REGULARIZED FUNCTIONAL CALCULI,
SEMIGROUPS, AND COSINE FUNCTIONS FOR
PSEUDODIFFERENTIAL OPERATORS

RALPH DELAUBENFELS AND YANSONG LEI

ABSTRACT. Let i4;(1 < j < n) be generators of commuting bounded

strongly continuous groups, A = (A1, Aa, ..., An). We show that, when f has
sufficiently many polynomially bounded derivatives, then there exist k,r > 0
such that f(A) has a (1+|A|?) " "-regularized BC*(f(R")) functional calcu-
lus. This immediately produces regularized semigroups and cosine functions
with an explicit representation; in particular, when f(R™) C R, then, for
appropriate k,r, t — (1 — it)"*e~®f(A) (1 4 |A|2)~" is a Fourier-Stieltjes
transform, and when f(R™) C [0, 00), then t — (14+t)"*e tF(A) (14 |A]2)—"
is a Laplace-Stieltjes transform. With A = i(D1, ..., Dy), f(A) is a pseudo-
differential operator on LP (R™)(1 < p < o0) or BUC(R™).

0. INTRODUCTION

In finite dimensions, the Jordan canonical form for matrices guarantees
that, although a linear operator may not be diagonalizable, which is equiv-
alent to having a BC(C) functional calculus, it will be generalized scalar,
that is, have a BC*(C) functional calculus, for some k; specifically, & may
be chosen to be n — 1, where n is the order of the largest Jordan block.

In infinite dimensions, even a bounded linear operator on a Hilbert space
may fail to be generalized scalar; consider the left shift on ¢2.

Our favorite unbounded operators fail to be generalized scalar, on Banach
spaces that are not Hilbert spaces. The operator i%, on L*(R), is self-
adjoint and thus has a BC'(R) functional calculus. However, on L?(R), p #
2, it does not have a BC™(R) functional calculus, for any nonnegative
integer m; that is, it is not even generalized scalar (see [2, Lemma 5.3]).
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Differential operators in more than one dimension may be even more
poorly behaved. For any n > 1, there exist constant coefficient differential
operators on LP(R™) that are not even decomposable, for any p # 2 ([1,
Corollary 3.5)).

In this paper, we show that constant coefficient differential operators
p(D), on LP(R™)(1 < p < o0) or BUC(R™), have a (1 4+ A) "-regularized
BC*(p(R™)) functional calculus, for appropriate numbers r and k, where
A is the Laplacian, p is a polynomial. This means that, for any g €
BC*(p(R")), g(p(D))(1 + A)~" is a bounded operator. More generally,
if 1Aq,...,1A, generate commuting bounded strongly continuous groups,
A= (A1,...,A,) and f has sufficiently many polynomially bounded deriva-
tives, then f(A) has a (1 + |A|?) "-regularized BC*(f(R")) functional cal-
culus (Theorem 2.17). See [8] for regularized BC*(R) functional calculi for
generators of polynomially bounded groups.

As an immediate corollary, when f(R') is contained in a left half-plane,
it follows that f(A) generates a (1+|A|?*) "-regularized semigroup, with the
intuitively natural representation

W(t) = [(z = e*)(f(A)] L+ A" (¢t >0).

Identically, when f(R™) is contained in a left half-line, then f(A) generates
a (1 + |A|?)~"-regularized cosine function

S(t) = [(2 = cosh(tv/2))(f(A)] (1 +[A)™" (t€R).

The existence of these regularized semigroups and cosine functions is known
(see [10], [15], [16], [4, Chapter XIII], [3], [12], [13]); we offer our approach
as a simple, intuitive, constructive and unified corollary of our regularized
functional calculus.

For example, on LP(R™)(1 < p < o0), we may simultaneously deal with
the Schrodinger equation (ill-posed for p # 2) and the wave equation (ill-
posed for p # 2,n > 1), by constructing a regularized BC*((—o0,0]) func-
tional calculus for the Laplacian.

