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1. Introduction

In 1940, Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin
in which he discussed a number of unsolved problems. Among these was the following
question concerning the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·,·). Given ε > 0, does
there exist a δ > 0 such that if f :G→G′ satisfies ρ( f (xy), f (x) f (y)) < δ for all x, y ∈G,
then a homomorphism h :G→G′ exists with ρ( f (x),h(x)) < ε for all x ∈G?

In 1941, Hyers [2] considered the case of approximately additive mappings f : E→ E′,
where E and E′ are Banach spaces and f satisfies Hyers’ inequality

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ ε (1.1)

for all x, y ∈ E. It was shown that the limit L(x)= limn→∞( f (2nx)/2n) exists for all x ∈ E
and that L : E→ E′ is the unique additive mapping satisfying

∥
∥ f (x)−L(x)

∥
∥≤ ε. (1.2)

In 1978, Rassias [3] provided a generalization of Hyers’ theorem which allows the
Cauchy difference to be unbounded.
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Let f : E → E′ be a mapping from a normed vector space E into a Banach space E′

subject to the inequality

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ ε(‖x‖p +‖y‖p) (1.3)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1.
Then, the limit L(x) = limn→∞( f (2nx)/2n) exists for all x ∈ E and L : E → E′ is the

unique additive mapping which satisfies

∥
∥ f (x)−L(x)

∥
∥≤ 2ε

2− 2p
‖x‖p (1.4)

for all x ∈ E. If p < 0, then inequality (1.3) holds for x, y �= 0 and (1.4) for x �= 0.
In 1991, Gajda [4], following the same approach as in Rassias [3], gave an affirmative

solution to this question for p > 1. It was shown by Gajda [4] as well as by Rassias and
Šemrl [5] that one cannot prove a Rassias-type theorem when p = 1. Inequality (1.3)
that was introduced for the first time by Rassias [3] provided a lot of influence in the
development of a generalization of the Hyers-Ulam stability concept. This new concept
of stability is known as generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability
of functional equations (cf. the books of Czerwik [6], Hyers et al. [7]).

Găvruţa [8] provided a further generalization of Rassias’ theorem. During the last two
decades, a number of papers and research monographs have been published on various
generalizations and applications of the generalized Hyers-Ulam stability to a number of
functional equations and mappings (see [9–14]).

Gilányi [15] and Rätz [16] showed that if f satisfies the functional inequality

∥
∥2 f (x) + 2 f (y)− f

(

xy−1)
∥
∥≤ ∥∥ f (xy)

∥
∥, (1.5)

then f satisfies the Jordan-von Neumann functional equation

2 f (x) + 2 f (y)= f (xy) + f
(

xy−1). (1.6)

Gilányi [17] and Fechner [18] proved the generalized Hyers-Ulam stability of the func-
tional inequality (1.3).

Now, we consider the following functional inequalities:

∥
∥
∥
∥ f
(
x− y

2
− z
)

+ f (y) + 2 f (z)
∥
∥
∥
∥≤

∥
∥
∥
∥ f
(
x+ y

2
+ z
)∥
∥
∥
∥+φ(x, y,z), (1.7)

∥
∥ f (x) + f (y) + 2 f (z)

∥
∥≤

∥
∥
∥
∥2 f

(
x+ y

2
+ z
)∥
∥
∥
∥+φ(x, y,z), (1.8)

which are associated with Jordan-von Neumann-type Cauchy-Jensen additive functional
equations.

The purpose of this paper is to prove that if f satisfies one of the inequalities (1.7)
and (1.8) which satisfies certain conditions, then we can find a Cauchy-Jensen additive
mapping near f , and thus we prove the generalized Hyers-Ulam stability of the functional
inequalities (1.7) and (1.8).
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2. Stability of functional inequality (1.7)

We prove the generalized Hyers-Ulam stability of a functional inequality (1.7) associated
with a Jordan-von Neumann-type 3-variable Cauchy-Jensen additive functional equa-
tion. Throughout this paper, let G be a normed vector space and Y a Banach space.

