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1. Introduction

Let 2* = 2N/(N —2) for N > 3, 2* = oo for N = 2. In this paper, we study the existence,
nonexistence, and multiplicity of solutions of the equation

~Au+u=A(f(x,u)+h(x)) inQ, winH}(Q), u>0inQ, N >2, (1.1),

where A >0,N=m+n=>2,n>1,0 € w € R™isasmooth bounded domain, S = w X R",
D is a smooth bounded domain in RN such that D cC S, Q = S\D is the exterior of this
domain in the strip.

Associated to (1.1);, we consider the functional I, for u € H} (Q),

I(u) = %jﬂ (1Vul? +u2)dx—AJQF(x,w)dx—Ajgh(x)udx, (1.1)

where F(x,t) = [; f(x,s)ds.
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It is assumed that h(x) € L*(Q) N L9(Q) for some g > N/2if N > 4, qo =2 if N = 2,3,
h(x) = 0, h(x) # 0, and f(x,t) satisfies the following conditions:
(f1) f(x,-) € C}([0,+00),R"), f(x,t) =0 for x €S, t <0, and lim,_o(f(x,2)/t) =0
uniformly for x€ES;
(f2) there exists a positive constant C such that forallx € Sand t € R,

O<%f(x,t)sC(l+|t|P‘2), (1.2)

where 2 < p < 2%;
(f3) there exists a number 6 € [1/p, 1) such that

9t%f(x,t)zf(x,t)>0 VxeS, t>0; (1.3)

(f4) there exists 7 :R—-R such that lim|y~ f(x,1) = T(t) uniformly for bounded
t>0, f(x,t) = f(t),forallx €S, t = 0, and lim;_. ( f (x,¢)/t) = oo uniformly for
xX€ES;

(f5) f(x,-) € C?(0,+) and (9*/0t?) f (x,t) = 0 forallx € S, t > 0.

Given € >0, by (f1) and (f2), there exists a C; > 0 such that

0< f(x,u) <eu+CelulP™l, (1.4)
0 < F(x,u) < eu® + C,|u|?. (1.5)

If Q =RN or Q = RN\D (m = 0 in our case), then the homogeneous case of problem
(1.1), (i.e., the case h(x) = 0) has been studied by many authors; see Cao [1] and the
references therein. For the nonhomogeneous case (h(x) # 0), Zhu-Zhou [2] have studied
the multiplicity of positive solutions of equations similar to (1.1),. Recently, Chen [3]
showed that there exists a A* > 0 such that (1.1), has exactly two positive solutions if
A € (0,A*), and (1.1), has no positive solution when A € (1%, c0). However, her method
cannot determine whether A* is bounded or infinite (at least for general nonlinearity
f(x,u)). In this paper, one of our results answers the question (see Theorem 1.1). Now,
we state our main results.

THEOREM 1.1. Let Q= S\D or Q = RN\D or Q =S or Q = RY. Suppose h(x) > 0, h(x) #
0, h(x) € L2(Q) N L (Q) for some qo > N/2 if N > 4, qo = 2 if N = 2,3, and f(x,t) satisfies
(f1)=(f5). Then there exists A* >0, 0 <A* < oo, such that
(1) equation (1.1)) has at least two positive solutions uy, Uy and uy < Uy if A € (0,1*);

(ii) equation (1.1))+ has a unique positive solution uy;

(iii) equation (1.1)) has no positive solutions if A > A*,
where u), is the minimal solution of (1.1), and Uy is the second solution of (1.1)) constructed
in Section 4.

THEOREM 1.2. Under the assumptions of Theorem 1.1, then
(i) wuy is strictly increasing with respect to A, u) is uniformly bounded in L™ (Q)) N H} (Q)
forall A € (0,A*] and

u— 0 inL*(Q)NH(Q)asA — 0% (1.6)
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(i) Uy is unbounded in L= (Q) N HY(Q) for A € (0,A%), that is,

= o0, (1.7)

e

lim ||U3]] = lim ||U
A—0* A—0*

where [|Upll = ([o(IVUI? + U?)dx)"? and || U || = sup,.q 1U(x)]|.

First of all, we list some properties of f(x,t). The proof can be found in Zhu-Zhou [2,
Lemma 2.1].

LemMa 1.3. Assume (f1), (f3), and (f5) hold, then
(i) tf(x,t) = vF(x,t) forallx €S, t>0andv=1+0"' € (2,p+1];
(ii) 79 f (x,t) is monotone nondecreasing and t ' f (x,t) is strictly monotone increasing
forallxe S, t>0;
(iil) f(x,t1+8) = fx,t)+ f(x,h) and f(x,ti +1) # f(x,t1) + f(x,t,) forallx €S,
ti,t > 0.