In Section I we give some preliminary material relating regularized func-
tional calculi to regularized semigroups and cosine functions. Our main re-
sults are in Section I1I. Section III has the particular case of pseudodifferential
operators on the usual function spaces BUC(R™) or LP(R") (1 < p < 00).
See [7] for regularized functional calculi for the Schréodinger operator with
potential, on such spaces.

All operators are linear, on a Banach space, X. We will write D(B) for the
domain of the operator B, p(B) for its resolvent set, I'm(B) for the image of
B. We will denote by B(X) the space of all bounded operators from X into
itself. Throughout this paper, C' € B(X) is injective, and commutes with
B; that is, CB C BC. When B generates a strongly continuous semigroup,
we will denote that semigroup by {e!B};>0; see [9] or [14] for material on
strongly continuous semigroups and their applications.
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1. REGULARIZED FUNCTIONAL CALCULI, REGULARIZED
SEMIGROUPS AND REGULARIZED COSINE FUNCTIONS

We show in this section how a regularized functional calculus produces
intuitively natural constructions of regularized semigroups and regularized
cosine functions. Growth estimates also follow automatically.

Definition 1.1. The complex number A is in pco(B), the C-resolvent of B,
if (A — B) is injective and Im(C) C Im(A — B).

Definition 1.2. Denote by B¢(X) the space of all operators G such that
GC € B(X), with norm

1G] 5o x) = 1GC.

Definition 1.3. Suppose F is a Banach algebra of complex-valued func-
tions, defined on a subset of the complex plane such that fo(z) =1 € F. A C-

reqularized F functional calculus for B is a continuous linear map f — f(B),
from F into B¢ (X), such that

(1) f(B)g(B)C = [(f9)(B)]C, for all f,g € F;
(2) g(B)BC C Bg(B)C = (f19)(B)C, whenever both g and f1g € F,
where f1(z) = z; and
(3) fo(B)C =C.
Remark 1.4. When F contains fy and gx(z) = (A—2) 7!, for some complex

A, then (1), (2) and (3) of Definition 1.3 are equivalent to (1), (2') and (3),
where (2') is the following:

(2') X € pc(B) and [g\(B)]C = (A — B)~!C, whenever g, € F.

See [6] and [8] for some basic results on regularized functional calculi.
Note that an I-regularized F functional calculus is a F functional calculus.
Definition 1.5. A C-regularized semigroup generated by B is a strongly
continuous family {W(¢)};>¢ € B(X) such that

(1) W(0) =C;

(2) W)W (s) =CW(t+s), for all s,¢ > 0; and

(3) Bz = C~! [limy0 +(W(t)z — Cx)], with maximal domain.

See [4] and the references therein, for basic material on regularized semi-
groups and their relationship to the abstract Cauchy problem.

Definition 1.6. A C-reqularized cosine function generated by B is a strongly
continuous family {S(t)}ter € B(X) such that

(1) 5(0)=C,

(2) S(t+s)C + S(t—s)C =25(t)S(s), for all s,t € R; and

(3) Bx = [(4)2S(t)z|i=0], with maximal domain.
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A regularized cosine function deals with ill-posed second-order abstract
Cauchy problems just as regularized semigroups deal with ill-posed first-
order abstract Cauchy problems.

Proposition 1.7. Supposew € R, B has a C-regularized BC*({z | Re(z) <
w}) functional calculus, and C (D(B)) is dense. Then C~1BC generates a
C-regularized semigroup {W (t)}+>0 given by

W)= [(z ) (B)] C (t20).

W (#)] is O((1 + t)ke?).
Proof. Define, fort >0, 7 =0,1,2,

W;(t) = [(z = (1+w—2)79e)(B)] ¢7H = (1 +w — B)"'C)’ Wy (1).

