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New nonexistence results are obtained for entire bounded (either from above
or from below) weak solutions of wide classes of quasilinear elliptic equations
and inequalities. It should be stressed that these solutions belong only locally
to the corresponding Sobolev spaces. Important examples of the situations
considered herein are the following: Zf’:l(a(x)lvmp’zuxi)xi = —|ulu,
Yo @) | [P 2u) ey = —lult ™, Y (@) [Vl P 2u [ 1+ Vu )y,
= —|u|9"'u, where n > 1, p > 1, ¢ > 0 are fixed real numbers, and a(x) is a
nonnegative measurable locally bounded function. The methods involve the use
of capacity theory in connection with special types of test functions and new
integral inequalities. Various results, involving mainly classical solutions, are
improved and/or extended to the present cases.

1. Introduction

This work is devoted to the study of nonexistence phenomena for entire (de-
fined on the whole space) bounded (either from above or from below) solu-
tions of elliptic partial differential equations and inequalities. This classical
field of analysis, well known as “Liouville-type theorems,” is again of interest
(cf. [1, 2, 3,5, 14, 15, 16, 17, 18, 19] and the references therein) due to the
nonlinearity of the equations involved.

Our main purpose here is to obtain new nonexistence results for entire
bounded (either from above or from below) weak solutions of general classes
of quasilinear elliptic equations and inequalities, that may belong only locally
to the corresponding Sobolev spaces. We also have succeeded in establishing a
precise dependence between the character of degeneracy of ellipticity for dif-
ferential operators and the nonexistence results for entire bounded (either from
above or from below) weak solutions of the corresponding partial differential
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equations and inequalities. Here, we apply and extend the approach developed,
initially in [7, 8, 9, 10, 11, 12] and later in [16, 17]. Note that a brief version of
the present paper was announced in [6].

Typical examples of the equations considered are the following:

Z(a(x)lvmp_zuxi)xi = —|ul? ", (1.1)
i=1
Y (@@ g | uy), = =l (12)

i=1

n -2
2 (—a(x)lwp ”) — ", (1.3)
01 V1I+H|Vul2  /y,
where n > 1, p > 1, g > 0 are fixed real numbers, and a(x) is a measurable
nonnegative locally bounded function.

Note that for a(x) = 1 the differential operators standing on the left-hand
sides of (1.1), (1.2), and (1.3) are the well-known p-Laplacian, its modifica-
tion (cf. [13]), and the mean curvature operator (for p = 2), respectively. In
particular, the equation

Au=—ul?" 'y (1.4)

is a special case of (1.1) and (1.2) with a(x) =1 and p = 2.

We consider sufficiently general classes of quasilinear elliptic equations (see
the conditions (2.2), (2.3) below in comparison with the well-known ones (2.9),
(2.10)). Even in the case k(x) = constant, differential operators satisfying con-
ditions (2.2), (2.3) may possess an arbitrary degeneracy of ellipticity. In partic-
ular, in (1.1), (1.2), and (1.3) a function a(x) can be zero on an arbitrary set
in R". Furthermore, for the typical equations (1.1), (1.2), and (1.3), as well as
in more general situations, a function a(x) may approach infinity as x — oo.
What is most interesting here is that we have established a precise dependence
between the character of degeneracy of ellipticity near infinity and nonexis-
tence results. For example, there are no entire nonnegative generalized solu-
tions of (1.1), (1.2), and (1.3) forany p—1 <q < (p—1)n/(n+8— p), where
8 € (p—n, p) is, so to speak, a certain measure of degeneracy of the function
a(x) at infinity (see condition (2.29) and Theorems 2.4, 2.6). Note that the quan-
tity (p — 1)n/(n+36 — p) can become infinitely large as § — p — n. Therefore,
under special conditions on the nontrivial function a(x), (1.1), (1.2), and (1.3)
have no entire nonnegative generalized solutions for any p —1 < g < co. We
have also obtained analogous results for sufficiently general classes of quasilin-
ear elliptic equations (see conditions (2.2), (2.3), and (2.29)).

All the results of the paper are new even for (1.1), (1.2), and (1.3). Similar
results to those of Theorem 2.4, for semilinear elliptic equations were obtained
in [12]. For § = 0, k(x) = constant, Theorems 2.4, 2.6, 2.9, 2.10, and 2.15
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were obtained in [9, 10, 11, 14], respectively. For 6 = 0 and a(x) = 1, results
close to those of Theorem 2.6 were obtained for entire positive supersolutions
of (1.1) and (1.3) (for p =2), provided that p—1 < g < (p—D)n/(n—p), in
[16]. Similar results to those of Theorems 2.4, 2.6, 2.10, and 2.13 were obtained
for a very special case of function spaces in [17] (see the remarks after the
corresponding theorems).

It is evident that similar results to those of Theorems 2.4, 2.6, 2.9, 2.10, 2.13,
and 2.15 are valid for entire nonpositive (negative) generalized subsolutions of
(1.1), (1.2), (1.3), (2.25), and (2.33).

The main result of the paper is Theorem 2.4. The rest of the results are
also proved by the method of Theorem 2.4. We have followed this approach
because of our future considerations about extending this theory to Riemannian
manifolds, higher order equations, and nonlinear parabolic problems.

2. Definitions and main results

Let L be a differential operator defined formally by

n
d
Lu:ZTAi(x,u,Vu). 2.1

i=1 !

We assume that the functions A;(x,7n,£),i =1,...,n, n > 1, satisfy the usual
Carathéodory conditions on R” x R! x R”. Namely, they are continuous in 7, £
for a.e. x € R” and measurable in x for any n € R! and & € R".

Definition 2.1. Let « > 1 be an arbitrary fixed constant. An operator L, defined
by (2.1), belongs to the class A(«), if

0<) &Ai(x,n,8), 2.2)

i=l
o

D i Ai(x,.6)

i=1

n a—1
sk<x>|w|“<ZeiAi<x,n,s>> N X))

i=1

foranyn € RI, any &,y € R", and almost all x € R", where k(x) is a measurable
nonnegative locally bounded function.

It is easy to see that condition (2.3) is fulfilled whenever

n o/2 n a—1
(Z A} (x.n, s)> < k(x) (Z&Ai(x, . é)) , Q2.4
i=1

i=1
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because the inequality
o

D viAiten, &) <A 2.5)

i=1

is valid for almost all x € R”, all n € R', and all &,y € R".

Note that the restrictions on the behavior of the coefficients of the differential
operator L in (2.3) and (2.4), for k(x) = constant, were introduced in [14].