Lemma 2.1. Let f :G→ Y be a mapping such that

∥
∥
∥
∥ f
(
x− y

2
− z
)

+ f (y) + 2 f (z)
∥
∥
∥
∥≤

∥
∥
∥
∥ f
(
x+ y

2
+ z
)∥
∥
∥
∥ (2.1)

for all x, y,z ∈G. Then, f is Cauchy-Jensen additive.

Proof. Letting x, y,z := 0 in (2.1), we get ‖4 f (0)‖ ≤ ‖ f (0)‖. So, f (0)= 0.
And by setting y := −x and z := 0 in (2.1), we get ‖ f (x) + f (−x)‖ ≤ ‖ f (0)‖ = 0 for

all x ∈G. Hence, f (−x)=− f (x) for all x ∈G.
Also by letting x := 0, y := 2x, and z := −x in (2.1), we get ‖ f (2x) + 2 f (−x)‖ ≤

‖2 f (0)‖ = 0 for all x ∈G. Thus, f (2x)= 2 f (x) for all x ∈G.
Letting z = (−x− y)/2 in (2.1), we get

∥
∥
∥
∥ f
(
x− y

2
+
x+ y

2

)

+ f (y) + 2 f
(−x− y

2

)∥
∥
∥
∥≤

∥
∥ f (0)

∥
∥= 0 (2.2)

for all x, y ∈G. Thus, f (x+ y)= f (x) + f (y) for all x, y ∈G, as desired. �

Theorem 2.2. Assume that a mapping f :G→ Y satisfies the inequality

∥
∥
∥
∥ f
(
x− y

2
− z
)

+ f (y) + 2 f (z)
∥
∥
∥
∥≤

∥
∥
∥
∥ f
(
x+ y

2
+ z
)∥
∥
∥
∥+φ(x, y,z) (2.3)

and that the map φ :G×G×G→ [0,∞) satisfies the condition

Φ(x, y,z) :=
∞
∑

j=0

3 jφ
(
x

3 j
,
y

3 j
,
z

3 j

)

<∞ (2.4)

for all x, y,z ∈ G. Then, there exists a unique Cauchy-Jensen additive mapping A : G→ Y
such that

∥
∥A(x)− f (x)

∥
∥≤Φ

(

− x

3
,x,−x

3

)

+
3
2
Φ
(
x

3
,
x

3
,−x

3

)

(2.5)

for all x ∈G.

Proof. Letting y := x and z :=−x in (2.3), we get

∥
∥2 f (x) + 2 f (−x)

∥
∥≤ φ(x,x,−x) +

∥
∥ f (0)

∥
∥ (2.6)

for all x ∈G. And by letting x :=−x, y := 3x, and z :=−x in (2.3), we get

∥
∥3 f (−x) + f (3x)

∥
∥≤ φ(−x,3x,−x) +

∥
∥ f (0)

∥
∥ (2.7)
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for all x ∈G. It follows from (2.6) and (2.7) that

∥
∥ f (3x)− 3 f (x)

∥
∥≤ φ(−x,3x,−x) +

3
2
φ(x,x,−x) +

5
2

∥
∥ f (0)

∥
∥. (2.8)

Also letting x, y,z := 0 in (2.3), we get 3‖ f (0)‖ ≤ φ(0,0,0)= 0. Hence, we have f (0)= 0.
Now, it follows from (2.8) that for all nonnegative integers m and l with m> l

∥
∥
∥
∥3l f

(
x

3l

)

− 3m f
(
x

3m

)∥
∥
∥
∥≤

m−1
∑

j=l

∥
∥
∥
∥3 j f

(
x

3 j

)

− 3 j+1 f
(

x

3 j+1

)∥
∥
∥
∥

≤
m−1
∑

j=l
3 j
[

φ
(

− x

3 j+1 ,
x

3 j
,− x

3 j+1

)

+
3
2
φ
(

x

3 j+1 ,
x

3 j+1 ,− x

3 j+1

)]

(2.9)

for all x ∈ G. It means that a sequence {3n f (x/3n)} is a Cauchy sequence for all x ∈ G.
Since Y is complete, the sequence {3n f (x/3n)} converges. So, one can define a mapping
A :G→ Y by A(x) := limn→∞ 3n f (x/3n) for all x ∈G. Moreover, letting l = 0 and passing
the limit m→∞ in (2.9), we get the approximation (2.5) of f by A.