2. Asymptotic behavior of solutions

Throughout this paper, let x = (y,z) be the generic point of RY with y € R™, z € R",
N=m+n=2,n=1. Wedenote by Cand C; (i = 1,2,...) universal constants, maybe the
constants here should be allowed to depend on n and p, unless some statement is given,
and denote (9/0t) f (x,t) and (9%/0t?) f (x,t) by f'(x,t) and f~ (x,t), respectively, in what
follows.

We define

lull = (JQ(|Vu|2+u2)dx)l/2,

1/p
”“”p:(J |M|de> , 2<p<oo, (2.1)
Q
lullw = sup |u(x)|.
xeQ

Now, we introduce the equation at infinity associated with (1.1)) on an unbounded cylin-
der domain S,

—Au+u= A?(u) in§S,
. (2.1
u€ Hy(S), N=2
P. L. Lions has studied the following minimization problem closely related to (2.1),:

S =inf {I°(u) : u € HY(S), u %0, I* (1) = 0} >0, (2.2)

where I® (1) = (1/2) [(1Vul? + u?)dx — A [ F(u*)dx, F(t) = [; f(s)ds. For this problem,
also a minimum exists and is realized by a ground state solution w >0 in S such that

S§% =1I%(w) =supI®(tw). (2.3)

t=0
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In order to get the asymptotic behavior of solutions of (1.1); and (2.1)), we need the
following Lemmas 2.3 and 2.5. First, we quote two regularity lemmas (see Hsu [4] for
the proof). Now, let X be a C1! domain in RV (typically the domains considered in the
introduction).

LemMa 2.1. Let f : XX R — R be a Carathéodory function such that for almost every x € X,
there holds

| fou)| < C(lul+ ulP™')  uniformlyinx € X, (2.4)

where 2 < p < 2*. If u € Hy(X) is a weak solution of equation —Au = f(x,u) +h(x) in X,
where h € LN?2(X) N L*(X), then u € L1(X) for q € [2,).

Lemma 2.2. Let g € L*(X) N L1(X) for some q € [2,00) and let u € H}(X) be a weak solu-
tion of the equation —Au+u = g in X. Then u € W>1(X) satisfies

llullwa < CUlullLapo + iglliae), (2.5)

where C = C(N, q,0X).
By Lemmas 2.1 and 2.2, we obtain the first asymptotic behavior of solution of (1.1),.

LEmMa 2.3 (asymptotic lemma 1). Let (f1), (f2) hold and let u be a weak solution of
(1.1)), then u(y,z) — 0 as |z| — co uniformly for y € w. Moreover, there exist positive con-
stants Cy and C, such that

lulloo < Crllullg, +AC (ullfy ", + lllg, ) (2.6)

(p—1)qo

Proof. Suppose that u is a solution of (1.1)), then —Au+u = A(f(x,u) + h(x)) in Q.
Since h € L*(Q) N L (Q) for some qo > N/2 if N > 4, qo = 2 if N = 2,3, this implies
h e L*(Q)nLN?(Q) for N > 2. By (1.4) and Lemma 2.1, we conclude that

ueli(Q) forqgel2,00). (2.7)
Hence A(f(x,u) +h(x)) € L*2(Q) N L?(Q) and by Lemma 2.2, we have
ue W»(Q)n we(Q), qo>N/2 ifN=>4, qy=2 ifN=2,3. (2.8)

Now, by the Sobolev embedding theorem, we obtain that u € C,(Q). It is well known
that the Sobolev embedding constants are independent of domains (see Adams [5]). Thus
there exists a constant C such that for R >0,

el L= \Br) < Cllull w0 (B for N = 2, (2.9)
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where Bg = {x = (y,2) € Q| |z| < R}. From this, we conclude that u(y,z) — 0 as |z| — «
uniformly for y € w. By Lemma 2.2 and (1.4), we also have that

lullo < Cliullw2a )

< C(llullg, +[|Af G, ) + M), ) (2.10)
< Cillullg, +AC (Iullf, "y + Illg,)
where C;, C, are constants independent of A. O

Remark 2.4. Let w be a positive solution of (2.1),. If h(x) = 0 and f(x,t) = f(¢) for all
x €S, t € R, by Lemma 2.3, then we have that w(y,z) — 0 as |z| — o uniformly for
¥y € w.

We use Lemma 2.3, and modify the proof in Hsu [6], we obtain a precise asymptotic
behavior of solutions of (2.1), at infinity and the second asymptotic behavior of solutions
of (1.1);.