It is not difficult to verify that the differential operators on the left-hand sides
of (1.1), (1.2), and (1.3), respectively, belong to the classes A(p), for p > 1. We
show this, for example, for (1.1). We need to check that its coefficients satisfy
the conditions (2.2) and (2.4) for « = p, where p > 1. In fact, in the case of
any measurable nonnegative locally bounded function a(x) the expression

> &Aixn.6) (2.6)

i=1
equals
a(x)|&|”, (2.7)

and is therefore nonnegative for almost all x € R", all y € R!, and all &Y eR”,
We now verify the validity of condition (2.4). Because of

n a2
(ZA?(x,nv5)> = (@),
ni:1 w_l (2.8)
(Z&Ai(x,n,é)) Z(Q(X)I’i:lp)a_l,
i=1

it is evident that condition (2.4) is satisfied with « = p and k(x) = a(x) for
almost all x e R", all n € R!, and all &Y eRY,

It is important to note that if the differential operators defined by (2.1) satisfy
the well-known conditions

n 1/2
(Z AF(x,m, é)) <kilgl“ ", (2.9)

i=1

kal6|“ <) &Ai(x,n,8), (2.10)

i=1

with some fixed positive constants k1, k>, then they belong to A(«).

In connection with this fact, we give another example of an operator that
belongs to the class A(«), for arbitrary fixed o > 1, but does not satisfy the
condition (2.10) even if k(x) = constant.
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Let a(x, n, &) be nonnegative, locally bounded, and satisfying the Carathéo-
dory conditions on R” x R! x R, Tt is not difficult to verify, as above, that the
differential operator N defined by

Nu = div (a(x,u, Vu)|Vu|"2Vu) (2.11)

belongs to A(p), for any p > 1, and does not satisfy condition (2.10) if the
function a(x, n, £) is assumed only nonnegative, but not bounded below away
from zero.

It can happen that an operator L defined by (2.1) belongs simultaneously to
several different classes A (). We verify below that for any fixed number p > 2
the differential operator L from (1.3) is an element of the class A(«) for any
a € [p—1, p]. The same is actually true for the well-known mean curvature
operator

n
Uy,
Lu=) (—) . 2.12)
=\ 1+ Vu2 /),

In fact, it belongs to the classes A(«) for any 1 < o < 2. It should be noted that
the coefficients of this operator do not satisfy condition (2.10) forany 1 <« < 2.

Now we check that the coefficients of the differential operator defined for-
mally by

n -2
a(x)|Vul|? ux.>
Lu:E (—’ , (2.13)
P! V1+|Vul2

for p > 2, satisfy conditions (2.2) and (2.4) for any o € [p —1, p]. Indeed, for
any measurable nonnegative locally bounded function a(x) the expression

D EAiGxn.8) (2.14)

i=1

equals
a(x)|§1”
VI+E?

and is therefore nonnegative for almost all x € R”?, all € R!, and all £, ¢ € R™.
We now verify condition (2.4). Since

n 1/2 _
(x)|&]P~!
A%(x,n,s>> Ll
(Zl V1+[E]2
a(x)|gP
VI+E?

2.15)

g (2.16)
D EAi(x,.6) =
i=1
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it is evident that condition (2.4) is satisfied with any « € [p—1, p] and k(x) =
a(x) for almost all x e R", all n € R!, and all &Y eR.
In connection with class A(2), let L be defined formally by

n

Lu = Z (a,-j(x,u,Vu)uxl.)xf, (2.17)

i, j=1

where the functions a;;(x, n, &) are locally bounded, satisfy the Carathéodory
conditions on R” x R! x R”, and are such that aij(x,n,§)=aji(x,n,8),i,j=
1,...,n,

. 1/2

Yoain | <k,
b=l (2.18)

0< Y aijCe,m &)y,

i,j=1

for almost all x e R?, all n € RY, all & and ¢ from R”, and a certain measurable
locally bounded k(x).

Note that a linear divergent nonuniformly elliptic differential operator of
the form

o9 9
L=Y" E(aij(x)g) (2.19)

ij=1""1

is a special case of (2.17).

We verify that the operator L defined formally by (2.17) belongs to the class
A(2), or, in other words, its coefficients satisfy conditions (2.2) and (2.3). To
this end, let

n
Ai(x,n, &)=Y aij(x,n, )&, (2.20)
j=1
where i = 1,...,n. It is trivial to verify condition (2.2) because
n n
D EAxNE) =Y aij(x,n, E)EE;. 2.21)

i=1 i, j=1

We check the validity of condition (2.3) for & = 2. First, we observe that

D A E) =Y aij(x,n, E)Vik;. (2.22)

i=1 i,j=1
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Estimating the right-hand side of this identity by Cauchy’s inequality we get

n 2 n n
(Zx/fiAi(x,n,s)) < Y aiCon Vi Y aij(x,n,EE;.  (2.23)
i=1 ij=1 ij=1

Using the condition of local boundedness of the coefficients a;; (x, n,§), we
obtain

n 2 n
(Z i Ai(x, n,s>> < kWYY & A (0. 6), (2.24)

i=1 i=1

for almost all x € R”, all € R!, and all & and v from R".

Hence, the differential operator L defined formally by (2.17) is of class A(2)
and does not satisfy, in general, conditions (2.9) and (2.10).

Analogously, the linear divergent elliptic differential operator that does not
satisfy a uniform ellipticity condition belongs to the class A(2) and does not
satisfy inequalities (2.9) and (2.10).

In this paper we restrict ourselves to the study of the equation

Lu=—|ul?""u, (2.25)

with an operator L from the class A(«), for certain fixed « > 1 and ¢ > 0,
although the results formulated below are easily extendable to equations of
the type

Lu=—f(x,u,Vu), (2.26)

where the function f(x, n, £) satisfies suitable growth and regularity conditions,
and, for example, is such that

f(x,0,0)=0, nf(x,n,€) = aln*!, (2.27)

for certain fixed positive numbers a and ¢, and almost all x € R”, all € R,
and all £ € R".

We define below the concept of an entire positive (nonnegative) generalized
supersolution of (2.25).

Definition 2.2. A function u € L1 1oc(R") is said to be positive (nonnegative) in
R”", if ess-inf u (x), taken over any ball in R”, is finite and positive (nonnegative).

Definition 2.3. Let ¢ > 0 and o > 1 be fixed real numbers, and let the operator
L belong to the class A(x). A function u(x) is said to be an entire generalized
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supersolution (Lu < —|u 19=1u) of (2.25), if it belongs to the space WD},IOC(R”) N
L 10c(R") and satisfies the integral inequality

/ {Z%i A;(x,u, Vu) — |u|q_1u(p:| dx >0 (2.28)
Rn

i=1
o
for every nonnegative function ¢ € C*°(R").

In what follows, we let § be a real number less than «, B(R) the open ball in
R" with center at the origin and radius R, and assume that k(x) in the condition
(2.3) is such that

K(R):= sup k(x) <c(1+R?)"?, (2.29)

B(R)\B(R/2)

for a fixed constant ¢ > 0 and any R > O.

THEOREM 2.4. Let 1 <« < n—+34, let u(x) be an entire nonnegative generalized
supersolution of (2.25), and let the operator L satisfy conditions (2.2), (2.3),
and (2.29). Then u(x) =0 a.e. inR", foranya—1 < g < (¢ —1)n/(n+8§ —a).