Next, we claim that the mappingA :G→ Y is Cauchy-Jensen additive. In fact, it follows
easily from (2.3) and condition of φ that

∥
∥
∥
∥A
(
x− y

2
− z
)

+A(y) + 2A(z)
∥
∥
∥
∥= lim

n→∞3n
∥
∥
∥
∥ f
(

1
3n

(
x− y

2
− z
))

+ f
(
y

3n

)

+ 2 f
(
z

3n

)∥
∥
∥
∥

≤ lim
n→∞3n

[∥
∥
∥
∥ f
(

1
3n

(
x+ y

2
+ z
))∥
∥
∥
∥+φ

(
x

3n
,
y

3n
,
z

3n

)]

= A
(
x+ y

2
+ z
)

.

(2.10)

Thus, the mapping A :G→ Y is Cauchy-Jensen additive by Lemma 2.1.
Now, let T :G→ Y be another Cauchy-Jensen additive mapping satisfying (2.5). Then

we obtain
∥
∥A(x)−T(x)

∥
∥

= 3n
∥
∥
∥
∥A
(
x

3n

)

−T
(
x

3n

)∥
∥
∥
∥

≤ 3n
(∥
∥
∥
∥A
(
x

3n

)

− f
(
x

3n

)∥
∥
∥
∥+

∥
∥
∥
∥T
(
x

3n

)

− f
(
x

3n

)∥
∥
∥
∥

)

≤ 2
∞
∑

j=0

3 j
[

φ
(

− x

3n+ j+1 ,
x

3n+ j ,− x

3n+ j+1

)

+
3
2
φ
(

x

3n+ j+1 ,
x

3n+ j+1 ,− x

3n+ j+1

)]

≤ 2
∞
∑

j=n
3 j
[

φ
(

− x

3 j+1 ,
x

3 j
,− x

3 j+1

)

+
3
2
φ
(

x

3 j+1 ,
x

3 j+1 ,− x

3 j+1

)]

,

(2.11)
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which tends to zero as n→∞. So, we can conclude that A(x) = T(x) for all x ∈ G. This
proves the uniqueness of A. Hence, the mapping A : G→ Y is a unique Cauchy-Jensen
additive mapping satisfying (2.5). �

Theorem 2.3. Assume that a mapping f :G→ Y satisfies inequality (2.3) and that the map
φ :G×G×G→ [0,∞) satisfies the condition

Φ(x, y,z) :=
∞
∑

j=0

1
3 j
φ
(

3 jx,3 j y,3 jz
)

<∞ (2.12)

for all x, y,z ∈G.
Then, there exists a unique Cauchy-Jensen additive mapping A :G→ Y such that

∥
∥A(x)− f (x)

∥
∥≤ 1

3
Φ(−x,x,−x) +

1
2
Φ(x,x,−x) +

5
4

∥
∥ f (0)

∥
∥ (2.13)

for all x ∈G.

Proof. We get by (2.8)

∥
∥
∥
∥

1
3l
f
(

3lx
)− 1

3m
f
(

3mx
)
∥
∥
∥
∥

≤
m−1
∑

j=l

∥
∥
∥
∥

1
3 j
f
(

3 jx
)− 1

3 j+1 f
(

3 j+1x
)
∥
∥
∥
∥

≤
m−1
∑

j=l

[∥
∥
∥
∥

1
3 j
f
(

3 jx
)

+
1

3 j+1 f
(− 3 j+1x

)
∥
∥
∥
∥+

∥
∥
∥
∥

1
3 j+1 f

(

2 j+1x
)

+
1

3 j+1 f
(− 3 j+1x

)
∥
∥
∥
∥

]

≤
m−1
∑

j=l

1
3 j+1

[

φ
(− 3 jx,3 j+1x,−3 jx

)

+
3
2
φ
(

3 jx,3 jx,−3 jx
)

+
5
2

∥
∥ f (0)

∥
∥

]

(2.14)

for all nonnegative integers m and l with m > l and all x ∈ G. It means that a sequence
{(1/3n) f (3nx)} is a Cauchy sequence for all x ∈ G. Since Y is complete, the sequence
{(1/3n) f (3nx)} converges. So, one can define a mapping A :G→ Y by A(x) := limn→∞(1/
3n) f (3nx) for all x ∈G. Moreover, letting l = 0 and passing the limit m→∞ in (2.14), we
get (2.13).