LemMA 2.5 (asymptotic lemma 2). Let w be a positive solution of (2.1), let u be a positive
solution of (1.1)) and let @ be the first positive eigenfunction of the Dirichlet problem —Ag =
w19 in w, then for any € >0 with 0 < € < 1+, there exist constants C, C; > 0 such that

w(y,z) < Cgp(y)exp(—dl + i —slzl),

|—(n—1)/2

w(y,z)qu)(y)exp(— 1+y1|z|)|z as |z| — o0, y e w, (2.11)

u(y,2) = Cop(y)exp (—\[1+plzl) 2|72,

Proof. (i) First, we claim that for any &€ > 0 with 0 < & < 1+, there exists C; > 0 such that
w(y,z) < Cep(y)exp ( -1+ —slzl) as |z| — o0, y € w. (2.12)

Without loss of generality, we may assume € < 1. Now given ¢ >0, by (f1), (f4), and
Remark 2.4, we may choose Ry large enough such that

Af (w(y,2)) <Af(x,w(y,2)) <ew(y,z) for |z| = Ry. (2.13)

Let g = (gy,4:), 9y € 0w, |g:| = Ry, and B a small ball in ) such that g € dB. Since ¢(y) >
0 for x = (y,2) € B, ¢(q,) = 0, w(x) >0 for x € B, w(q) = 0, by the strong maximum
principle (d¢p/dy)(g,) < 0, (aw/0x)(q) < 0. Thus

lim w(x) _ (ow/0x)(q)
St @) (09/9y)(ay)

> 0. (2.14)

Note that w(x)g~!(y) >0 for x = (y,2), y € w, |z| = Ry. Thus w(x)¢~'(y) >0 for x =
(1,2), y € @, |z| = Ro. Since ¢(y) exp(—+/T+ y1 — €lz|) and w(x) belong to C'(w X dBg, (0)),

if set
Ce= sup (w(x)gofl(y)exp<w/1+y1feRo)), (2.15)

y€Ew,|z|=Ry
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then C, >0 and

ng)(y)exp<—w/1 + —£R0> > w(x) foryew, |z| =R,. (2.16)
Let @y (x) = Cep(y) exp(—/T+u1 —¢€lz]) forx € Q. Then for |z| = Ry, we have

Alw— @) (x) — (w— ©)(x) = —AF (w(x)) + (s+ V”*“'_Zf(”_ ”)dmx)

> —ew(x) +ed;(x) (2.17)
=¢e(D; — w)(x).
Hence A(w — ®1)(x) — (1 —¢&)(w— D;)(x) = 0 for |z| = Ry.
The strong maximum principle implies that w(x) — ®,(x) < 0 for x = (y,2), y € o,

|z| = Ry, and therefore we get this claim.
(ii) Let

Y(y,z) = (1 + \/%)go(y)exp ( - 1+y1|z|) |z|~(=D2 for (y,2) € Q. (2.18)

It is very easy to show that
-AY+¥ <0 forye€w, |z|large. (2.19)
Therefore, by means of the maximum principle, there exists a constant C > 0 such that

w(y,z) = C(p(y)exp(— 1+y1|z|) ||~ (=172
as |z| — o0, y € @. (2.20)

u(y,z) = Co(y)exp ( - 1+H1|Z|) ||~ (=72

This completes the proof of Lemma 2.5. O

3. Existence of the minimal solution
We now prove the existence of minimal positive solutions of (1.1),.

LemMa 3.1. If (f1) and (f2) hold, then for any given p >0, there exists Ay > 0 such that for
A € (0,A0), one has I(u) >0 forallu € S, = {u H&(Q) | llull = p}. Moreover, for any € =
0, there exists § >0 (8 < p) such that I(u) > —¢ forallu € {u € H}(Q) | p— & < |lull = p}.

Proof. By (1.5), the Sobolev embedding theorem, and the Holder inequality, we have that,
forallu € S,

I(u) = l||Lt||2—/1j F(x,u*)dx—)tj hudx
2 [0} Q
1
ZEHMHZ—AJ (elul®+ Celul?)dx — ARl [|ull
. ¢ (3.1)
> §||M||2 —AC(llull® + llull?)dx — Ml Al llull

%

1
p(5pAC(p+p?™") ~AlAL),
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where C >0 is a constant which is independent of A, p. Hence by (3.1), there exists Ay >0
such that for A € (0,A¢), we have I(u) >0 forallu € S,.
Moreover, we can choose Ay > 0 small enough such that

a—i(%p—/\C(p+pP1)> - % A1+ (p-1)pP2) 50 forde (0h).  (32)
Then for any € > 0, there exists § >0 (8 < p) such that I(u) > —eforallu € {u € H}(Q) |
p—06 <|ull <p}. O

LemMa 3.2. Assume (f1) and (f2) hold. If Ay is chosen as in Lemma 3.1 and A € (0,A¢),
then there exists a uy € B, such that ug is a positive solution of (1.1),.