Remark 2.5. For § =0, k(x) = constant, and ¢« — 1 < g < (¢ — )n/(n — ),
Theorem 2.4 was obtained in [9, 10, 11].

The following result is a special case of Theorem 2.4.

THEOREM 2.6. Let 1 < p <n+34, § < p, let the function a(x) satisfy con-
dition (2.29), and let u(x) be an entire nonnegative generalized supersolu-
tion of (1.1), (1.2), or (1.3). Then u(x) =0 a.e. in R", forany p—1 < q <
(p—Dn/(n+é—p).

Remark 2.7. Similar results to those of Theorem 2.6 for entire positive super-
solutions of (1.1) and (1.3) (for p =2), withd =0,a(x)=1,and p—1<g <

(p—Dn/(n— p), were announced in [16].

It is important to note that for a suitable constant ¢ > 0, n+68§ > p > 1,
p>d,and g > n(p—1)/(n+8— p), the radially symmetric function

u(x) :C(l_|_|x|p/(p—l))(lfp)(pfﬁ)/p(q*pﬂ) (2.30)

is an entire nonnegative supersolution of (1.1), (1.2), and (1.3) with the measur-
able nonnegative locally bounded function

a(x) = (14 |x|P/P=D)>@=D/P, (2.31)
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However, if an entire generalized supersolution of (2.25) is bounded from
below by any positive constant, then the following result is valid.

Definition 2.8. A function u € L 1oc(R") is said to be bounded from below by
a certain positive constant in R”, if ess-inf u(x), taken over any ball in R”, is
finite and not less than that constant.

THEOREM 2.9. Let 1 <o <n+§6, o« —1 < g, and let the operator L satisfy
conditions (2.2), (2.3), and (2.29). Then there exists no entire generalized su-
persolution of (2.25) bounded from below by a positive constant.

The following result, as well as Theorem 2.9, provides more clarity to the
understanding of Theorem 2.4.

THEOREM 2.10. Let 1 <o <n+6, 0 < g < a—1, and let the operator L
satisfy conditions (2.2), (2.3), and (2.29). Then there exists no entire positive
generalized supersolution of (2.25).

Remark 2.11. Similar results to those of Theorem 2.10 for § = 0 and k(x) =
constant were obtained in [17] in very special function spaces. Note that for
6 = 0 and k(x) = constant, Theorems 2.9 and 2.10 were obtained in [9, 10, 11].

Analogous results to those of Theorems 2.4, 2.6, 2.9, and 2.10 are also valid
for « > n 4§ and are simple corollaries of the fact that in this special case all
entire nonnegative solutions of the inequality Lu < 0, with an operator L from
the class A(w), are identically constant under the following condition: if

n
> EAi(x.n.§) =0, (2.32)
i=1
then & = 0.
We now define the concept of a supersolution of the equation

Lu=0. (2.33)

Definition 2.12. Let o > 1 be a fixed real number and let the operator L belong to
the class A(«). A function u(x) is said to be an entire generalized supersolution
(Lu <0) of (2.33), if it belongs to the space Wé (R™) and satisfies the integral
inequality

loc

n

/ E oy Ai(x,u, Vu)dx >0 (2.34)
Rn %
i

=1

[e]
for every nonnegative function ¢ € Wolt ®R").
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THEOREM 2.13. Let o > 1, « > n+6, g > 0, and let the operator L satisfy
conditions (2.2), (2.3), and (2.29). If u(x) is an entire nonnegative generalized
supersolution of (2.25), then u(x) =0 a.e. in R".

Remark 2.14. In the case § = 0 and k(x) = constant, similar results to those of
Theorem 2.13 were announced for supersolutions of (1.1) and (1.3) (for p = 2),
under the assumption that a(x) = 1, in [16]. However, it is not hard to see that
these results from [16] are very special cases of similar results from [14].

THEOREM 2.15. Let o > 1, o > n+6, and let the operator L satisfy conditions
(2.2), (2.3), (2.29), and (2.32). Let u(x) be an entire nonnegative generalized
supersolution of (2.33). Then u(x) = constant a.e. in R".

Remark 2.16. In the case § = 0 and k(x) = constant, results very close to those
of Theorem 2.15 were obtained in [14].

In our proofs of Theorems 2.4, 2.6, 2.9, 2.10, 2.13, and 2.15, we make use
of the well-known variational capacity concept. As we mentioned above, our
approach (using the concept of the variational capacity) can be directly applied to
the study of analogous problems for partial differential equations on Riemannian
manifolds.

Definition 2.17. Let G be a domain in R” and let P, Q be subsets of G which
are disjoint and closed in G (in the relative topology). We call any such triple
(P, Q; G) a condenser.

Fix y > 1. The quantity

cap, (P, Q: G) = inf/G Vel dx (2.35)

is called the y-capacity of the condenser (P, Q; G). Here, the infimum is taken
over all nonnegative functions ¢ of the space C°°(G) which equal 1 on P and
Oon Q.

3. Proofs of the main results

Proof of Theorem 2.4. Let ¢ > a—1, n+6 > a > 1, let u(x) be an entire
nonnegative generalized supersolution of (2.25), and let the operator L satisfy
conditions (2.2), (2.3), and (2.29). Let r and ¢ be arPitrary positive numbers,
R = 2r, and ¢ (x) an arbitrary function from the space C°°(B(R)) which equals 1
on B(r) and is such that 0 < ¢(x) < 1. Without loss of generality, we substitute
©(x) = (u(x) +&)7'¢%(x) as a test function in inequality (2.28), where the
positive constants s > « and ¢ > ¢ > 0 will be chosen below. Integrating by
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parts we obtain
—t E uy Ai (x,u, Vi) u+¢) " 1esd
/;i(R) i
+5/ E Cai Ai (x,u, Vi) (u+¢e) "%~ Ly 3.1)
B(R) i

=h+Db za/ wl(u+e) 'evdx.
B(R)

Using condition (2.3) on the coefficients of the operator L, we easily obtain

2] =

s é.xiAi(X,u,Vu)(u_}_g)—té.s—]dx
(>

n (a—1)/a
5/ s(k(x))l/a ZuxiA,'(x,u,Vu) IVelu+e)~"c5 Vdx.
B(R) i=1
3.2)
Estimating, further, the integrand on the right-hand side of (3.2) by using
Young’s inequality

AB pr'B/(ﬂ_l)—i-pl_'BBﬂ, (3.3)

where p =1/2, 8 = «,

n

(@=D/a
A = (u+e) DU e psta=l)/e (ZuxiA,- (x,u, vm) . (34

i=1

and B = s(k(x)V/*|\ Ve |5/ N u+e)@~1=0D/%  we arrive at

bL| < / e, A (x,u, Vi) (u+6) """ 15 dx
| B(R)Z !