The remaining proof goes through by the similar argument to Theorem 2.2. �

Theorem 2.4. Assume that a mapping f :G→ Y satisfies inequality (2.3) and that the map
φ :G×G×G→ [0,∞) satisfies the condition

lim
n→∞3nφ

(
x

3n
,
y

3n
,
z

3n

)

= 0 (2.15)
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for all x, y,z ∈ G. If there exists a number L with 0 ≤ L < 1 such that the mapping x 	→
ψ(x) := φ(−x,3x,−x) + (3/2)φ(x,x,−x) satisfies

ψ(x)≤ L

3
ψ(3x), (2.16)

then there exists a unique Cauchy-Jensen additive mapping A :G→ Y such that

∥
∥ f (x)−A(x)

∥
∥≤ L ·ψ(x)

3(1−L)
(2.17)

for all x ∈G.

Proof. We get by (2.8)

∥
∥ f (3x)− 3 f (x)

∥
∥≤ ψ(x)= φ(−x,3x,−x) +

3
2
φ(x,x,−x) (2.18)

for all x ∈G. Hence, we get

∥
∥
∥
∥3l f

(
x

3l

)

− 3m f
(
x

3m

)∥
∥
∥
∥≤

m−1
∑

j=l

∥
∥
∥
∥3 j f

(
x

3 j

)

− 3 j+1 f
(

x

3 j+1

)∥
∥
∥
∥

≤
m−1
∑

j=l
3 jψ

(
x

3 j+1

)

≤
m−1
∑

j=l

L j+1

3
ψ(x)

(2.19)

for all nonnegative integers m and l with m > l and all x ∈ G. It means that a sequence
{3n f (x/3n)} is a Cauchy sequence for all x ∈G. SinceY is complete, the sequence {3n f (x/
3n)} converges. So, one can define a mapping A :G→ Y by A(x) := limn→∞ 3n f (x/3n) for
all x ∈G. Moreover, letting l = 0 and passing the limit m→∞ in (2.19), we get (2.17).

The remaining proof goes through by the similar argument to Theorem 2.2. �

Corollary 2.5. Assume that there exist nonnegative numbers θ and a real p > 1 such that
a mapping f :G→ Y satisfies the inequality

∥
∥
∥
∥ f
(
x− y

2
− z
)

+ f (y) + 2 f (z)
∥
∥
∥
∥≤

∥
∥
∥
∥ f
(
x+ y

2
+ z
)∥
∥
∥
∥+ θ

(‖x‖p +‖y‖p +‖z‖p) (2.20)

for all x, y,z ∈G.
Then, there exists a unique Cauchy-Jensen additive mapping A :G→ Y such that

∥
∥ f (x)−A(x)

∥
∥≤ θ

(

13 + 2 · 3p
)

2
(

3p− 3
) ‖x‖p (2.21)

for all x ∈G.

Theorem 2.6. Assume that a mapping f :G→ Y satisfies inequality (2.3) and that the map
φ :G×G×G→ [0,∞) satisfies the condition

lim
n→∞

1
3n
φ
(

3nx,3ny,3nz
)= 0 (2.22)
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for all x, y,z ∈ G. If there exists a number L with 0 ≤ L < 1 such that the mapping x 	→
ψ(x) := φ(−x,3x,−x) + (3/2)φ(x,x,−x) satisfies

ψ(3x)≤ 3L ·ψ(x), (2.23)

then there exists a unique Cauchy-Jensen additive mapping A :G→ Y such that

∥
∥ f (x)−A(x)

∥
∥≤ ψ(x)

3(1−L)
+

5
4

∥
∥ f (0)

∥
∥ (2.24)

for all x ∈G.