Since t — (14w —2)~te!* is continuous, as a map from [0, co) into BC* ({2 |
Re(z) < w}), and B has a C-regularized BC*({z| Re(z) < w}) functional
calculus, it follows that ¢ — Wi (t) is a continuous function from [0, c0) into
B(X). Thus, for z € C((D(B)), t — Wo(t)x = Wi(t)(1 + w — B)C~lz is
continuous from [0, 00) into X; since |[Wy(t)|| is bounded for ¢ in bounded
intervals, and C((D(B)) is dense, the same is true for all x € X; that is,
{Wo(t) }+>0 is strongly continuous. The algebraic properties of a regularized
semigroup, for {W;(t)}:>0, follow from the definition of a C-regularized
functional calculus. Thus, for j = 0,1,2, {W;(t)}i>0isa (1+w—B)7CI 1
regularized semigroup.

A calculation shows that ¢t — (2 — (1 4+ w — 2z)72e?*) is continuously
differentiable, as a map from [0, 00) into BC*({z| Re(z) < w}), with

%(z = (1 +w—2)"2e%) = (2= 2(1 +w — 2)"2e™),

thus, since B has a C-regularized BC*({z | Re(z) < w}) functional calculus,
it follows that ¢t — W (t) is a differentiable function from [0, c0) into B(X),
with p

ZWa(t) = BWa(t) ¥t > 0.

This implies that {W(¢) }+>0 is generated by an extension of B; since pc(B)
is nonempty, C ! BC is the generator ([4, Corollary 3.12]). By [4, Proposi-
tion 3.10], B is also the generator of {Wy(t)}+>o0.

The growth condition on ||[Wy(t)} follows from the fact that

2 = €|l por (= | Re(s)<w}) 18 O((L+1)Fe").

Replacing z +— €'* with 2z — cosh(ty/2), in the proof above, gives us the
following.
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Proposition 1.8. Suppose w > 0, B has a C-regularized BC*((—o0,w])
functional calculus and D(B) is dense. Then C~1BC generates a C-requ-
larized cosine function {S(t)}1er given by

S(t) = [(z + cosh(t\/2))(B)] C (t € R).
1S(1)]| is O((1 4 t2)ketve).

When the half-plane in Proposition 1.7 is replaced by the real line ([0, 00)),
we get a nice representation of the regularized semigroup, as a Fourier-
Stieltjes (Laplace-Stieltjes) transform.

Lemma 1.9. Suppose {W (t)}+>0 is an exponentially bounded C-regularized
semigroup generated by B. Then
lim A\ — B) " 'W(t)z = W(t)x, VYo € X,t > 0.

A—o0

Proof. There exists a Banach space Z, continuously embedded between
Im(C) and X, such that B|z generates a strongly continuous semigroup,
and W(t) = e'BlzC ([4, Chapter V]). This implies that, for any z € Z,
A\ — B|z)7'z converges to z in Z, as A\ — oo. Since the norm in Z is
stronger than the norm in X, and W(t)z € Z, for all z € X,t > 0, the
result follows. m

Proposition 1.10.

(1) If B has a C-regularized BC*(R) functional calculus, then —iC~*BC
generates a C-reqularized group {W(t)}ter such that, for all x €
X, x* € X*, the map t — (1—it)~ % (W (t)x,2*) is a Fourier-Stieltjes
transform of a complex-valued measure of bounded variation.

(2) If B has a C-regularized BC*([0,00)) functional calculus, then
—C~'BC generates a C-reqularized semigroup {W (t)}+>o such that,
for all z € X,x* € X*, the map t — (1 +t)"* (W(t)z,z*) is a
Laplace-Stieltjes transform of a complex-valued measure of bounded
variation.

Proof. We will prove (1); it will be clear how the proof would be modified
for (2).