3.5)
t 1—a
+f s“<—> kQO|VE ¥ (u+e) T s gx.
B(R) 2
It follows from (3.1), (3.2), and (3.5) that
l—«
o ! o —t+a—1,.5—a
/ K (—) k(x)|IVe|*(u+e) z dx
B(R) \2
za/ ul(u+e)~"¢cvdx (3.6)
B(R)

t
+= / g, A (x,u, V) u+¢) " 1e5 dx.
2 B(R)Z Xi
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Estimating now the integrand on the left-hand side of (3.6) by Young’s in-
equality (3.3), with p = a/2, A = (u + g~ lgse1=0/¢=0 B —
k(x)s*(1/2)! 7| Vg |egsametDia=nD=e and B = (g—0)/(g—a+1), we
obtain

1 1 Vo
_/ (u+e)i7'¢s dx+—(2°‘s°‘t1_“a_1K(R))(q 1/(g—a+1)
2 JB(R\B() 2

X/ |V [/ @=atD) ps—a(g=0)/(g=a+1) g
B(R)

2/ wl(u+e) e’ dx—I—— Zux Ai(x,u, Vu)(u+e) "¢
B(R) B(R) ;—

(3.7)

We now estimate the integral | (k)4 dx using inequality (3.7). To this
end, we substitute ¢(x) = ¢*(x) in inequality (2.28). After integration by parts,
we have

/ ZQ,A Oc,u, Vu)*Vdx >a/ ulrsdx. (3.8)
B(R) ;Z B(R)

Since by condition (2.3)
n n (a—1)/a
1
D AiCxu, Vu) < (k(x)) e (ZuxiAi (x,u,Vu)> . (39
i=1 i=1
we have

n

(@—1)/a
a/ u‘I;degs(K(R))”"‘/ > g Ai(x,u, V) IVeles dx.
B(R) B(R) i—1

(3.10)
Estimating the right-hand side of (3.10) by Holder’s inequality, it is easy to
see that the inequality

1/a
af uqé-sdx < S(K(R))l/a (f |Vé-|01(u+€)(0t1)(l+1)é-sotdx>
B(R) B(R)

(@—1)/a
(/ ZuxlA Oc,u, Vu)u+e) et dx )
B(R)

(3.11)
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is valid for any ¢ > 0. Since, for any d > 1,

/ |V;-|0[(u+E)(Olfl)(f+l)§-.?70(dx
B(R)

1/d
< (/ (u +8)d(“‘““+%“'dx) (3.12)
BR\B(r)

d-1)/d
% (/ |v§|ad/(dl)§sad/(d1)dx> ,
B(R)

by choosing, for any fixed and sufficiently small ¢ from the interval (0,g) N
0,(q—a+1)/(x—1)),the parameterd = q /(¢ — 1)(1+¢) suchthatg = d (o —
1)(141), it follows from inequalities (3.11) and (3.12) that

(d—1)/ad
a/ W2 dx < S(K(R))l/a</ |Vé.|ad/(d—l)§.s—ad/(d—l)dx>
B(R) B(R)

1/ad
X (/ (u—i—e)q{‘vdx)
B(R)\B(r)

n (@—1)/
X (f Zux,.A,-(x,u,vu)(qus)f1;de> )
BR) i
(3.13)

Estimating the last term on the right-hand side of inequality (3.13) by formula
(3.7), we have

a/ ulesdx
B(R)

(d—1)/ad
§s(K(R))1/“(/ |V§-|ad/(d—1)é-s—ad/(d—l)dx>
B(R)
1/ad
([ o)
B(R)\B(r)
X (at_l(Zasatl_“a—lK(R))(f]f)/(qotJrl)

X/ Ve 1=/ =et) ps—atq=0/(g=a+1) g
B(R)

a 2 (a—1)/a
—I——/ (u+e)1 ¢ dx—— ul(ute) '’ dx) .
1 JB(R\B(r) I JB(R)
(3.14)
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Passing to the limit as ¢ — 0 by Lebesgue’s theorem, we get

a/ ulc’dx
B(R)

d-1)/ad
SS(K(R))‘/"‘(/( )|v;|ad/<d—1>;s—ad/<d—1>dx)
B(R

1/ad
x (/ qude> (3.15)
B(R)\B(r)

X <(lt_1 (zasatl—aa—lK(R))(q—l)/(q—ﬂl'H)

(a—1)/a
x/ |V§|0l(q—l)/(q—a+1)Cs—a(q—l)/(q—a-i-l)dx) ,
B(R)

and therefore, for sufficiently large s,

(@d—1)/ad d—1)/od
a(/ ul dx> < s(K(R))”“(/ |v;|°‘d/<d—‘>dx>
B(r) B(R)

" (at—l (21 =g~ K (Ry) 4~/ @D

(a—1)/a
X/ |V§|Ol(q—t)/(4—l¥+1)dx)
B(R)

(3.16)

Minimizing the right-hand side of the inequality obtained over all admissible
functions ¢ (x) of the type indicated above (which is equivalent to the calculation
of the y;- and y,-capacities of the condenser (B(r), R"\ B(R); R") with y| =
ad/(d—1) and y» =a(g—1)/(q —a+1), (cf. [4])), we obtain

(ed—1)/ad
all® (/ u? dx)
B(r)

— - (@—1)/a —(a— -
< (tfl(zatlfaafl)(q n/(q aH)) (saK(R))(aq (@=1)(A+1))/a(g—a+1)

x (capy, (BO), R\ B(R); R"))'" (cap,, (BO), R\ BR):;R")) /%,
(3.17)

Since, for any y > 1 and R = 2r, it is well known that the y-capacity of the
condenser (B(r), R"\ B(R); R")is O(R"™7) as R — 00, it follows from (2.29)

and (3.17) that
(ad—1)/ad
(/ u? dx) = O(R") (3.18)
B(r)
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as R — oo, where

_n—y +(05—1)(n—)/2)+8aq—(a—1)(1—|—t)

= , 3.19
Vs Y1 o alg—a+1) ( )
or, equivalently,
n+é—a)lag—a+1—t(ax—1) n(—1)
y3 = ( ) — . (3.20)
aqgg—a+1) n+é—o
Now, since, for any ¢ € (0, ¢), the quantity
n+é—a)(lag—a+1—t(a—1
( )(ag (@—1)) (3.21)

ag(g—a+1)

is positive, it follows easily from above thatif o« — 1 <g <n(a—1)/(n+6 — ),
then [p, u?dx=0. Also, if g=n(a—1)/(n+8 — ), then [, u? dx is bounded.
Therefore, due to monotonicity, the integral sequence

/ uldx — 0 (3.22)
BQ2ri)\B(r)

for any sequence ry — 00. On the other hand, for sufficiently large s, it follows
from (3.15) that

(d=1)/ad
a/ uldx < S(K(R))l/a </ |V§|°‘d/(d_1)dx>
B(r) B(R)