Proof. Since h# 0 and h > 0, we can choose a function ¢ € H}(Q) such that [, hg > 0.
For t € (0,+c0), then by (1.5),

2
i) =5 [ (gl +9?) 2] Flxtg") -2t n
’ (3.3)

2, _
< — +ACt2J 24 P72 g|P —/\tj ho.
=S lol Q(|<p| lpl?) e

Then for t small enough, I(tg) < 0.So a =inf{I(u) | u Bj}. Clearly a > —c0. By Lemma
3.1, there exists p’ such that 0 < p’ < p and a = inf{I(u) | u € BT,r}. By Ekeland’s vari-
ational principle [7], there exists a (PS)q-sequence {ux} C B_pr, that is, I(ux) = a+o(1)
and I' (ux) = o(1) strongly in H~!(Q) as k — co. Then there exists a subsequence {uy}
and uy € H}(Q) such that uy — uy weakly in H}(Q), ux — up strongly in quOC(Q) for
2 < q<2* and ux — up a.e. in Q. Since I’ (4) = o(1) strongly in H™1(Q) as k — o0, and
by (f1) and (f2), we have I’ (uy) = 0in H~!(Q), that s, 1 is a weak nonnegative solution
of (1.1)y; and since h # 0, by the maximum principle for weak solutions, we have 1y > 0
in Q. J

By the standard barrier method, we prove the following lemma.

LemMa 3.3. If (f1) and (f2) hold, then there exists A* € (0,+c0] such that
(1) for any A € (0,A*), (1.1), has a minimal positive solution uy and uy is strictly in-
creasing in A;
(ii) if A > A*, (1.1), has no positive solution.

Proof. Setting Q) = {0 <A < 400 | (1.1), is solvable}, by Lemma 3.2, we have Q, is non-
empty. Denoting A* = supQy > 0, we claim that (1.1); has at least one solution for all
A € (0,A*). In fact, for any A € (0,A4*), by the definition of 1*, we know that there exists
A >0and 0 <A< A" <A* such that (1.1)) has a solution )’ > 0, that is,

—Auy +uy =X (f (6 ur) +h(x)) = A(f (x,ur ) +h(x)). (3.4)

Then uy is a supersolution of (1.1),. From h(x) > 0 and h(x) # 0, it is easy to see that 0 is
a subsolution of (1.1),. By the standard barrier method, there exists a solution u) >0 of
(1.1)) such that 0 < uy < uy-. Since 0 is not a solution of (1.1); and A’ > A, the maximum
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principle implies that 0 < u) < u)-. Again using a result of Amann [8, Theorem 9.4], we
can choose a minimal positive solution ) of (1.1),. O

Let u) be the minimal positive solution of (1.1), for A € (0,A*), we study the following
eigenvalue problem

—Av+v =0y f (x,up)v inQ,

. . (3.5)
veHy(Q), v>0inQ,

then we have the following.

LemMa 3.4. Assume (f1)—(f5) hold, and let the first eigenvalue oy of (3.5) be defined by

oy = inf{JQ (IVv)> +v*)dx | v € HH(Q), JQf' (x,up)vidx = 1}. (3.6)

Then
(i) oy is achieved;
(ii) oy > A and is strictly decreasing in A, A € (0,A*);
(iii) A* < +o0 and (1.1))+ has a minimal positive solution .

Proof. (i) Indeed, recall assumption (f3), by the definition of g, we know that 0 < gy <
+oo, Let {v} C Hé (Q) be a minimizing sequence of 0y, that is,

"(x,up)vidx =1, Vi 2 +v2)dx — 0y ask — . (3.7)
Q k Q k

This implies that {v;} is bounded in H} (Q), then there exists a subsequence, still denoted
by {vk} and some vy € Hj(Q) such that

v — vo weaklyin H}(Q),
vk — vo almost everywhere in Q, (3.8)

vi — v stronglyin Lj (Q) for2 <s<2*.

Thus

L) (] Vv0|2 +v3)dx < limian(Q (] Vvk|2 +v})dx = a). (3.9)

By Lemma 2.3 and (f1), we have f'(x,uy) — 0 as |x| — oo, it is standard to show that vy
achieves o). Clearly |vy| also achieves o). By (3.5) and the maximum principle, we may
assume vy >0 in Q.