It follows from Proposition 1.7 that —iC~!BC generates a C-regularized
group {W(t)}ter, given by W(t) = [(z — ¢ "#)(B)] C. Fix x € X,z* €
X*. Since

f e ([(L+ D) F)(B)] Ca, )

defines a bounded linear functional on Cy(R), there exists a complex-valued
measure of bounded variation, p, such that

WH+m*ﬁwﬂmww=Aﬂ@M@,We%mx
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choosing fi(s) = A\ —is)"Le™%* gives us, by Lemma 1.9 and dominated
convergence, for any ¢t > 0,

(1—it) ™" (W(t)x,z*) = /\h_)m (L—it) " (A )W (), )
= lim (1~ it) * {[5(B)] Oa”)

= lim (1 —dt)~" /R(l + D)* £r(s) dpu(s)

A—o0

:/Re_“S du(s). m

2. FUNCTIONAL CALCULUS ON FUNCTION
SPACES WITH POLYNOMIAL GROWTH CONDITIONS

Throughout this section, iA1,7As,...,i1A, are generators of commuting
bounded strongly continuous groups {e4i};cr (1 < j < n), A = (A1, Ao, ...,
Ap).

We will use some standard terminology. We will write z = (z1, z2, .. )
for a Vector in R", o = (al,ag, ..yt for a vector in (N U {0})", =

ezl Jz2 =370 a) el = Zk:l ay; see, for example, [9, Chapter
2 3]

Let F be the Fourier transform, FL' be the set of all inverse Fourier

transforms of L' functions; that is,

(2.1) FL'={f € Co(R") | Ff € L*(R™)}.
Define, for f € FL', a bounded operator f(A) by:
(2.2) f(A) = (2n)" 3 / A f(x)dx

We define the operator —|A|? as the generator of the strongly continuous
semigroup {(z — e~ t=*)(A4)}1>0.
Lemma 2.3.

(a) (f9)(A) = f(A)g(A) Vf,geFL.
(b) There is M < oo such that

IF(A < M| fllpr Vf e FL.
(c) Forallr >0, z+— (1+|2]?)"" € FL', with
L+[AP)™ = (2= (1 +[2)77) (A).
(d) (Bernstein’s Theorem) If k > g,k‘ € N, then H*(R") — FL' and
there exists M > 0 such that

1—n n
lullpre < Mull ™ Y IDu|fs Vue HYR").
|a|=E
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Assertions (a) and (b) are straightforward to verify, and (d) is well-known.
For (c), we need the following.

Lemma 2.4 ([5, Lemma 2.2]). If A has a F functional calculus, and
t— ky € C([a,b],F), then

/ab ke (A) dt = (z - /ab o (2) dt) ().

Proof of Lemma 2.3(c). First, note that, since
1F(z = =0 | amy = 1P (2 e 20) | oy, V2> 0,

it follows that

1 " 1 2 1 o 1 2
Z / Tl tem gt | = (2~ / trlete A g ) |
L(r) J1 I'(r) Jo

as n — oo, in FL'.
Thus we may apply Lemma 2.4 as follows.

1 o0
(AP = o [ et
0

1 1 " r—1_—t —t]z)?
=l [, o7t [ ) ]
:nli_{go <z|—> F(lr)A ¢rtetetlzl’ dt) (A)

= <z — F(lr) /Ooo gr-le=te—tl=l® dt> (4)
= (2 (L [21)77) (A). =

Definition 2.5. For [ > —1,k € N J{0}, define:

(2.6) B(l,k)={f € C*R") | Z (1 + Jz]) 71D fll o < o0}
|| <k
with || fll sy = 2 jag<x (14 [2) 714D fl .

It is easy to check that B(l,k) is a Banach algebra, and B(0,k) =
BC*(RM).
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Theorem 2.7. Let k = [g] + 1. Then
(1) A hasa (1+ |A|2)_I+Tls—regularized B(l, k) functional calculus, when-
ever s > g
(2) If f(t,-) is a family of functions in B(l,k) with a parameter t > 0
satisfying:
DS f(t, @) < My(t)Ma(t) - (14 [z])!1*] vt > 0,2 € R,
where My(t) > 1, then there exists a constant M so that

[ = (L [2) 75 f(t, @) (A)]| < MM () Ma ()%t > 0.