Proof. We get by (2.8)

∥
∥
∥
∥

1
3l
f
(

3lx
)− 1

3m
f
(

3mx
)
∥
∥
∥
∥≤

m−1
∑

j=l

∥
∥
∥
∥

1
3 j
f
(

3 jx
)− 1

3 j+1 f
(

3 j+1x
)
∥
∥
∥
∥

≤
m−1
∑

j=l

1
3 j+1

[

ψ
(

3 jx
)

+
5
2

∥
∥ f (0)

∥
∥

]

≤
m−1
∑

j=l

[
Ljψ(x)

3
+

5
2 · 3 j+1

∥
∥ f (0)

∥
∥

]

(2.25)

for all nonnegative integers m and l with m > l and all x ∈ G. It means that a sequence
{(1/3n) f (3nx)} is a Cauchy sequence for all x ∈ G. Since Y is complete, the sequence
{(1/3n) f (3nx)} converges. So, one can define a mapping A :G→ Y by A(x) := limn→∞(1/
3n) f (3nx) for all x ∈G. Moreover, letting l = 0 and passing the limit m→∞ in (2.25), we
get (2.24).

The remaining proof goes through by the similar argument to Theorem 2.3. �

Corollary 2.7. Assume that there exist nonnegative numbers θ, δ, and a real p < 1 such
that a mapping f :G→ Y satisfies the inequality
∥
∥
∥
∥ f
(
x− y

2
− z
)

+ f (y) + 2 f (z)
∥
∥
∥
∥≤

∥
∥
∥
∥ f
(
x+ y

2
+ z
)∥
∥
∥
∥+ θ

(‖x‖p +‖y‖p +‖z‖p)+ δ

(2.26)

for all x, y,z ∈G.
Then, there exists a unique Cauchy-Jensen additive mapping A :G→ Y such that

∥
∥ f (x)−A(x)

∥
∥≤ θ

(

13 + 2 · 3p
)‖x‖p + 5δ + 5

∥
∥ f (0)

∥
∥

2
(

3− 3p
) (2.27)

for all x ∈G.

3. Stability of functional inequality (1.8)

We prove the generalized Hyers-Ulam stability of a functional inequality (1.8) associated
with a Jordan-von Neumann-type 3-variable Cauchy-Jensen additive functional equa-
tion.
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Theorem 3.1. Assume that a mapping f :G→ Y satisfies the inequality

∥
∥ f (x) + f (y) + 2 f (z)

∥
∥≤

∥
∥
∥
∥2 f

(
x+ y

2
+ z
)∥
∥
∥
∥+φ(x, y,z) (3.1)

and that the map φ :G×G×G→ [0,∞) satisfies the conditions
(1) ρ(x) :=∑∞

j=0(1/2 j+1)[φ(−2 j+1x,0,2 jx) +φ1(2 j+1x)] <∞,
(2) limn→∞(1/2n)φ(2nx,2ny,2nz)= 0 for all x, y,z ∈G,

where

φ1(x) :=min
{

φ(x,−x,0) + 4
∥
∥ f (0)

∥
∥,

1
2
φ(x,x,−x) +

∥
∥ f (0)

∥
∥

}

. (3.2)

Then, there exists a unique Cauchy-Jensen additive mapping A :G→ Y such that

∥
∥A(x)− f (x)

∥
∥≤ ρ(x) (3.3)

for all x ∈G.

Proof. Letting x, y,z := 0 in (3.1), we get ‖ f (0)‖ ≤ (1/2)φ(0,0,0).
And by setting x := 2x, y := 0, and z :=−x in (3.1), we get

∥
∥ f (2x) + 2 f (−x)

∥
∥≤ 3

∥
∥ f (0)

∥
∥+φ(2x,0,−x) (3.4)

for all x ∈G.
Also by letting y :=−x and z := 0 or by letting y := x and z :=−x in (3.1), we get

∥
∥ f (x) + f (−x)

∥
∥≤ φ1(x)=min

{

φ(x,−x,0) + 4
∥
∥ f (0)

∥
∥,

1
2
φ(x,x,−x) +

∥
∥ f (0)

∥
∥

}

(3.5)

for all x ∈G. Hence, we get by (3.4) and (3.5)

