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We consider a nonlinear problem for the mean curvature equation in the hyperbolic
space with a Dirichlet boundary data g. We find solutions in a Sobolev space under
appropriate conditions on g.

1. Introduction

Let M be the open unit ball in R? of center 0 and let
45;;

- (1.1)
(1-1xP?)°

gij(x)=

be the hyperbolic metric on M. Let Q C R? be a bounded domain with smooth boundary
aQecCh 1, and let (u, v) be the variables in RZ. We consider in this paper the Dirichlet
problem for a function X : @ — M which satisfies the equation of prescribed mean
curvature

Vx, Xu+Vx, X, = —2H(X)X, AX, inQ,

(1.2)
X =g onoaQ,

where H : M — R is a given continuous function, and g € Wz'p(Q, R3) for 1< p< o0,
with || glleo < 1.
In the above equation X,,, X, and X, A X, : 2 — T M are the vector fields given by

3
0Xy
Xu(bl, 'U) = Z_
P ou

3
3 0Xy
Xy, v) = E

(u,v) 0Xg | X (u,v) k=1 Jv

0
() X 1 X (u,v)

3 (1.3)

k 0
Xy ANXy(u,v) = X, ANX u,v)— ,
W A Xy, ) ;( W AXy) ( ol M
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where

1 _ 12 8X2 8X3 8X3 8X2
XuNX ,V) = X(u, — — - — —
( “ U) w,v)=¢ ( (u v))< ou lu,v) ov l@u,v) ou lu,v) ov l@u,v)
0X3 X1 X1 X3 )
(

2 _ 172
XunX ,U) = X (u, i _
( " U) w,v)=¢ ( (u v))( ou lu,v) ov l@u,v) ou lu,v) ov l@u,v)

3 12 X 9X> X, X,
X, ANX = X s R _ [ R
( “ v) w.v)=¢ ( G U))( ou lwv) v lw,v) ou lww) dv lw,v)

for (x) =4/(1—|x|?)%.

We remark that if X, and X, are linearly independent, then X (2) C M is an
imbedded submanifold and X, A X, (u, v) is the only vector orthogonal to X (£2) at
X (u, v) that satisfies, for any z = Y3 _, 25(3/0x1) | x (u.v)

(2. Xu A Xy (u,0)) = (X (u, ) (2, Xu(u, v), Xy (u,v)), (1.5)

where w is the volume element of (M, (,)), namely

w = ,/det (g,-j) dxi A Ndxy ANdx3 = (p3/2dx1 Adxy ANdx3. (1.6)

If V is the Levi-Civita connection associated to (,) and Ff‘j : M — R are the
Christoffel symbols

3 rk
g’ (0dgrj g 08ij
r«=y°_ — =2k 1.7
ij Z 2 <3xi +8xj 0x, (7

r=1
with (g¥) = (g j)_l, then a simple computation shows that
2xk
. . 2x; ——— ifk #1,
Mw=rhw=—3_  rhw={ 1-pg "7 (1.8)
1—|x|? . :
0 otherwise.

Let E, F,G : Q2 — R be the coefficients of the first fundamental form, and the unit
normal N : 2 — T M be given by

1
N=—X,AX (1.9)
VEG-FZ """
which is orthogonal to the tangent space {X (2)}, for any x = X (u, v). Then, if H :
2 — R is the mean curvature of X (£2) we obtain

F
Vx, Xu+ VXUXU_Z—VXMXU>=_2H' (1.10)

G
N, ——— _—
< EG—F? EG—F? EG—F?
In particular, if X is isothermal, that is, £ = G, F =0, then (Vx, X, + Vx, Xy, Xu) =
0= (Vx,X,+Vx, Xy, X,) and consequently

Vx, Xu+Vx, Xy = —2HX, A X, (1.11)

Thus, (1.11) is the equation of prescribed mean curvature for an imbedded submanifold
of M.
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2. A Dirichlet problem for (1.11)

With the notations of the previous section, we consider the Dirichlet problem (1.2). The
equation of prescribed mean curvature for a surface in R has been studied for constant
H in [3, 5], and for H nonconstant in [1, 2].

Without loss of generality, we may assume that g is harmonic in 2. Our existence
result reads as follows.

THEOREM 2.1. Let cq and c| be some positive constants to be specified. Then (1.2) is
solvable for any g € WP (2, R3) harmonic such that

lglloot+2(c1+/er(e1+co) )l grad(e)lzp < 1. @.1)

In the proof of Theorem 2.1, we ignore the canonical isomorphism 9/0xx|x ) — €k
(with {ex} the usual basis of R?), and considering X,,, X, € R3 we may write (1.2) as
a system

—AXk =Yr(X. Xy, Xy)  in €,

2.2)
Xy=gr onoQ2

with Y (X, Xy, X) = 2H (X) (Xu AXy) + Y, TE(X) grad(X) grad (X ), 1 <k < 3.