Proof. (1) According to Lemma 2.3 (b), it is sufficient to prove that x —
(1+ |ac]2)_17+l5f(x) € FL! and there exists M (s) > 0 such that:

I+ |21 F @) p < M)l Fllsa.x)
whenever s > g, for all f € B(l,k).
Let f € B(l,k). Then
(2.8) D (@) < I f s - (L+ )1, V]a| < k.
Denote g(z) = (1 + ]x|2)_l+Tlsf(x). By Leibniz’s formula,

D)= X (§) Do DI+ leP)

Bty=a

(2.9)
ID%9()| < Ml Fllpay Y0 (L fa)P1(1 + af) =40
Bty=a
< M|\ fll a1+ Jz)fle=0+0,

Now we are going to follow a proof similar to the proof in [13, Lemma
2.2]. By [11, Lemma 2.3], there exists a ¢ € C°(R") such that supp¢ C
{z e R"27! < |z| < 2} and > _¢(27™z) =1 Vo € R™\ {0}. Let
¢ € CX(R") be such that ¢(x) = 1 when |z| < 1 and ¢(xz) = 0 when
|z| > 2. Then we have

g(x) = g(x) - d(a) + g(2) - (1 = p(2)) Y $(27"x)

oo

= g(x) - ¢(x) + g(z) - (1 = d(x)) Y $(2 ")

0

= g(x) - ¢(z) +g(z) - (1 = ¢(x))v(x) + g(2) - (1 — ¢(x))p(27"2)

o0

+ Y g(x) - 9(27"2) = gla) - p@) + Y gm()

2
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where p(z) € C2(R"), gim(z) = g(2)P(27"z).
Since p(x) € C°(R™), it is easy to check that g(z) - pu(x) € FL! and

(2.10) lg(x) (@)l prr < M| fllBa,k)-

Using Leibniz’s formula, we have

D)= 3 ()2 Do)

B+y=c
So,
(2.11)  [Dgm(2)] < M|y - 20D 1 i g cominy (2)
where 17om—1<|z/<om+11(7) is the characteristic function. Therefore
(212)  [ID%gm(@) 2 < M|f | B - 2" WD o] < k.
Using (2.12) when |a| = k and o = 0, it follows from Bernstein’s theorem

that g,, € FL' and:

1—
lgmllpLr < Mllgml 7

F 3 ID gl
|a|=k
< M”f”B(l,k) Lom(+1)(5 —s)

Therefore, when s > g,

(2.13) D lgmllees < M| fllswr):

m=2

Combining (2.10) and (2.13) concludes the proof of (1).
(2) Following exactly the same proof as in (1), replacing f(x) with f(t,z)
we can show that f(t,-) € FL' and

L n
1L+ |2~ = f(t, @) prr < MMy (8)Ma(t) %,
Then Lemma 2.3 (b) concludes the proof. =
Remark 2.14. When | = 0, Theorem 2.7 is [4, Proposition 12.3].

Definition 2.15. If there exists m so that z — % € FL', then

_ m f(z)
fA) =0 +14P)™ |(z —~ W)(A)

Note that, by Theorem 2.7, Definition 2.15 applies to any f with [§] +1
polynomially bounded derivatives.
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Lemma 2.16. Suppose f is as in Definition 2.15. Then
(a) D(f(A)) is dense; and
(b) (1+ [AP)"f(A) (1 +|A]?)~" = f(A), for all v > 0.

Proof. (a) follows from the fact that D(JA|*™) C D(f(A)).
Assertion (b) follows from the fact that (1 + |A|?)™" =
(z = (1+[2[*)7") (A) commutes with g(A), for all g € FL':
(L+[AP)"FA)+ AT

— (14 AP+ AP [(z -

(L4 AP (L AR [(z -

=+ AP [

Note that, by (b) of Lemma 2.16 and Lemma 2.3(c), the definition of
f(A) is independent of m.

[ﬁ

Theorem 2.17. Suppose that k = 2] +1, f € C*R") and, for some

M 2 _1; M Z 07
|Df(z)| < M(1+ |z)!°l, vz e R",1 < |a| <k.