(ii) We now prove o) > A. Setting A’ >A >0and A" € (0,A*), by Lemma 3.3, (1.1))- has
a positive solution u)-. Since u, is the minimal positive solution of (1.1),, then uy- > u, as
A" > A. By virtue of (1.1))- and (1.1),, we see that

Ay —wp) + (uy —wp) =1 f(xun) —Af (x,mn) + (A = A)h (3.10)
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Applying the Taylor expansion and noting that A" > A, h(x) = 0,and " (x,t) = 0, f(x,t) >
0 for all t > 0, we get

—A(uy =) + (uy —up) = A =) f (x,m) + A f' (x,m) (uy —uwr)

>Af () (ur — ). G-10)

Let vo € H}(Q) and v, > 0 solves (3.5). Multiplying (3.11) by vy and noting (3.5), then we
get

(I,\J () (wy — up) vodx >AJ f(x,up) (un — uy) vodx, (3.12)
Q Q

hence o) > A. Now, let v; be a minimizer of o), then

Jﬂf’ (x,uy ) vidx > L}f’ (x,mp)vidx =1, (3.13)
and there exists t, with 0 < t < 1 such that
L)f' (x,up ) (tvy) dx = 1. (3.14)
Therefore
ov < E|wll’ <|nll’ = (3.15)

showing that o) is strictly decreasing in A for A € (0,1*).
(iii) We show next that A* < +o0. Let A9 € (0,A*) be fixed. For any A > A, we have
0y > A and by (3.15), then

gy, =0y >A (3.16)
forall A € [Ag,A*). Thus 1* < +c0.
By (3.5) and o) > A, we have
IQ(|VW|2+ 1y %) dx >J0Af'(x,m)u§dx, (3.17)
and also we have
L) (|Vup| ‘y [up ] 2)dx — JQAf(x,uA)u)de — L))Lh(x)u;tdx =0. (3.18)

By (f3) and (3.17), we have that

J (|Vm|2+ |uA|2)dx:J )Lf(x,m)u,\dx+f Mh(x)uydx
Q Q Q
<0 Af om)ddeeMBlsuall (19
Q

< 0)|ur|* + AllRl2 ).
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This implies that

hall = 5 (3.20)

for all A € (0,A*). By Lemma 3.3(i), the solution u, is strictly increasing with respect to
A; we may suppose that

uy — wuy+  weakly in H}(Q) as A — A*, (3.21)
and by (1.4), we obtain that
J (Vuy - Vo+urp)dx — J (Vups - Vo +up-9)dx,
Q Q

asA — A* (3.22)
)LJ f(x,uy)+h (pdx—-/l*J (f (x,up) +h)pdx
Q

for all ¢ € H; (Q). Hence uy+ is a minimal positive solution of (1.1),+. This completes the
proof of Lemma 3.4. 0

4. Existence of second solution

When A € (0,4*), we know that (1.1), has a minimal positive solution u) by Lemma 3.3,
then we need only to prove that (1.1)) has another positive solution in the form of Uy =
uy +7, where v is a solution of the following equation:

—Av+v=A(f(x,up+v) — f(x,u1)) inQ,

. . (4.1)
v>0 inQ, veH;Q).

We define the energy functional ] : H} (Q) — R as follows:
J(v) = % J (IVv|* +v?)dx —/\J (F(x,up+v") = F(x,up) — f(x,up)vT)dx.  (4.2)
Q Q

Using the monotonicity of f and the maximum principle, we know that the nontrivial
critical points of energy functional ] are the positive solutions of (4.1).
First, we give an inequality about concerning f and u;.

LemMa 4.1. If (f1) and (f2) hold, then for any € > 0, there exists C; > 0 such that
flou+s)— flxm) — f (x,un)s<es+CesP™!,  s20, uniformly Vx €S,  (4.3)

where 1 < p <2* — 1 and u, is the minimal solution of (1.1)).
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Proof. By (f1),(f2), (1.4), and Lemma 2.3, we obtain u; € L*(Q2) and

limf(x,u,\+s) —flowm) = f (xm)s

=0,
s—0 N
(4.4)
0 < limsup flom+s) _fs(px_’lu)‘) —flxwm)s <C,
uniformly for all x € S. Thus, it is clear that Lemma 4.1 holds. O
LemmMa 4.2. If (f1)-(f5) hold, then there exist p >0 and & > 0 such that
Jv)=a>0 (4.5)
forallv €S, = {ucHj(Q) | llull =p}.
Proof. By Lemma 3.4, it is easy to see that, for all v € H& (Q),
J (|VV|2+V2)deU)LI £ (x,un) v¥dx. (4.6)
Q Q
Again by Lemma 4.1 and the Sobolev embedding theorem, we obtain that
J(v) = %J (|Vv|2+v2)dx—/1j (F(x,up+v*) = F(x,up) — f(x,up)v*)dx
Q Q
Lot ' +12
—2||v|| 2J;)f (x,u2) [v*|dx
—AJ J (f(oup+s) = f(xur) — [ (x,up)s)dsdx
alo
1 A 1 1 (4.7)
> EHVHZ - EJQf'(x,uA) |v+|2dx— EASJQ [vF |2dx— EACSJQ |v* |Pdx
Lo A e 1 2_ p
> 2||V|| 50 vl 2/\8||V|| ACIvl
1
= Ea/{l (or — A= Aawe) V)12 = AC.|Iv]I2.