∥
∥
∥
∥

1
2l
f
(

2lx
)− 1

2m
f
(

2mx
)
∥
∥
∥
∥

≤
m−1
∑

j=l

∥
∥
∥
∥

1
2 j
f
(

2 jx
)− 1

2 j+1 f
(

2 j+1x
)
∥
∥
∥
∥

≤
m−1
∑

j=l

[∥
∥
∥
∥

1
2 j
f
(

2 jx
)

+
1

2 j+1 f
(− 2 j+1x

)
∥
∥
∥
∥+

∥
∥
∥
∥

1
2 j+1 f

(

2 j+1x
)

+
1

2 j+1 f
(− 2 j+1x

)
∥
∥
∥
∥

]

≤
m−1
∑

j=l

1
2 j+1

[

φ
(− 2 j+1x,0,2 jx

)

+φ1
(

2 j+1x
)]

(3.6)



Y.-S. Cho and H.-M. Kim 9

for all nonnegative integers m and l with m > l and all x ∈ G. It means that a sequence
{(1/2n) f (2nx)} is a Cauchy sequence for all x ∈ G. Since Y is complete, the sequence
{(1/2n) f (2nx)} converges. So, one can define a mapping A :G→ Y by A(x) := limn→∞(1/
2n) f (2nx) for all x ∈ G. Moreover, letting l = 0 and passing the limit m→∞ in (3.6), we
get (3.3).

The remaining proof is similar to that of Theorem 2.3. �

Theorem 3.2. Assume that a mapping f :G→ Y satisfies inequality (3.1) and that the map
φ :G×G×G→ [0,∞) satisfies the conditions

(1) ρ(x) :=∑∞
j=02 jφ(x/2 j ,0,−x/2 j+1) + 2 j+1φ2(x/2 j+1) <∞,

(2) limn→∞ 2nφ(x/2n, y/2n,z/2n)= 0 for all x, y,z ∈G,
where

φ2(x) :=min
{

φ(x,−x,0),
1
2
φ(x,x,−x)

}

. (3.7)

Then, there exists a unique Cauchy-Jensen additive mapping A :G→ Y such that

∥
∥A(x)− f (x)

∥
∥≤ ρ(x) (3.8)

for all x ∈G.

Proof. Letting x, y,z := 0 in (3.1), we get ‖ f (0)‖ ≤ (1/2)φ(0,0,0)= 0. So f (0)= 0.
Now, it follows from (3.4) and (3.5) that for all nonnegative integers m and l with

m> l,

∥
∥
∥
∥2l f

(
x

2l

)

− 2m f
(
x

2m

)∥
∥
∥
∥

≤
m−1
∑

j=l

∥
∥
∥
∥2 j f

(
x

2 j

)

− 2 j+1 f
(

x

2 j+1

)∥
∥
∥
∥

≤
m−1
∑

j=l

[∥
∥
∥
∥2 j f

(
x

2 j

)

+ 2 j+1 f
(

− x

2 j+1

)∥
∥
∥
∥+

∥
∥
∥
∥2 j+1 f

(

− x

2 j+1

)

+ 2 j+1 f
(

x

2 j+1

)∥
∥
∥
∥

]

≤
m−1
∑

j=l

[

2 jφ
(
x

2 j
,0,− x

2 j+1

)

+ 2 j+1φ2

(
x

2 j+1

)]

(3.9)

for all x ∈ G. It means that a sequence {2n f (x/2n)} is a Cauchy sequence for all x ∈ G.
Since Y is complete, the sequence {2n f (x/2n)} converges. So, one can define a mapping
A :G→ Y by A(x) := limn→∞ 2n f (x/2n) for all x ∈G. Moreover, letting l = 0 and passing
the limit m→∞ in (3.9), we get (3.8).

The rest of proof is similar to that of Theorem 2.2. �
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Remark 3.3. Assume that a mapping f :G→ Y satisfies inequality (3.1) and that the map
φ :G×G×G→ [0,∞) satisfies the conditions

(1) ρ(x) :=∑∞
j=0(1/2 j+2)[φ(−2 j+1x,0,2 jx) +φ(2 j+1x,0,−2 jx)] <∞,

(2) limn→∞(1/2n)φ(2nx,2ny,2nz)= 0 for all x, y,z ∈G.
Then, there exists a unique Cauchy-Jensen additive mapping L :G→ Y such that

∥
∥
∥
∥L(x)− f (x)− f (−x)

2

∥
∥
∥
∥≤ ρ(x) + 3

∥
∥ f (0)

∥
∥ (3.10)

for all x ∈G.