For fixed X € Wé’zP (2, R?) such that lg+Xlloo < 1, we define X = T'X as the unique
solution in W27 (2, R3) — W12 (Q, R3) of the linear problem

—AX) = wk(YJrg, (X+3),. (7+g)v) in Q,
X, =0 onof.

2.3)

Then, for B={X € W&’ZP(Q,R3) | lg+X]loo < 1} the operator T : B — WOI‘ZP(Q,R3)
is well defined and a strong solution of (1.2) in W” can be regarded as ¥ = g+ X,
where X is a fixed point of 7. By the usual a priori bounds for the Laplacian and the

compactness of the imbedding W7 (2, R?) — WO1 2P (2,R?) we get the following
lemma.

LEMMA 2.2. T : B — W(}’Zp (2, R3) is continuous. Furthermore, if

Crii = | X € Wy P (Q,R%) | llg+ Xlloo < Ry, llgrad(X)|l2p < Ro) (2.4)

with Ry < 1, then T (CR,r,) is precompact.

Proof. For X = T(X),Y=T(Y),as X =Y on 92 we obtain that

|erad(Xi = ¥i)],, < e[ A(Xk =¥,

=c|un(X +s.(X+9),.(X+),) ~va(F +2.(7+9),.(7+3))|
2.5)
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and the continuity of 7 follows. On the other hand, if XeC Ri.R,»> then

” grad (Xk) ”2[7 < C”AXk Hp = CH 1/’]( (Y"‘g’ (Y'i‘g)u’ (Y'i'g)v) ‘p (2 6)

_ 2
<¢(Ra+ |l grad(g)ll2p)

for some constant ¢ and the result follows. [l
Remark 2.3. By definition of 1, it is clear that ¢ < c¢;/(1 — R;) for some constant c;.
Proof of Theorem 2.1. With the notation of the previous lemma, by Schauder fixed

point theorem, it suffices to see that Cg, g, is T-invariant for some Ry, R;. From the
previous computations, we have

C1 2
Il grad(X)ll2p < _R, (R2+ll grad(g)ll2p)" 2.7
Moreover, by Poincaré’s inequality
g+ Xlloo < lIglloo +coll grad(X)l2p. (2.8)

Thus, a sufficient condition for obtaining 7 (Cg, r,) C Cg,,r, is that
c1
1—Ri
For R small enough we may fix R| = ||g|lco +coR < 1, and then the theorem is proved
if

2
(R2+ |l grad(g)ll2p)” < Ro, llglloo +coR2 < R;. (2.9)

c1(R+Ilgrad(@)ll2,)” < R(1—llglleo —coR) (2.10)

for some R > 0. As last condition is equivalent to our hypothesis, the result holds. [

3. Regularity of the solutions of problem (1.2)

In this section, we state the following regularity result.

THEOREM 3.1. Let X € W1-2P(Q, R?) be a solution of (1.2). Then
(a) if g € W29(Q,R>) for some q > 1, then X € W>9(Q,R?),
(b) if 3Q € C¥22, H € CH¥R3,R), g € CH22(Q,R3) for some 0 < a < 1,
k>0, then X € CFT22(Q,RY).

Proof. (a) Let AX = f € LP. If p > g, let Z be the unique solution in W24 of the
problem AZ = f, Z|po =g. As A(X—Z) =0 and X = Z on €2 the result follows.
On the other hand, if p < g, we obtain in the same way that X € W2P_ For?2 < p<q
this implies that X € W 124 and the result follows.

Now we consider the case p < 2,¢q. Let pp = p and define

%k
o5 <24
q otherwise,

(3.1
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where p; is the critical Sobolev exponent 2p, /(2— p,). Then {p,} is bounded, and
X € Wh2Pn for every n. If p, < 2,q for every n, then p, is increasing and taking
r = lim,— o0 pn, We obtain that r/(2—r) = r, a contradiction. Hence, p, > g or
q > pn > 2 for some n, and the proof is complete.

(b) Case k = 0: by part (a), choosing g > 2/(1 —«) we obtain that X € W2d <
Ch9(Q,R3). Then AX = f € C%(Q2, R%). By [4, Theorem 6.14] the equation AZ = f
in Q, Z = g in R is uniquely solvable in C>* (2, R?), and the result follows from the
uniqueness in [4, Theorem 9.15].

The general case is now immediate, from [4, Theorem 6.19]. O
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