1ad
X <f u? dx)
B(R)\B(r)

" (m—l (251 =~k (R)) @/ =e+D

(3.23)

(@-1)/a
y / |V§|a<q—z>/<q—a+1>dx> _
B(R)

Minimizing again the right-hand side of this inequality over all admissible
functions ¢ (x) of the type indicated above, we obtain

al/“/ u? dx
B(r)

< (f1(2at17aa71)(qft)/(qfaﬂ))(afl)/a

1/ad
y (SaK(R))(aq—(a—1)<1+t>>/a<q—a+l></ iy dx) (3.24)
B(R)\B(r)

x (cap,, (B(r),R"\ B(R); R"))'/""

X (Capy2 (B(r),R”\B(R); R"))(a_l)/“_
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By capacity theory and condition (2.29) we have
(K (R))(aq—(a—l)(1+t))/a(q—a+1)

x (cap,, (B(r),R"\ B(R); R"))"/"" (3.25)
x (cap,, (B(r),R"\ B(R); R"))“~V/* = 0(R7)

as R — oo. Thus, (3.22) and (3.24) imply directly, forg = n(e —1)/(n+38 — )
(i.e., for y3 = 0), that the integral sequence

/ uldx — 0 (3.26)
B(ry)

as ry — oo. This implies again that fJR" uldx =0. |

Proof of Theorem 2.9. Let n+6 > a > 1, ¢ > o — 1, and let the operator
L belong to the class A(x). Suppose that there exists an entire generalized
supersolution u(x) of (2.25) bounded from below by a fixed positive constant.
To prove our assertion by contradiction, let  be a positive constant, R = 2r,
and ¢(x) an arbitrary function from the space 8 °(B(R)) which equals 1 on
B(r) and is such that 0 < ¢{(x) < 1. Substituting, without loss of generality,
@(x) = (u(x))7'¢5(x) as a test function in the inequality (2.28), where the
positive constants s > « and @ — 1 > ¢ > 0 will be suitably chosen below, and
integrating by parts, we obtain

n
—t/ Zux,.Ai(x,u,Vu)uft*lgsdx
B

B 15

+S/ Z(x,-Ai O, u, Viu™ ¢ Vdx (3.27)
B(R)

i=1

Ell—l—lzzaf uq_t{sdx.
B(R)

Using condition (2.3) on the coefficients of the operator L, we easily obtain

n
s/ Z{xiA,-(x,u,Vu)u_tgs_ldx
B

®) 15

| =

n

(@=1)/a
= / (ko) (2 i Ai (x, Vu)) IVelu™'c" dx.
B i=1

(3.28)
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Estimating, further, the integrand on the right-hand side of the relation (3.28)
by using Young’s inequality (3.3), for p =¢, B =«,

n (a—1)/a
A= (u+8)(1+t)(17a)/a;s(a71)/a (ZuxiAi(xv ", Vu)) ) (3.29)

i=1

and B = s(k(x) V4|V |3/ N u4e)@ 1=/ we get

n
L] §t/ ZuxiA,-(x,u,Vu)u_’_lg‘sdx
BB =1 (3.30)

+5%t' K (R) Ve a5~ dx.
B(R)

Because of (2.29), it follows from (3.27) and (3.30) that

csatl_“(1+R2)5/2f |V§|“u_’+“_1§s_“dxzaf ul'¢S dx. (3.31)
B(R) B(R)

Choosing s =a(g—1)/(g—a+1) in (3.31), so that (s —a) (g — 1) /(¢ — 1 —1)
= s, and then estimating the left-hand side of (3.31) by Holder’s inequality,
we get

Csatl—a(1+R2)5/2(/ |V§.|a(q—t)/(q—a+1)dx
B(R)

(a=1-1)/(g—1)
X </ ul='es dx) (3.32)
B(R)

> a/ wl'¢vdx.
B(R)

Therefore,

)(q—a+1)/(q—t)

(cst" 0 (14 Rz)a/z)s/a /

|V§|a<q—r>/<q—a+1>dx2/ W25 dx.
B(R)

B(R)
(3.33)
Minimizing the left-hand side of the inequality obtained over all admissible
functions ¢ (x) of the type indicated above (which is equivalent to the calculation
of s-capacity of a certain condenser, (cf. [4])) we get

cap, (B(r). R\ BR):R") (ca™" (14 R)" s 17) /% = f Wi~ dx,

B(r)
(3.34)
where cap,(B(r),R" \ B(R); R") is the s-capacity of the condenser (B(r),
R™\ B(R); R"). From elementary capacity theory we have that the s-capacity
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of the condenser (B(r),R"\ B(R);R") is O(R"™") for R = 2r as R — oo.
Therefore, it follows from (3.34) that

/ u?™' dx = O(R"~10/%) (3.35)
B(r)

for R =2r as R — oo. As long as

) —6)(g—t
OO Gl JiC il (3.36)
o qg—oa+1

the exponent n — s + 56/« is strictly less than n for any fixed constant ¢ from
the interval (0, @ — 1). This is impossible because u(x) is bounded below by a
fixed positive constant, and we have a contradiction to our assumption. (]

Proof of Theorem 2.10. Letn+68 > a > 1,a—1 > g > 0, and let the operator L

belong to the class A(a). Suppose that there exists an entire positive generalized
supersolution u(x) of (2.25). Let  be a positive number, R = 2r, ¢{(x) be a

function from the space C°°(B(R)) which equals 1 on B(r) and is such that
0 < ¢(x) < 1. Without loss of generality, substitute ¢(x) = (u(x))~'¢%(x) as
a test function in the inequality (2.28), where the positive constants s > « and
t > o — 1 will be chosen below. Integrating by parts we obtain

—t g, A (x,u, Viyu™"1¢5d
/B(R)Z i
+Sf Zg“x,A (X, u, Viu~' ¢ Vdx (3.37)
B(R) {2
=h+h za/ ul™'¢Sdx.
B(R)

Using condition (2.3) on the coefficients of the operator L, we easily get

|| =

n
ZQIA; O, u, Viyu™ o5 Vdx
R

n

(@—1)/a
5/ s(k(x)) ' (ZuxiAi(x,u,Vu)) \Velu'c5 dx.
B(R)

= (3.38)

Estimating further the integrand on the right-hand side of the relation (3.38)
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by using of Young’s inequality, as well as in the proof of Theorem 2.9, we have

n
|12| 5t/l;(R)ZuxiAi(x,u,Vu)u_’_lé‘sdx

i=1 (3.39)

+sat1—aK(R) ® |V§|au—t+a—1§.s—a dx.
B(R

It follows from (2.29), (3.37), (3.38), and (3.39) that

cs“tl_“(l + Rz)s/z/

|Ve|%u e les—o gy za/ ul™'t5dx. (3.40)
B(R)

B(R)

Choose s = a(t—q)/(ax—1—¢q) in (3.40), so that (s —a)(t—q)/(t—a+1)
=y, and estimate the left-hand side of (3.40) by Holder’s inequality. We get

cso‘tl_“(l—l—Rz)s/z(/ |V | =D/ @=1=0) g
B(R)

(t—a41)/(1—¢)
X (/ ul='es dx) > a/ ul™'¢%dx,
B(R) B(R)

and, therefore,

(Csatl—aa—l(l+R2)5/2)S/“/
B(R)

)(a—l—q)/(t—q)

(3.41)

|W|a<t—q>/<a—1—q>dx2/ 44 dx.