Since gy > A, we may choose ¢ >0 small enough such that oy — A — Agye > 0. If we take
e = (0y —1)/2Aay, then

J) = 2o (0= D) VI - ClvI. (4.8)

Hence, there exist p >0 and a >0 such that J(v) = a >0 forallve S, = {u € H}(Q) |
lull = p}. O

ProprosITION 4.3. Assume (f1)—(f4) hold. Let {vi} be a (PS).-sequence of ]. Then there
exists a subsequence (still denoted by {vi}) for which the following holds: there exist an
integer | > 0, sequences {x;} € RN, 1 <i<1, k €N, of the form (0,z.) € S, a solution v of
(4.1), and solutions u' of (2.1)), 1 < i <, such that, for some subsequence {vi}, as k — oo,
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one has

Ve —= Vv weakly in H} (Q),

!
J(vi) —*](V)+le(”i)’
l i=1 (49)
Vi — (V+Zui(x—x;i)> — 0 strongin Hy(S),

i=1
wl — o, [xoal] — e, 1sitj<]
where one agrees that in the case | = 0 the above holds without ', x,.

Proof. This result can be derived from the arguments in [9] (see also [10-12]). Here we
omit it. (Il

Now, let § be small enough, D? a §-tubular neighborhood of D such that D% ccS.
Let7(x):S — [0,1] be a C* cutoff function such that 0 < # < 1 and

) 0, ifxe D; (4.10)
X) = . .
g 1, ifxes\D’.

Let ey = (0,0,...,0,1) € RN, denote

To =2 sup |x|+1,

xeD? 7€ [0,0), (4.11)
we(x) = w(x — tey),

where w is a ground state solution of (2.1),.

LemMa 4.4. If (f1)-(f5) hold, then
(1) there exists ty > 0 such that ] (tyw;) <0 for t = ty, T = T,
(ii) there exists T4 > 0 such that the following inequality holds for T = T:

0 < supJ(tywy) <I®(w) = S*. (4.12)

t>0

Proof. (i) By the definition of # and Lemma 1.3(iii), we have

J(tqw,) = %L} (| V(tyw,) |2+ (tnwf)z)dx—AL) J’OWWT (f(ur+s) — f(x,up))dsdx

< E [ (P P+ )y -2 [ Flowi)d
2 Ja S\D
(4.13)

From Lemma 1.3(ii), we have that F(x,u)/(v~'4”) is monotone nondecreasing for u > 0,
where v = 1+ 67! > 2. Thus for any given constant C > 0, there exists ug > 0 such that

F(x,u) > Cu” Yu=u. (4.14)
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Let 1y be a positive constant such that B”(0;ry) = {y | |y| < 1y} CC w, B*(0;1) = {z |
lz| <1}, Q; = B™(0;79) X B"(0;1), and Q;, = B™(0;19) X {z+ ten | |z] < 1}. By the defi-
nition of 1y, we have that O, CC Q\B‘S for all T > 7. This also implies that there exists
tp > 0, as t > ty, we have

F(x,tw;) = Ct"w” V71210, VX E Q1. (4.15)

Therefore as t >ty and 7 = 79,

J(tyw,) < tz—zj (|V(qwe) |+ (an)2)dx—/1Ct”J wldx
¢ e (4.16)

t2
< E”l’]WTHZ —ACt”L) w'dx.

1

Since v > 2, we can choose t; > 0 large enough such that (i) holds.
(i) By (i), J is continuous on H{(Q), J(0) = 0, and Lemma 4.2, we know that there
exists #; with 0 < t; < ty such that

sup] (tnw;) = sup J(tqw:) V7= 10. (4.17)

t=0 t1<t<ty

Now, we define #,(x) = y(x+ tey) forallx € S. For 7 = 19, t) <t < t, by (f4), (1.4),
(2.3), Lemmas 1.3 and 2.5, we have

P
Hepwe) =5 | (19 0pwo) 1P ()Y = 2| Ftwe)dx
thwy
_AJ J’? (f (cyup+5) = f(x,u2) — f(x,5))dsdx
alo
P 2
< %L(—Aw+w)(n$w)dx+ % L |V171|2|w|2dx—)LLF(x,th)dx