Proof. Let g(x) := ( f (x)− f (−x))/2. Then, we get by (3.4)

∥
∥2g(x)− g(2x)

∥
∥≤

∥
∥
∥
∥ f (x) +

1
2
f (−2x)

∥
∥
∥
∥+

∥
∥
∥
∥ f (−x) +

1
2
f (2x)

∥
∥
∥
∥

≤ 1
2

[

φ(−2x,0,x) +φ(2x,0,−x)] + 3
∥
∥ f (0)

∥
∥

(3.11)

for all x ∈G. Hence, we get by (3.11)

∥
∥
∥
∥

1
2l
g
(

2lx
)− 1

2m
g
(

2mx
)
∥
∥
∥
∥

≤
m−1
∑

j=l

∥
∥
∥
∥

1
2 j
g
(

2 jx
)− 1

2 j+1 g
(

2 j+1x
)
∥
∥
∥
∥=

m−1
∑

j=l

1
2 j+1

[∥
∥
∥
∥2g

(

2 jx
)− g(2 j+1x

)
∥
∥
∥
∥

]

≤
m−1
∑

j=l

1
2 j+2

[

φ
(− 2 j+1x,0,2 jx

)

+φ
(

2 j+1x,0,−2 jx
)

+ 6
∥
∥ f (0)

∥
∥
]

(3.12)

for all nonnegative integers m and l with m > l and all x ∈ G. It means that a sequence
{(1/2n)g(2nx)} is a Cauchy sequence for all x ∈ G. So, one can define a mapping L :G→
Y by L(x) := limn→∞(1/2n)g(2nx) = limn→∞(1/2n)[( f (2nx)− f (−2nx))/2] for all x ∈ G.
Moreover, letting l = 0 and passing the limit m→∞ in (3.12), we get (3.10). Next, we
claim that the mapping L : G → Y is a Cauchy-Jensen additive mapping. Note that
L(−x)=−L(x) because g(−x)=−g(x). Then

∥
∥L(x) +L(y)−L(x+ y)

∥
∥= lim

n→∞
1
2n
∥
∥g
(

2nx
)

+ g
(

2ny
)− g(2nx+ y

)∥
∥, (3.13)
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and so we obtain by (3.1) and (3.4),

1
2n
∥
∥g
(

2nx
)

+ g
(

2ny
)

+ g
(

2n(−x− y)
)∥
∥

≤ 1
2n+1

∥
∥ f
(

2nx
)

+ f
(

2ny
)

+ 2 f
(

2n−1(−x− y)
)∥
∥

+
1

2n+1

∥
∥− f

(− 2nx
)− f

(− 2ny
)− 2 f

(

2n−1(x+ y)
)∥
∥

+
1

2n+1

∥
∥− 2 f

(

2n−1(−x− y)
)− f

(

2n(x+ y)
)∥
∥

+
1

2n+1

∥
∥ f
(

2n(−x− y)
)

+ 2 f
(

2n−1(x+ y)
)∥
∥

≤ 1
2n+1

[

φ
(

2nx,2ny,2n−1(−x− y)
)

+φ
(− 2nx,−2ny,2n−1(x+ y)

)

+ 4
∥
∥ f (0)

∥
∥
]

+
1

2n+1

[∥
∥6 f (0)

∥
∥+φ

(− 2n(x+ y),0,2n−1(x+ y)
)

+φ
(

2n(x+ y),0,−2n−1(x+ y)
)]

,

(3.14)

which tends to zero as n→∞ for all x ∈G. Hence, we see that L is additive.
The remaining proof is similar to the corresponding part of Theorem 2.3. �

Remark 3.4. Assume that a mapping f :G→ X satisfies inequality (3.1) and that the map
φ :G×G×G→ [0,∞) satisfies the conditions

(1) ρ(x) :=∑∞
j=02 j−1[φ(−x/2 j ,0,x/2 j+1) +φ(x/2 j ,0,−x/2 j+1)] <∞,

(2) limn→∞ 2nφ(x/2n, y/2n,z/2n)= 0 for all x, y,z ∈G.
Then, there exists a unique Cauchy-Jensen additive mapping L :G→ Y such that

∥
∥
∥
∥L(x)− f (x)− f (−x)

2

∥
∥
∥
∥≤ ρ(x) (3.15)

for all x ∈G.

