* < u (i = 1,2),
where s is a constant. Let Q7 be a bounded simply connected region in R?
defined as follows:

Qr={(x.0:0<19<t<T, p1(t) <x <), ¢i1(to) = ¢2(0)}, (1.1)
and 3Q7 = Uy, I} NIy = @, where

Mi=[(x,0):x=9¢) (i=12), 1<t <T],
(1.2)
I, = [(x,t) =T, p1(t) <x < (pz(t)].

Let D (D does not depend on (x,?)) be an everywhere dense domain in H,
and A(x,1), B(x,t) are families of linear operators (possibly unbounded) with
domain D, let u(x,t), ((x,t) € Qr) be a function with values in the space H.
Let u(x,t) satisfy the equation

A(x,t)Lu(x,t) = Bu(x,t)+ f(x,t,u,u;), (x,t)€ 2, (1.3)
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254  BVP with operator coefficients
where Lu(x,t) = usy +ajiuyy +asuy +ajuy,

ai1 € C*(Qr) (a1 >0),  ai(x,1), ax(x,1) € C'(Qr), (1.4)
and in the part I'; of the bound 927 are given

du(x,t)
on |p,

=8 M(.X,t)|l—,1=f], (15)

where

fiec! (T H), geC(T;H). (1.6)

Definition 1.1. A solution of (1.3) is called a two times smooth differentiable
function which belongs to the domain of operators A, B for every (x,t) € Qr
and satisfies (1.3).

The Cauchy problem is the problem to find the solution of (1.3) which satis-
fies condition (1.5) with f, g € D(A)ND(B).

The Cauchy problem (1.3), (1.4), and (1.5) is not in general well posed in the
sense of Hadamard. This type of problems for differential-operator equations
were studied by Krein [3], Levine [5], Buchgeim [1], and others. We will prove
theorems of uniqueness and stability of the solution of the Cauchy problem
using Lavrent’ev’s method [2, 4].

2. Uniqueness

THEOREM 2.1. Let A = 1, Lu = Au = uyyx +uy, and let B be a selfadjoint
constant operator. Suppose w(x, t) satisfies

Aw:Bw—}—f(t,x,w,w,), 2.1
ve CY(Qr; H)NC*(Qr; H)NLy(Qr; D) (2.2)

is such that
Av:Bv—i—f(t,x,v,vt)—s(v) 2.3)

is defined, and w|r, =0, v|r1 =0. Let u = w—v, and

t t
Hf(t,x,v,v,)—f(t,x,w,w,)||2§cl/ ||u(t)“2d'c+02/ |u(@)|*dz, 24
1) o

where ¢y, ca are positive constants. Then there exist constants ®; >0, i = 1,2,
such that with

t
y = @1(%5}x(||ut||2+ Jux ”2))+®2/¢0 || dr 2.5)
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(1) =ln(// ||u||2dsdr+y> (2.6)
@

v+ p¥(t)+qg >0 2.7

the function

satisfies

for some nonnegative computable constants p and q which dependon T, c¢; (i =
1,2).
Proof. From (2.1) and (2.3) we find

Au:Bu—l—a(t,x,u,ut)—i—s(u). (2.8)

We denote the estimating integral by

o(t) =ff ||u(s,t)}|2dsdr. 2.9)
Q

We differentiate ¢(¢), and take into account the condition u|r, = 0. We get

o) =2 / / Re (ir. 1) ds d,
Q;

<p”<t>=2// Re(umu)dsdwzf/ (e z)dsdr.
Q Q

Taking into account (2.1) we receive

(2.10)

go”(t)z—Z// Re(uss,u)dsdt—l-Z/ (Bu,u)dsdt
Q; o

+2// (s(v),u)dsdr—i—Z// Re(a(t,s,u,u,),u)dsdt (2.11)
Q; Q2

+2// (ur,ur)dsdr,
Q2

where a(t, s, u,ur) = f(t,s,w,we) — f(t,5,0,0).
Using the integration by part and taking into account the condition u|r, =0,
(2.8) we get from (2.11)