+)LL Lrw, f(x,s)dsdx — AJ;) Lfrm (f (e, +5) — f(xu) — f(x,5))dsdx

nwe

2 2
st— (|VW|2+w2)dx—)LJ F(th)dx+t—0J \V11|2|WT|2dx
2 Js s 2 Jpo\p

+AJD5 Jotwrf(x,s)dsdx—/\JQ mer (f (xup+5) — f(x,up) — f(x,5))dsdx

$* +Cee (_2\/17_ J (twe)®  (two)”
< e €Xp + sr)+)LC N 5 + . dx
_ALz JZWWT (f (x,ur+3s) — f(x,ur) — f(x,5))dsdx

§S°°+Cgexp(—2wl1+/,t1 —8‘[)

_)LL2 J'Oﬂwr (f (xyun+s) — f(x,up) — f(x,5))dsdx,

(4.18)

where 0 < € <1+, and C; is independent of 7.
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It follows from Taylor’s expansion that

flur+s) = fxs)+ f(x,8)u+ %f”(x,f)uﬁ, e (s,up+s).

From (f5) and the above formula, for t; <t < t;, we obtain that

[ o) - flom) - 9

0

IMWT (f (x,9)ur — f(x,ur))ds

0

2

=[(tyws)” f(x,tmwr) —nuy f (x,un) [t weu.
Since w; >0 in S, there exists y; > 0 such that

wrzy;  in Qi

By the definition of w; and u)(x) — 0 as |x| — oo, we see that for 7 large enough,

hwy=>uy in Qi

then Lemma 1.3(ii) implies that there exist y, >0 and 7; > 0 such that, for 7 > 1,

(hwe) " flxtiwe) —up' f () >y, in Qe
Now by Lemma 2.5, for 7 > max(7o,7;) and #; <t < t;, we obtain that
twy
JQ L (f (ur+s) — f(x,un) — f(x,5))dsdx
> J [(tlwr)_lf(x,tlwr) —uy f (o, mr) [ womndx
er

= Y1y2 IQ tﬂl){dx

> Czexp(—,llﬂ/tlr),

where C, is independent of 7.
Therefore we obtain that

J (tyw:) §S°°+Cgexp<—2,/1+/11 —sr) —ACzeXp(—Jl-f—[,l]T),

for t € [t1,ty] and T = max(7o, 7).
Now, let € = (1 + p1)/2, then we can find some 7 large enough such that

Csexp<— 2(1+y1)1> —ACzexp<—,l1+‘u1‘r) <0,

for all T > 7, and we complete the proof.

TaEOREM 4.5. If (f1)—(f5) hold, then (4.1) has a positive solution v if € (0,A*).

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
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Proof. Now, set

= {peC([0,1],Hs () | p(0) =0, p(1) = tonwx, },

. 4.27)
— inf . (
¢ = inf max ] (p(s)
By Lemmas 4.2 and 4.4, we have
O<a=<c<S™ (4.28)

Applying the mountain pass theorem of Ambrosetti-Rabinowitz [13], there exists a (PS),-
sequence {vk}, k € N, such that

J(vk) — ¢,

(4.29)
J'(vk) — 0 strong in H'(Q).

By Proposition 4.3, there exist a sequence (still denoted by {vk}), an integer / > 0, se-
quence {x;} in S, 1 <i <1, asolution ¥ of (4.1), and solutions u’ of (2.1), such that

1
c=JW) + > I°(u'). (4.30)
i=0

By the strong maximum principle, to complete the proof, we only need to prove ¥ # 0 in
Q. In fact, we have

c=J@)=a>0 ifl=0, S®>c>J@W)+8* ifl=1. (4.31)
This implies v # 0 in Q. O

5. Properties of solutions

Denote by A = {(A,u) | u solves problem (1.1),}, the set of solutions of (1.1)), A € (0,A*].
For each (A,u) € A, let 03 (1) denote the number defined by

oy () = inf“Q (1Vv2+v2)dx | v € HA(Q), Jnf’(x,u)vzdx _ 1}, (5.1)

which is the smallest eigenvalue of the following problem:

~Av+v? =0y (u) f' (x,u)v inQ,
(5.2)
v>0, veHNQ).

In this section, we always assume that (f1)—(f5) hold. By Lemma 2.3, we have A C
R x L2(RN) n HL(Q).
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LEMMA 5.1. Let u be a solution and uy be the minimal solution of (1.1)) for A € (0,A*).
Then

(1) oa(u) > A if and only if u = uy;

(ii) op(Uy) < A, where U, is the second solution of (1.1) constructed in Section 4.