Then for all s > g, f(A) has a (1 + ]A]2)_“T+15—regulam'zed BC*(f(R™))

functional calculus.

Proof. According to Theorem 2.7(1), we must first show that g o f is in
B(u, k), for all g € BC*(f(R™)) and there exists M > 0 such that

(2.18) g0 fllBgur < Mllgllser(smrny), Vg € BCF(f(R™)).

By induction on |af, for any x € R",1 < |a| <k,

D(gof)(x)= Y (D°9)(f(x)Ap(x),

1<18]< e
where Ag has the form

Bja
Ag=T[ D> f D lajsl = ol
i=1 i
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The growth conditions on D® f now imply that, for any z € R",1 < |a| < k,
Bj,a

IDgo @< Y (D7) ()| [T MA+ [zl o]

1<[8]< ] J=1

< ( Z Mﬁ”“) 9]l Bk (parny) (1 + |z])#12,

1<[B]< ]

so that

Igo Al Baury < IgoPllae@n+ D ( > Mﬁ““) l9llBex(r@ny)

1<[al<k \1<IBI<]al

as desired.
Let B = f(A),C =1+ A", r = (#4;1)5' Theorem 2.7 and (2.18)
imply that

A = (1 [ 9D
9(B) = (g0 NI = 1+ 14P) [ ALED )
(see Definition 2.15) defines a continuous linear map from BC*(f(R™)) into

Beo(X).
By Lemma 2.3(a), g — ¢(B) satisfies (1) of Definition 1.3.
Suppose now that both g and gf; (see Definition 1.3(2)) are in
BC*(f(R™)). Then for m sufficiently large,

9(B)BC

=+ 14Py  AEI | s ap)
)

m)(A)] 1+ 14P)

1P
(@t |apym [ o o UG ><A>} [(wﬂz)m] (L4 |4P)

[(z —

(+ 1Py A+ o
— 2\r+m [ f(Z) 2\—r g(f(Z))
=+ AP [ )] (AP o A )

— 2\r+m [ f(Z) g(f(z))
=+ AP [ ] o W)

= Bg(B)C.
Also, from the last two lines,

f(2)9(f(2))

BoBIC = (14 |4Py e [ SIS )

(f19)(f(2))
(T+[22)r
= [(fi9)(B)] C.

= (2

)(4)
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Thus g — g(B) satisfies (2) of Definition 1.3.
Finally,

fo(B) = (foo [)(A) = fo(A) = (1+]AP)" (2= (L +]2*)7") (4) =1,

by Lemma 2.3(c), so that g — ¢(B) satisfies (3) of Definition 1.3. This
concludes the proof. =

Corollary 2.19. Suppose p is a polynomial of degree N. Then for all s > 7,
p(A) has a (1 + |A]2)~ 2 5-regularized BC*(p(R™)) functional calculus.

Note that, if f is as in Theorem 2.17 and f(R") C {2z | Rez < w}, then
it follows immediately from Theorem 2.17, Proposition 1.7 and Lemma 2.16
that
— tz 2y— &dlg
W(t) = [(z = ) (f(A)] L+ [AP) "=,

_ ptl

for t > 0, defines a (1+]A|?)~ 2 s-regularized semigroup generated by f(A),
with |[W(#)]| = O((1 + t)ke~?).

By applying Theorem 2.7(2), we may improve the growth condition on
{W(t)}+>0, by replacing k with 7.

Corollary 2.20. Suppose that p > —1, w is a real number, f is as in
Theorem 2.17 and
Re(f(z)) <w, Vz € R™

Then, for all s > g,f(A) generates a norm continuous (1 + |A|2)*“T+ls—

regularized semigroup {W (t)}i>0 satisfying, for some constant M,

W ()| < M(1+1t)2e*" Vt>0.