0" (1) :—2// [(us, us) + (e, uc) + (Bu,u)]dsdz
& (2.12)

—i—Z// Re (a(7,5,u,ur)+e(v),u)dsdr.
Q



256  BVP with operator coefficients
We differentiate

@a(7) )
pt) = / |us (s, 0)|“ds (2.13)
¢

1)

and obtain

) 5
p’(t)—/ o7 (s ds+2( 1 (@) |us (0 D), 1) |
@1(1) i=1

@2(1) 2 .
= —/ 2Re (g, ugs) ds+2) (1) Re (ur (i (1), t)us (i (). 1))
@1(7) i=1

+Z( 1 0/(0) s (i 0). 1) |

@2(1)
[(ut,u,)—l—(Bu,u)]ds—Zf ’ Re(a(t,s,u,u,)—l—e(v),ut)ds
@1(1)

d oo

St p1(1)
2

+ 20| Jus (@ @0 | = Julgio.0)[]
i=1

+2Re (us (i (1), 1), ”s(wi(”’t))}'
(2.14)

By deducing this formula we use (2.8) and integration by parts. Integrating
(2.14) from 1 till + we get the following:

02(1) )
[+ ) as
¢

1)

@2(1) 2
=/ [lue | ds—2// Re (or(t, s, u,ur)+e(v),ur)dsdr +bo(t),
[ Q

1(0)
(2.15)
where
2 ! 2 2
) =31 [e@luteonl -lueoF] o
+2Re (ur (@i (7), 7), us(9i (1), 7)) d7
Substituting (2.15) in (2.12) we get
t
<p”(r)=4// Hu,”zdsdr—4f // Re (e +£(v),ur)dsdrdr
o fo /< (2.17)

t
+2// Re(oz+s(v),u)dsdr+/ bo(t)dr.
Q; to
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‘We notice that

t
/ bo(t)dt
fo

where y is defined by (2.3). From (2.17) we can write

t
4/ f/ ||u,l(rl,s)||2dsdrla’r
to Q;

2 ot
2 2
<o [ a-lsiol[lucl + k], v <7
(2.18)

t
§¢’(t)+4/// (@ +e(),ur,)dsdrrdridr
i) Q
t t T
+2 / // Re (o +e(v),u)dsdridr|+ / / bo(t1)dtidt|.
to Q fo J1Ip
(2.19)
Using the Cauchy and Bellman inequalities and the inequality
< Tpr . pao (220)
a —B+—, > 0, .
-2 28
from (2.19) we receive the following inequality:
! 2
/// H”n(fle)H dsdt dt
to Q
(2.21)

t
fklgo’(t)+kz<p(t)+k3/ / le)|*dsdridt+Ty,
1) Q

where ki, kp, and k3 are nonnegative constants which depend on 7 and the
constants ¢ and c;. Then for ¢” (r) we get the following:

¢"(1) > 4/[ [uee Gs. 1:)||2dsdt
- (2.22)

2
—kag' (1) —ksp(1) —ke // le)|“dr ds —kyy.
%
We consider now the function v (¢) = In[¢(¢) + ], using the Cauchy inequality,

a? b?
lab| < 7ﬂ+ﬁ’ B >0, (2.23)
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and (2.22) we transform the second derivative

0" (1) (9 +y)— (¢’ 1))’
(p()+y)

= %{(4// | (s, 7) | ds dr —kag @)
(e()+7) o
—k5</?(t)—k()//SZ ||8(u)||2dsdr—k7y>

x (/ Qt||u||2a’sdt+y> —4<//;2tRe(ur,u)dsdr>2}

V(1) =

—ks v __ ko
p)+y
(2.24)
or
V" +py'+q >0, (2.25)
where p, g are nonnegative constants that depend on 7" and the constants c1, ¢;.
Theorem 2.1 is proved. |

Remark 2.2. 1t is known from the theory of ordinary differential equations if
the function v (¢) satisfies the inequality (2.7), then it satisfies the following
inequality:

V() < ¥o(1), (2.26)
where 1 (¢) is a solution of the differential equation
Yo (D) +pY) +q =0 (2.27)

with boundary conditions v (#9) = ¥ (t9), Yo(T) = ¥ (T). It is not difficult to
see that

t
Yo(t) = €1+ Lrexp(—pt) —q;;

3

_¥(M)exp (= pto) = (to) exp(—pT)+(q/ p)(T exp (— pto)—toexp(—pT))
exp (— pto)—exp(—pT)
6 =y (0)—y/(T) +%(f0 —T)(exp (= pto) —exp(—pT));

T —ty) + (19—
‘ﬁ(t)i(1—a)(t))w(to)+w([)1//(T)+qw(t)( t;),) (1o ;)’

(2.28)

£
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where

exp (— pto) —exp(—pt)
exp (— pto) —exp(—pT)’
Further, it is not difficult to see, from (2.7), that

w(t)
/ ||u||2dsd1:fc(t)yl_‘”(’){// ||u||2dsdt+y} —y. (2.30)
Q; Q

w(t) = (2.29)

COROLLARY 2.3. The solution of the Cauchy problem for (1.3) is unique in the
space

C'(Qr; H)NC*(Qr: H)N Lo (Qr; D). (2.31)
Proof. Let v, w be solutions of the Cauchy problem for (2.1) and (2.3), respec-

tively. Then u = w — v is the solution of the homogeneous Cauchy problem for
the equation

Au = Bu +oz(t,u,u,) (2.32)
and y = 0 and from (2.30) follows u = 0 or w = v. Corollary 2.3 is proved. [J

From inequality (2.30) it is easy to see that the following corollary follows.

COROLLARY 2.4. The solution of the Cauchy problem for (1.3) is stable in the
space

C'(Qr; H)NC*(Qr; H)N Ly (Qr; D),

2.33
ue{u:/ ||u||2dsdr§M}. 39
Q2

3. Stability

Let A be a constant selfadjoint operator and (Au, u) > O forall u # 0, (Au,u) =
0 if and only if u = 0. Let B(x, ¢) be a selfadjoint operator for every (x,y) € D
and with

(lari, |+ |ar/2|+ a1, /2])
C = max Il’la)é2 ! an )
(x.0e[Qr 3.1)
ain,| | (a1)
max ( ||+ ] +|(a2)| +2c1 4 Bo
satisfies
(Bu,u) = —c(Bu,u). (3.2)

Let w satisfy
ALw:Bw—i—F(x,t,w,w,) (3.3)
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and v satisfy
ALv:Bv—i—f(x,t,v,vt)—e(v). 3.4
Letu=w—vanda = f(x,t,w,w;) — f(x,t,v,v,) and

%, (3.5)

2 2
lell® < et llull® 42 ur

then
ALu:Bu—i—ot(x,t,u,u,)—}—s(v), (3.6)

where ¢, ¢y are constants.

THEOREM 3.1. Let the coefficients a1y, a1, and ay satisfy condition (1.4). If the
solution of (3.6) is equal to zero on 'y and satisfies the inequality

f (u, Au)dsdt < M,

i (3.7)

y = @Irllax[(u,,Au,)-l—(ux,Aux)]—i-/f ||€(U)H2dsdr,
1 Qr

then for u € CY(Qr; HYNC?*(Qr; H)N Ly(QU; D) the following inequality is
true

/ (u, Auydsdt < y' = O M +1)°De(r) -y, (3.8)
@

where

c(t) =exp W,

3.9
exp (— pto) —exp(—pt) (39)

exp (= pio) —exp(—pT)’

w(t) =

and ©, p, g are constants that depend on the coefficients T and c;, i = 1,2.
Proof. Let

F(t) = /Q (u,Au)dsdr, (3.10)
then ’

F’(t):// 2Re (ur, Au)dsdr,
Q

F'(t) = // 2Re (utrr, Au)dsdt + F (1) (3.11)
o

:// 2(ur, Aur)dsdr,
Q
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because u|r, = 0. We transform the first term in the expression for F”(¢) using
(3.6) and integration by parts

f/ 2Re (ure, Au)dsdr
2
:// 2(Bu,u)dsdr// 2a11(us,Aus)dsdr
Q; Q;