B(r)
(3.42)
Proceeding exactly as in the proof of Theorem 2.9, we now obtain by mini-
mization that

cap, (B, B\ BORY ) (ea™ (14 R 25 = [ i,

B(r)
(3.43)
and, finally,

/ u?™" dx = O(R"5T58/%) (3.44)
B(r)

for R =2r as R — 00. Choose now a parameter ¢ from the interval (o — 1, 00)
so that
—8)(t —
P Gl il DAY (3.45)
a—1—gq

As long as

s8 (=8 —q)
n—-s+—=n——————
o a—1—gq

, (3.46)

condition (3.45) implies that the exponent n —s 45§/« is negative. Therefore,



182  Quasilinear elliptic equations

it follows from (3.44) that /R" u?~"dx = 0, but this is impossible because u(x)
is positive in the whole space. We have thus arrived at the desired contradiction.
O

Proof of Theorem 2.13. Letq >0, o > 1, « > n+4, and let u(x) be an entire

nonnegative generalized supersolution of (2.25). Let the operator L satisfy con-
ditions (2.2), (2.3), and (2.29). Let r and ¢ be positive numbers, R = 2r, and ¢ (x)

a function from the space C°°(B(R)) which equals 1 on B(r) and is such that
0 < ¢(x) < 1. Substitute without loss of generality ¢(x) = (u(x) +¢&)~'¢%(x)
as a test function in the inequality (2.28), where ¢ > « — 1 will be chosen below.
Integrating by parts we obtain

—t A Vu)u+e) " evd
/B(R)Zu (e, u, Vu)(u+e)~'— ¢%dx

"’0‘/ ZCXIA (x,u, Vu)(u+e)~'c* Ly (3.47)
B(R) iZ

=h+Db za/ ul(u+e) 't%dx.
B(R)

Using condition (2.3) on the coefficients of the operator L, we obtain

12| =

/ ng,A Co,u, Vu)(u+e) "¢ dx
B(R)}

n (a—1)/a
S/ a(k(X))l/oz (ZuxiAi(x,u,Vu)) |v§|(“+€)_t§'a_1dx.
B(R) i=1
(3.48)

Estimating further the integrand on the right-hand side of relation (3.48) by
use of Young’s inequality (3.3) (as well as in the proof of Theorem 2.4), where
p=t/2,

n

(a—1)/a
A= (u+8)(1+1)(1—a)/a§a—1 (Zux,-Ai(X,M,VM)> ’
im1 (3.49)

1/a

B =a(k(x) IV |u+e) =0,

and 8 = «, we get

|| < ;/B(R)Zux,A Oc,u, Vuy(u+e) 1% dx
(3.50)

l—«
+/ o’ <5> k() |V (u+e)~ e dx.
B(R) 2
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It follows from (3.47) and (3.50) that

|
f a“<5> kGOIVE* (u+e) T 1ax
B(R) 2

Za/ wl(u+e) 'c%dx (3.51)
B(R)

/ Zux,A (x,u, Vi)(u+e)~'~ 1 Ydx.
B(R) i

Since t > o — 1, it follows from (3.51) that

11—«
t
a“(—) g—f+“—1/ k(x)|VE|%dx
2 B(R)

za/ uq(u—i-s)_t(adx (3.52)
B(R)

/ Zux,A (x,u, Vi)(u+e)~ '~ 1 “dx.
B(R) i

Minimizing the left-hand side of the inequality obtained over all admissible
functions ¢ (x) of the type indicated above (which is equivalent to the calculation
of a-capacity of the condenser (B(r), R"\ B(R); R"); cf. [4]), we have

1—«
aa<%) e~ 1K (R)cap,, (B(r). R"\ B(R): R")

t
Za/ wl(u+e) 'dx+— / Z"‘x,A e, u, V) (w+e) " dx.
B(r) 2B iz
(3.53)

Since for any @ > 1 and R = 2r it is well known that the «-capacity of the
condenser (B(r), R"\ B(R); R")is O(R"™%) as R — 00, it follows from (2.29)
and (3.53) that

/ ul(u+e)~'dx = O(R"°7) (3.54)
B(r)
as R — oo. It is easy to see that if @ > n+§, then

/ wl(u+e)ldx — 0 (3.55)
B(r)

as r — oo. This implies that u(x) =0 for a.e. x € R". If « =n+§ we can see
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from (3.53) that the integral
n
/ Z"‘x,'Ai Oc,u, Vu)(u+e) " ldx (3.56)
n i:1

is bounded. Therefore, due to monotonicity, the integral sequence

n

/ D g Aieou, Vi) u+e) " ldx — 0 (3.57)
BQ2rio\B(ri) ;4

for any sequence ry — oo. On the other hand, it follows from (3.47) and (3.48)
that

n

(@-1)/a
/B(R)a(k(x))‘/“ (Z 0y, Ai (x, 1, Vu)) Ve ude) ¢ dx

im1 (3.58)

> a/ ul(u+e) "dx.
B(r)

Estimating, further, the integrand on the left-hand side of the relation (3.58)
by using of Holder’s inequality, we get

- (a—1)/a
(/ ZuXiAi(x,u,Vu)(u+8)—t—1dx>
B

(R\B() i
1/
x (/ a“k(x)wg|“(u+a)—f+“—‘dx> (3.59)
B(R)

za/ ul(u+e) 'dx.
B(r)

Minimizing the left-hand side of inequality (3.59) over all admissible func-
tions ¢ (x) of the type indicated above (which is equivalent to the calculation of
a-capacity of the condenser (B(r), R"\ B(R); R"); cf. [4]), we obtain

n

U A (@—1)/a
(/ Z Xi i(x,u, Vu)(u+8)—l—1 )
B 1

(RO\B(r) i=1

x (e~ K (R) cap, (B(r).R"\ B(R): R"))/* (3.60)

> af ul(u+¢e)"dx.
B(r)

From (2.29) and capacity properties, we have

a®e ™1 K (R)cap, (B(r), R"\ B(R); R") is O(R""~%) (3.61)
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for R = 2r as R — oo. It then follows directly from (3.57) and (3.60) under
a = n+ 4§ that the integral sequence

/ ul(u+e)~'dx — 0 (3.62)
B(ry)
as ry — oo. This implies in turn again that u(x) = 0 for a.e. x € R". O