Proof. By Theorem 2.17, f(A) has a C-regularized BC*({z| Re(f(2)) < w})
functional calculus, where C' = (1 + |A[2)*#T+13. For t > 0, let

W(t) = [(z - €*)(F(A)] C = (21 T (4)| .
By Proposition 1.7 and Lemma 2.16, {W (t) };> is a C-regularized semigroup
generated by f(A).
By induction on |a/, as in the proof of Theorem 2.17,

D] < (14 )6 (14 [a])1e

for 1 < |a| < k. Thus by Theorem 2.7(2), the growth condition on W (t)
follows. =
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Remark 2.21. Corollary 2.20 generalizes [12, Theorem 4.2]; note that, as
in Corollary 2.19, if p is a polynomial of degree N, then we may choose
=N —1, in Corollary 2.20. A similar result, except for a weaker growth
estimate of the regularized semigroup, is in [4, Theorem 12.11].

Remark 2.22. For f as in Corollary 2.20, we may also define a semigroup
of unbounded operators

{e "D} iz0 = {(z = ) (A)}z0

directly with Definition 2.15. By Theorem 2.17, for each t > 0, /(1) has a
regularized BC*({z||z| < e*}) functional calculus.

Remark 2.23. Without the condition on the range of f, in Corollary 2.20,
if f is as in Theorem 2.17, then it follows from Theorem 2.17 that there
exists an injective operator C, with dense range, such that f(A) generates
a C-regularized semigroup. Choose g(z) = e*‘z|2; then we may choose

C=g(f(A)1+ |A|2)_H;15, for s > 5. The C-regularized semigroup is

constructed from the regularized functional calculus:

pt1

W(t) = [(z 0 e ) (r(A)| (14 42~ (12 0).

In fact, such a regularized semigroup can also be constructed without the
polynomial growth conditions on f, using Theorem 2.1; see [4, Definition
12.10], where f(A) is defined as the generator of the regularized semigroup
{(z + €e¥(*) g(2))(A) }+>0, for appropriate g.

The proof of Corollary 2.20, with z — e'f(?) replaced by cosh(tm),
gives us the following.
Corollary 2.24. Suppose f is as in Theorem 2.17, w > 0 and f(R™) C
(—oo,w]. Then, for all s > g, f(A) generates a (1+ |A|2)_MTH
cosine function {S(t)}ier satisfying, for some constant M,

IS < M(1+ [t))"e'Y™, vt e R,

S-reqularized

Remark 2.25. See [16] for cosine functions generated by p(A), where p is
a polynomial.

Finally, Theorem 2.17 and Proposition 1.10 immediately give us the fol-
lowing two corollaries.

Corollary 2.26. Suppose f is as in Theorem 2.17 and f(R™) C R. Then,
for all s > ﬁ, i(f(A)) generates a norm-continuous (1 + \A|2)_MTHS—regu—
larized group {W(t)}1>wr such that, for all x € X,z* € X*, the map

tes (1—it) " (W (t)z,z*)

1s a Fourier-Stieltjes transform of a complex-valued measure of bounded vari-
ation.
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Then, for all s > ﬁ, —f(A) generates a norm continuous (1 + |A|2)*“3rl

Corollary 2.27. Suppose f is as in Theorem 2.17 and f(R™) C [0,00).

regularized semigroup {W(t)}i>0 such that, for all x € X,z* € X*, the
map
ts (L) " (W(t)x,z*)

1 a Laplace-Stieltjes transform of a complex-valued measure of bounded vari-
ation.

3. DIFFERENTIAL OPERATORS

In this section we consider the corresponding results for differential opera-
tors on the usual function spaces LP(R")(1 < p < o0), Cy(R™) or BUC(R™).

Noting that, for each j (1 < j < n), iD; = is the generator of the

ox;
translation group with respect to the j-th space \Zariable enables us to im-
mediately apply Section II to pseudo-differential operators of the form f(D),
for f as in Theorem 2.17. The results in LP(R"), for 1 < p < oo, can be
improved, by applying the Riesz-Thorin convexity theorem to the proof of
Theorem 2.7, as in the proof of [13, Lemma 2.2], allowing us to replace

n
5 > 5 with s > n]§ — —|. We will merely list these corresponding results
p

here.