+// 2Re(u,ot(s,r,u,u,))dsdt%—f/ ZRG(M,E(U))de'C
Q2

Q

_// 2Re(—a113+a2)(us,Au)dsdr—// 2a1Re(uT,Au)dsa"c.
o2

sz,
(3.12)

After the transform we get

F'(t) = // 2((uT,AuT)+a11(us, Aus)—i—(u, Bu))dsdr
Q

+/f 2(ar, —a2) (us, Au) +Re (w,a(s, ., ur)) 13
Q
—Re (u, e(v)) —ar Re (ur, Au)]dsdr.

From here and from (1.4) using the conditions for the coefficients and Holder’s
inequality, we get

F’ (1) 2// 2((ur,Au,)—i—a”(us,Aus)—I—(u,Bu))dsdr
Qr

1/2
—2B1 [// (us,Aus)dsdrF(t)]
Qt
1/2
—2,32[// (u,,Aur)dsdrF(t)]
Qt

12
—2;33F(t)—/34|:// ur,Auf)dsdr/ (u, Au)dsdr]

_;35U/ Hs(v)Hder// (u, Au)dsdr:|1/2

> //Qtz((”f’A”f)"‘“”(”SvA”s)+(M,Bu))dsdf
2
(B (R B

al 2

05 / / o) |Pds d.
2

(3.14)
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From the last inequality it follows that

t
/f/ ((ue,, Auz)) +ari (us, Aug) + (u, Bu))dsdt dt
1) Q

(3.15)
< F/(t)+ﬁ6F(z)+0.5// |e)|ds d-.
o

Differentiating the first integral on the right-hand side of (3.12), we get

d
E//Qtall(us,Aus)dsd‘c
d
= —// {(u,,Aur)—(Bu,u)}dsdr
dt Q

r 2 )
+/ S (=Dl an (s (01 (), 7). Aus (01 (7). 7))
0]

i=1
— (e (@i (0), ), Au (gi(),7))] (316
+an (ur (¢i(0), T), Aug (@i (0), 7)) JdT

+//Q [allr(us,Aus)—alls(ur,Aus)]dsdt
—i—// [(u,Bu,)—i—ag(uf,Aut)—}—al(uT,Aus)
Q

— (ur, 0 +e(v))]dsdr.

After this transformation F” (¢) takes the form

F"(1) =4f/ (ur, Auz)dsdt
Q2
t
+2/ //Q [anr(us,Aus)—ansRe(uf,Aus)
o t

+Re (u, Bur) +a2(ur, Au,) +a;Re (uf, Aus)] dsdt

t
—I—Z/ /:/ Re (ur, 0 +&(v))dsdt
fo Q;

+// {(a11, —a2) Re (us, Au)+2Re (ur, o +£(v))
Qt

—2aiRe (ur, Auz)}dsdt +bo(1),
(3.17)
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where

bo(z) = /(l—f)z -y (O [an (ux(@i(0),7), Auy(¢i (1), 7))
(3.18)
—(u(9i(v), ), Aur (9i (1), 7))]
+ai1Re (ur (i (7). 7), Aux(¢i(v), 7)) }dr

We remark that

|bo(1)] < Z (r—r) an [|¢f|(ux (i (0). 7). Auy (@i (7). 7))

+|2Re (ux (¢i (), T), Aue (0i(7), 7))|]
+]] (ue (@i (0). 7). Aur (i (7). 7))}

=7
(3.19)
We denote
2
s2:// (uT,Aur)dsdr// (u,Au)dsdr—(// (uT,AuT)dsdt> .
Q; Q Q
(3.20)

Then using Holder’s inequality, (1.4), (3.15) we obtain from (3.17)
F'(t) > 4// (uf, Au,)dsdr

= [ [ A
+ [}(I%Jr@Jr%](unA”r)