Proof. Letting x, y,z := 0 in (3.1), we get ‖ f (0)‖ ≤ (1/2)φ(0,0,0)= 0. So f (0)= 0.
Let g(x) := ( f (x)− f (−x))/2. Then, we get by (3.4)

∥
∥2g(x)− g(2x)

∥
∥≤

∥
∥
∥
∥ f (x) +

1
2
f (−2x)

∥
∥
∥
∥+

∥
∥
∥
∥ f (−x) +

1
2
f (2x)

∥
∥
∥
∥

≤ 1
2

[

φ(−2x,0,x) +φ(2x,0,−x)
]

(3.16)

for all x ∈G. Hence, we get by (3.16)

∥
∥
∥
∥2lg

(
x

2l

)

− 2mg
(
x

2m

)∥
∥
∥
∥≤

m−1
∑

j=l

∥
∥
∥
∥2 jg

(
x

2 j

)

− 2 j+1g
(

x

2 j+1

)∥
∥
∥
∥

≤
m−1
∑

j=l
2 j−1

[

φ
(

− x

2 j
,0,

x

2 j+1

)

+φ
(
x

2 j
,0,− x

2 j+1

)]
(3.17)
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for all nonnegative integers m and l with m> l and all x ∈ G. It means that the sequence
{2ng(x/2n)} is a Cauchy sequence for all x ∈G. So, one can define a mapping L :G→ Y by
L(x) := limn→∞ 2ng(x/2n)= limn→∞ 2n[( f (x/2n)− f (−x/2n))/2] for all x ∈ G. Moreover,
letting l = 0 and passing the limit m→∞ in (3.17), we get (3.15).

Next, we claim that the mapping L :G→ Y is a Cauchy-Jensen additive mapping. Note
that L(−x)=−L(x) because g(−x)=−g(x). So, we obtain by (3.1) and (3.4)

∥
∥L(x) +L(y)−L(x+ y)

∥
∥

= lim
n→∞2n

∥
∥
∥
∥g
(
x

2n

)

+ g
(
y

2n

)

− g
(
x+ y

2n

)∥
∥
∥
∥

= lim
n→∞2n

∥
∥
∥
∥g
(
x

2n

)

+ g
(
y

2n

)

+ g
(−x− y

2n

)∥
∥
∥
∥

≤ lim
n→∞

2n

2

[∥
∥
∥
∥ f
(
x

2n

)

+ f
(
y

2n

)

+ 2 f
(−x− y

2n+1

)∥
∥
∥
∥

+
∥
∥
∥
∥− f

(−x
2n

)

− f
(−y

2n

)

− 2 f
(
x+ y

2n+1

)∥
∥
∥
∥

]

+ lim
n→∞

2n

2

[∥
∥
∥
∥− 2 f

(−x− y

2n+1

)

− f
(
x+ y

2n

)∥
∥
∥
∥+

∥
∥
∥
∥ f
(−x− y

2n

)

+ 2 f
(
x+ y

2n+1

)∥
∥
∥
∥

]

≤ lim
n→∞2n−1

[

φ
(
x

2n
,
y

2n
,
−x− y

2n+1

)

+φ
(−x

2n
,
−y
2n

,
x+ y

2n+1

)]

+ lim
n→∞2n−1

[

φ
(
x+ y

2n
,0,
−x− y

2n+1

)

+φ
(−x− y

2n
,0,

x+ y

2n+1

)]

= 0

(3.18)

from the condition of φ. So, we have L(x+ y)= L(x) +L(y).
The remaining proof is similar to that of Theorem 2.2. �
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