Proof of Theorem 2.15. Leta > 1, o > n+4, and let u(x) be an entire nonneg-
ative generalized supersolution of (2.33). Let the operator L satisfy conditions
(2.2), (2.3), (2.29), and (2.32). Let r and e be positive constants, R = 2r,
and ¢(x) a function from the space CO‘ *(B(R)) which equals 1 on B(r) and
is such that 0 < ¢(x) < 1. Substituting, without loss of generality, ¢(x) =
(u(x)+¢&)"'¢%(x) in the inequality (2.34) as a test function, where t > o — 1,
and integrating by parts, we obtain

/ E Cn Ai (X u, Vu)(u+¢)~"¢%~ Lax
B(R) i
(3.63)
>t E u A Vu)(u+e) e dx.
/I;(R) u (x,u,Vu)(u+e)~ X

Estimating the left-hand side of (3.63) by using condition (2.3) on the coef-
ficients of the operator L, we easily get

/ Z;“XA Ocou, Vu)u+e) "¢ Ndx
B(R)

n (@—1)/a
5/ a(k(x))l/a (Z”«WA[(X’M’VM)) |VC|(M+8)_t§a_ldx.
B(R) P
(3.64)

Estimating further the integrand on the right-hand side of the relation (3.64)
by Holder’s inequality, we have

Z;XA O u, Vi) (u+e) "¢ Vdx
B(R)

1/a
< a(/ k(x)|v;|°‘(u+s)—f+“—1dx) (3.65)
B(R)

a/(@—1)
x</ ZuxA(xuVu)(u-i-s)t ! d) )
B

(R\B(r) ;-4
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It follows immediately from (3.63) and (3.65) that

1/«
a,e(“—‘—’)/“(/ k()| Ve | a’x)
B(R)

a/(e—1)
x / ZuxA (e, u, Vuy(u+e) "% dx (3.66)
B(RO\B(r) ;—;

>t Uy, A (x,u, Vu)(u+e)™'~ 1 “dx.
/;?(R)Z

Therefore,

1/a
agl@ 1D/ (/ k(x)|V§|°‘dx)
B(R)

1/«
>t(f Z”xlA (x,u, Vi)(u+e)~'~ 1dx) .
B(r);—

Minimizing the left-hand side of (3.67) over all admissible functions ¢ (x) of
the type indicated above (which is equivalent to the calculation of «-capacity of
the condenser (B(r), R"\ B(R); R"); cf. [4]), we obtain

(3.67)

a®e* " K (R) cap, (B(r), R"\ B(R); R")

3.68
> ¢ / Z“xlA (e, u, Vu)w+e) " dx. (3.68)
B(r) ;=

Since for any o > 1 and R = 2r it is well known that the «-capacity of the
condenser (B(r), R"\ B(R); R")is O(R"~%) as R — 00, it follows from (2.29)
and (3.68) that the integral

/ ZuxlA (e u, V) (u+2) ™'~ dx (3.69)
B(r) ;3

is O(R"T9=%) as R — o0o. Now, if @ > n+3, it is evident that
n
f D g Airou, Vi) u+e) " "Hdx =0. (3.70)
" i=1

Therefore, because of the condition (2.32), u(x) = constant for a.e. x € R". If
a = n+34, then it follows directly from above that the integral

/ ZuxA Oc,u, Vu)(u+e) " ldx (3.71)
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is bounded. Therefore, due to monotonicity, the integral sequence

n

f D uy AiGxu, Vi) te) ' dx — 0 (3.72)
BQrio\B(rt) ;—|

as an arbitrary sequence ry — 0. On the other hand, it follows from (3.66) that

1/
as<°‘“>/“</ k(x)|V§|°‘dx>
B(R)

n

a/(a—1)
X uxl.Ai(x,u,Vu)(u—i—e)_t_ldx) 3.73
(/B(R)\B(r)z G739
>t/ Z”" Ai(x,u, Vi)(u+e)~'~ ldx.
B(r) ;—

Minimizing again the integral | (k) |V¢|%dx over all admissible functions
¢ (x) of the type indicated above, we obtain

ae@1=0/% (K (R) cap, (B(r), R"\ B(R); R"))"/*

af/(a—1)
X uy, Ai (x,u, Vu)(u+e)~"~ 1abc)
</;?(R)\B(r)z t (3.74)
>t/ Zux Ai(x,u, Vu)(u+e)'~ ldx.
B(r) ;=

Because of the above

1/a

e @10/ (K (R)cap, (B0, R\ B(R):R"))* = O(R"+70/%) (3.75)

R =2r and R — o0, then it follows directly from (3.72) and (3.74) under
o = n+4§ that the integral sequence

n
/ D uy AiGxu, Vi) u+e) " dx — 0 (3.76)
B(ry) i=1
as ry — oo. This implies in turn

n
f D uy AiGx,u, Vi) (u+e)™' " dx =0. (3.77)
n l=1

Therefore, because of condition (2.32), u(x) = constant for a.e. x € R". O



188  Quasilinear elliptic equations

Acknowledgement

The second author was partially supported by the INTAS grant no. 971-30551.

References

[1] H. Berestycki, I. Capuzzo-Dolcetta, and L. Nirenberg, Superlinear indefinite elliptic
problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal. 4
(1994), no. 1, 59-78. MR 96d:35041. Zbl 816.35030.

[2] M.-F Bidaut-Véron, Local and global behavior of solutions of quasilinear equations
of Emden-Fowler type, Arch. Rational Mech. Anal. 107 (1989), no. 4, 293-324.
MR 90f£:35066. Zbl 696.35022.

[3] P. Clément, R. Mandsevich, and E. Mitidieri, Positive solutions for a quasilinear
system via blow up, Comm. Partial Differential Equations 18 (1993), no. 12,
2071-2106. MR 94k:35045. Zbl 802.35044.

[4] 1. Frehse, Capacity methods in the theory of partial differential equations, Jahresber.
Deutsch. Math.-Verein. 84 (1982), no. 1, 1-44. MR 83;:35040. Zbl 486.35002.

[5]1 B. Gidas and J. Spruck, Global and local behavior of positive solutions of non-
linear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525-598.
MR 83f:35045. Zbl 465.35003.

[6] A. G. Kartsatos and V. V. Kurta, On the problem of the nonexistence of entire
solutions of quasilinear elliptic equations, Dokl. Akad. Nauk 371 (2000), no. 5,
591-593 (Russian). MR 1773486.

[71 V. V. Kurta, On the behavior of solutions of quasilinear elliptic equations of sec-
ond order in unbounded domains, Ukrainian Math. J. 44 (1992), no. 2, 245
248, [translated from Ukrain. Mat. Zh. 44 (1992), 279-283. MR 93f:35066].
Zbl 787.35016.

, Phragmén-Lindelof theorems for semilinear equations, Soviet Math. Dokl.

45 (1992), no. 1, 31-33, [translated from Dokl. Akad. Nauk SSSR 322 (1992),

38—40. MR 93c:35022]. Zbl 808.35035.