+‘Re(u,BTu)‘}dsdtdtl

t
—262/ // (ur,, Auz ) dsdr dr
Io er
t 1/2
_2c1{/ // (u,l,Aurl)dsdran(t)}
1o Qfl
' t 5 1/2
_2{/ // (u,l,Au,l)dsdtdn/ / Hs(v)“ dsdrdn}
fo Qr] to Q

cd o],

2
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—// \aux—a2|Re(u,Au)dsdr—2c1// Re(u, Au)dsdt
Q; Q4

1/2
—cz{// Re(u,,Aur)dsdt}
Q

1/2
—2,3{/[ Re(u,,Au,)dsdrF(t)} —y
o

> 4ff (u,,Au,)dsdt
Q

t

—/ // {cau(us,Aus)—i—c(uf,Au,au)—i—c(u,Bu)}dsd‘cdtl
fo Q;

—B6F'(1)—B7F(t)— Bss —y

= 4// (e, Aur)dsdt —BeF'(1) = B7F (1) — Bs —
Q

(c—max{2|a“’ +Jar] +fan, [|a“5 +m+|a |+2c1+ 8 i|}>
- 2]ay] 2 p TR )

(3.21)
Let ¢ () =In[F (¢) + y], then
" —(r 2
o) = T OFO+7) 2(F ®))
(FO)+v)
4ffo (ur, Aur)dsdr [[o (u, Auydsdt —(2 [[q (u,,Au)dsdv:)2
Z 13 I 1
(FO+y)’
oy Hai (e Aur)dsdry  BoF'(0)+BroF () +PuS+y
(F+v)’ F(t)+y
_, P
= pF(t)—l—y q-
(3.22)
Inequality (3.8) follows from (3.22), and the theorem is proved. O

Remark 3.2. We can obtain similar results for arbitrary second order elliptic
operators L, using the methods of [4].

Remark 3.3. For
B(x,t) = Bi(x,t)+iB>y(x,1), (3.23)

where Bi(x,t) and B>(x,t) are selfadjoint operators for all (x,?) € Q7 and A,
W, ¢ are constants such that (Au,u) > A(u,u) > 0, ||B2u||2 < u(Au,u), and
—(B1); < c¢By, a similar result is valid.
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Example 3.4. We consider the equation

sgn () (uee (1, %, y) Futr (1, X, ) = uyy (1, X, ) (3.24)

in the region Q = (—1,1) x Q7 (27 is defined as above). This equation is a
mixed type equation. We will consider the problem of finding the solution of
this equation in Q (y # 0) which satisfies the following boundary conditions:

ou(t,x,y)

u(t.x. )y = f. =

I =g, (3.25)
where I'} =T x (=1, 1), T, =T2 x (=1, 1);

u(t,x,—1)=0, u(@,x,1)=0, (,x)eQr; (3.26)
u(t,x,—0)=u(t,x,+0),
du(r,x,—0)  du(t,x,+0) (3.27)
dy N dy '

Here B is a selfadjoint positive definite in L,(—1, 1) operator which is gen-
erated by the differential expression

2
Bu = _ou (3.28)
ay?
and with boundary conditions u|y,—_1 = u|y=1 = 0. We define the operator A
as the operator of multiplication with the function sgn(y). This problem is an
ill-posed problem in the sense of Hadamard, since continuous dependence of
the solution from the data is absent in it.

Using the above described method we can prove the following result.

THEOREM 3.5. If a solution of this problem becomes zero on the surface '} and

satisfies
T e pl )
/ / / (uy(t,x,y)) dydsdt <M,
0 Joit) J-1

1 1 1
2 2 . 2
®r111ax</ (uyx) dy—i—/ (uyt) dy—l—/ |51gn(x)(uyy) a’y|> =y,
1 -1 -1 -1
(3.29)
(® is constant that depends on T, I"1), then the inequality

(1)
//()/ uy(tox. ) 2dydsdi <y O M 49 Oy~ (3.30)
@1t

is valid, where ¢ (t) = exp(t(T —1)/2), w1(t) = (1 —1t/T).

From this theorem one can easily see that the uniqueness and the conditional
stability of the solution of this problem follows.
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