Note that, in Theorem 3.1, if f(D) is replaced by a constant coefficient
differential operator p(D), where p is a polynomial of degree N, the (1 + 1)
may be replaced by IV, as in Corollary 2.19.

In the following, assume ¢, u > —1.

Theorem 3.1. Let X be LP(R™)(1 < p < 0),Co(R™) or BUC(R™). Let

1 1
nx = n|§ — —| when X = LP(R™)(1 < p < 00), otherwise nx = g Let
p
n 0 0
k=[=]+1,iD=(=—..,—). Th
[2]+ 71 (81'1 7axn) en

(1) D has a (1 — A)*HTlS-regularized B(l, k) functional calculus, when-
ever s > nx.

(2) Suppose that f is as in Theorem 2.17. Then f(D) has a (1 —
A)*“Tﬂs-regularized BCF(f(R™)) functional calculus for all s > nx.

(3) If, in addition to the assumptions in (2), f satisfies Ref < w for
somew € R, then for all s > nx, f(D) generates a norm-continuous
(1— A)*%ﬂs-regulam'zed semigroup {W (t)}+>0 satisfying, for some
constant M,

W) < M1 +t)"xe*t Vvt >0.

(4) If, in addition to the assumptions in (2), f(R™) C R, then for all s >

kTl
5 S

nx, i(f(D)) generates a norm-continuous (1 — A) -reqularized



REGULARIZED FUNCTIONAL CALCULI 135

group {W (t)}+er such that, for all x € X, z* € X*, the map
ts (1—it) F (W (), z*)

is a Fourier-Stieltjes transform of a complex-valued measure of
bounded variation.
(5) If, in addition to the assumptions in (2), f(R™) C [0,00), then for
all s > nx, —(f(D)) generates a norm-continuous (1 — A)_HTHS—
regularized semigroup {W(t)}>0 such that, for all z € X,z* € X*,
the map
t (1+)7" (W(t)z,z")

is a Laplace-Stieltjes transform of a complex-valued measure of
bounded variation.

(6) If, in addition to the assumptions in (2), f(R") C (—oo,w] (w > 0),
then, for all s > nx, f(A) generates a (1 + |A|?)~ "2 *-reqularized
cosine function {S(t)}ier satisfying, for some constant M,

IS < M(1+t3)"xetVe Vi e R.

Remark 3.2. Theorem 3.1 (3) generalizes [13, Theorem 2.3], where f is
required to be a polynomial.

Open Question 3.3. Can the smoothness (the k in BC*, of (2)—(5) of
Theorem 3.1) be interpolated, as the regularizing is, for X = LP(R"),1 <
p < 0o? Since, for f as in Theorem 2.17, f(A) has a BC(f(R")) functional
calculus on L?(R™), this sounds plausible.

Example 3.4. By Theorem 3.1, for s > nx, A, on X = BUC(R") or
LP(R™) (1 < p < 00), has a (1 — A)~*-regularized BC*((—o00,0]) functional
calculus. This implies that A generates a (1 —A)~*-regularized cosine func-
tion that is O((1+¢?)"X) and a (1 —A)~*-regularized semigroup {W (¢)};>0,
such that, for all z € X, z* € X*, the map

ts (L+ )" (W(t)x,z*)

is a Laplace-Stieltjes transform of a complex-valued measure of bounded
variation. Also i/ generates a (1 —A)~*-regularized group {S(t)}+er, such
that, for all x € X, x* € X*, the map

ts (1—it) ™" (S(t)x,2*)

is a Fourier-Stieltjes transform of a complex-valued measure of bounded
variation.

The regularized semigroup generated by A ( iA\) provides a representa-
tion of solutions of the heat (Schrédinger) equation, in X, with initial data
in D(A?®). The regularized cosine function provides solutions of the wave
equation. Note that i/ fails to generate a strongly continuous semigroup
unless X = L?(R"), and for n > 1, A fails to generate a cosine function
unless X = L?(R"). =
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