, Some problems of the qualitative theory of second order nonlinear equa-

tions, Ph.D. thesis, Steklov Math. Inst., Moscow, 1994.

(8]

(9]

[10] , On the questions of the absence of entire positive solutions for semilinear
elliptic equations, Russian Math. Surveys 50 (1995), 783.
[11] , The nonexistence of positive solutions of some elliptic equations, Math.

Notes 65 (1999), no. 4, 462-469. Zbl 992.20721.

[12] _—, On the nonexistence of positive solutions to semilinear elliptic equations,
Proc. Steklov Inst. Math. 227 (1999), 155-162. Zbl 992.33866.

[13] J. L. Lions, Quelques Méthodes de Résolution des Problemes aux Limites Non
Linéaires, Dunod, Paris, 1969 (French). MR 41#4326. Zbl 189.40603.

[14] V.M. Mikljukov, A new approach to the Bernstein theorem and to related questions
of equations of minimal surface type, Mat. Sb. (N.S.) 108(150) (1979), no. 2,
268-289. MR 0.e:53005

[15] E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in
RY , Differential Integral Equations 9 (1996), no. 3, 465-479. MR 96m:35087.
Zbl 848.35034.

[16] E.Mitidieri and S. I. Pokhozhaev, Absence of global positive solutions of quasilinear
elliptic inequalities, Dokl. Akad. Nauk 359 (1998), no. 4, 456—460 (Russian).
MR 2000a:35263.


http://www.ams.org/mathscinet-getitem?mr=96d:35041
http://www.emis.de/cgi-bin/MATH-item?816.35030
http://www.ams.org/mathscinet-getitem?mr=90f:35066
http://www.emis.de/cgi-bin/MATH-item?696.35022
http://www.ams.org/mathscinet-getitem?mr=94k:35045
http://www.emis.de/cgi-bin/MATH-item?802.35044
http://www.ams.org/mathscinet-getitem?mr=83j:35040
http://www.emis.de/cgi-bin/MATH-item?486.35002
http://www.ams.org/mathscinet-getitem?mr=83f:35045
http://www.emis.de/cgi-bin/MATH-item?465.35003
http://www.ams.org/mathscinet-getitem?mr=1+773+486
http://www.ams.org/mathscinet-getitem?mr=93f:35066
http://www.emis.de/cgi-bin/MATH-item?787.35016
http://www.ams.org/mathscinet-getitem?mr=93c:35022
http://www.emis.de/cgi-bin/MATH-item?808.35035
http://www.emis.de/cgi-bin/MATH-item?992.20721
http://www.emis.de/cgi-bin/MATH-item?992.33866
http://www.ams.org/mathscinet-getitem?mr=41:4326
http://www.emis.de/cgi-bin/MATH-item?189.40603
http://www.ams.org/mathscinet-getitem?mr=8
http://www.ams.org/mathscinet-getitem?mr=96m:35087
http://www.emis.de/cgi-bin/MATH-item?848.35034
http://www.ams.org/mathscinet-getitem?mr=2000a:35263

A. G. Kartsatos and V. V. Kurta 189

, Nonexistence of positive solutions for quasilinear elliptic problems in RV,
Proc. Steklov Inst. Math. 227 (1999), 186-216, [translated from Tr. Mat. Inst.
Steklova 227 (1999), 192-222. MR 2001g:35082]. Zbl 992.33863.

[18] W.-M. Ni and J. Serrin, Nonexistence theorems for quasilinear partial differential
equations, Rend. Circ. Mat. Palermo (2) Suppl. (1985), no. 8, 171-185 (Italian).
MR 88d:35069. Zbl 625.35028.

[19] J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden sys-
tems, Differential Integral Equations 9 (1996), no. 4, 635-653. MR 97{:35056.
Zbl 868.35032.

[17]

A. G. KARTSATOS: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH FLORIDA,

Tampa, FL 33620-5700, USA
E-mail address: hermes @math.usf.edu

416 Fourth Street, P.O. Box 8604, Ann Arbor, MI 48107-8604, USA
E-mail address: vv@ams.org


http://www.ams.org/mathscinet-getitem?mr=2001g:35082
http://www.emis.de/cgi-bin/MATH-item?992.33863
http://www.ams.org/mathscinet-getitem?mr=88d:35069
http://www.emis.de/cgi-bin/MATH-item?625.35028
http://www.ams.org/mathscinet-getitem?mr=97f:35056
http://www.emis.de/cgi-bin/MATH-item?868.35032
mailto:hermes@math.usf.edu
mailto:vv@ams.org

Journal of Applied Mathematics and Decision Sciences

Special Issue on

Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in
a single loading unit which uses successive various modes
of transport (road, rail, water) without handling the goods
during mode transfers. Intermodal transport has become
an important policy issue, mainly because it is considered
to be one of the means to lower the congestion caused by
single-mode road transport and to be more environmentally
friendly than the single-mode road transport. Both consider-
ations have been followed by an increase in attention toward
intermodal freight transportation research.

Various intermodal freight transport decision problems
are in demand of mathematical models of supporting them.
As the intermodal transport system is more complex than a
single-mode system, this fact offers interesting and challeng-
ing opportunities to modelers in applied mathematics. This
special issue aims to fill in some gaps in the research agenda
of decision-making in intermodal transport.

The mathematical models may be of the optimization type
or of the evaluation type to gain an insight in intermodal
operations. The mathematical models aim to support deci-
sions on the strategic, tactical, and operational levels. The
decision-makers belong to the various players in the inter-
modal transport world, namely, drayage operators, terminal
operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in
time horizon as in terms of operators are:

e Intermodal terminal design

e Infrastructure network configuration

e Location of terminals

e Cooperation between drayage companies

o Allocation of shippers/receivers to a terminal

e Pricing strategies

e Capacity levels of equipment and labour

e Operational routines and lay-out structure

e Redistribution of load units, railcars, barges, and so
forth

e Scheduling of trips or jobs

e Allocation of capacity to jobs

e Loading orders

e Selection of routing and service

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/jamds/guidelines.html. Prospective
authors should submit an electronic copy of their complete
manuscript through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/, according to the following
timetable:

Manuscript Due June 1, 2009

First Round of Reviews | September 1, 2009

Publication Date December 1, 2009

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute
(IMOB), Hasselt University, Agoralaan, Building D, 3590
Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational
Research, Statistics and Information for Systems (MOSI),
Transport and Logistics Research Group, Management
School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel,
Belgium; Cathy.Macharis@vub.ac.be

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/jamds/guidelines.html
http://www.hindawi.com/journals/jamds/guidelines.html
http://mts.hindawi.com/
mailto:Gerrit.Janssens@uhasselt.be
mailto:Cathy.Macharis@vub.ac.be

	1Call for Papers4pt
	Lead Guest Editor
	Guest Editor