Proof. Now, let ¥ > 0 and v € H}(Q). Since u and u, slove (1.1),, then
Lw- V() —u)dx+J (i — u)dx
_AJ Flxu) — Foou)ydx = AJ (J Fxt) dt)l//dx (5.3)
> AJQf'(x,u)(u,x —u)ydx.
Lety = (u—uy)* > 0and v € Hj(Q). If y # 0, then (5.3) implies

—JQ(Ilezﬂ//z)dxz —AJQf’(x,u)wzdx (5.4)

and, therefore, the definition of g) (1) implies

J (|vw|2+y/2)dxsaj F e u)ydx

Q Q
< () JQ F ey u)ytdx (5.5)
sjﬂ(le|2+w2)dx,

which is impossible. Hence v = 0, and u = u) in Q. On the other hand, by Lemma 3.4,
we also have that 0, (1y) > A. This completes the proof of (i).

By (i), we get that 0)(U,) < A for A € (0,A*). We claim that 0)(U,) = A cannot occur.
We proceed by contradiction. Set w = Uy — uy; we have

“Aw+w=A[f(x,U)) = f(x, Uy —w)], w>0inQ. (5.6)
By 61 (U)) = A, we have that the problem
~Ap+¢=Af"(x,U))¢, ¢ € Hy(Q) (5.7)

possesses a positive solution ¢;.
Multiplying (5.6) by ¢, and (5.7) by w, integrating and subtracting we deduce that
0= [ A0 = FlUi=w) - £ (5, U wlghd

(5.8)
=3 J;))tf” &) w2¢1dx,

where & € (uy,Uy). Thus w = 0, that is Uy = u) for A € (0,A*). This is a contradiction.
Hence we have that 0, (Uy) <A for A € (0,A*). O
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THEOREM 5.2. Suppose uy= is a solution of (1.1))+, then oy« (uy+) = A* and the solution uy«
is unique.

Proof. Define % : R x Hy(Q) — H~(Q) by
FAu) = Au—u+A(f(x,u) +h(x)). (5.9)

Since 0 (uy) > A for A € (0,A*), we have gy« (up+) = A*. If 0y« (uy+) > A*, the equation
F,(A*,uy+ )¢ = 0 has no nontrivial solution. By the standard argument, we can prove
that %, maps R x Hj (Q) onto H~'(Q). Applying the implicit function theorem to %, we
can find a neighborhood (A* — §,A* +§) of A* such that (1.1), possesses a solution u), if
A€ (A* —§,1* +8). This is contradictory to the definition of A*. Hence we obtain that
O) * (ul*) = \*.

Next, we are going to prove that uy« is unique. In fact, suppose (1.1);+ has another
solution Uy+ = uy«. Set w = Uy« — uy+; we have

~Aw+w=A[f(w+u+) — f(x,up<)], w>0inQ. (5.10)
By 01+ (uy+) = A*, we have that the problem
AP+ =1*f"(x,up)¢, ¢ € H(Q) (5.11)

possesses a positive solution ¢;.
Multiplying (5.10) by ¢; and (5.11) by w, integrating and subtracting we deduce that

0= L}A*[f(WnLuA*) — flxup) = f (x,upe ) w]rdx

1 (5.12)
S RGO

where &+ € (uy+,uy+ +w). Thus w = 0. 0

ProPOSITION 5.3. Let u) be the minimal solution of (1.1)y. Then uy is uniformly bounded
in L= (Q) N HY(Q) forall A € (0,A*], and

w— 0 inL(Q)NHH(Q)asA — 0%, (5.13)
Proof. By (3.20), we have that
]| < A Il (5.14)
1-0
for A € (0,A*), and u, is strictly increasing with respect to A, we can easily deduce that u

is uniformly bounded in L*(Q) N H} (Q) for A € (0,A*] and u) — 0 in Hj(Q) as A — 0™,
By (2.6) and the fact that u, is uniformly bounded in L (Q) N H} (Q), we have that

-1
luall = Cullall, +AC il + )
< Cy||up |92 |72 + C5A (5.15)

< C(AY% +)),
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where C is independent of A, and A € (0,A*]. Hence we obtain that u) — 0 in L*(Q) as
A— 0. a

PROPOSITION 5.4. IfA € (0,A*), then Uy is unbounded in L*(Q) N Hy(Q), and

lim [[T[] = lim |Gl = e. (5.16)
Proof. Let ¢ be a minimizer of 0y (U)) for A € (0,A*), that is

S wugi=1 el =a(). (5.17)

(i) First, we show that {U) : A € (0,4¢)} is unbounded in L*(Q) for any Ay € (0,A*).
We proceed by contradiction. Assume to the contrary that there exists Cy > 0 such that

U]l <Co<oo VAE(0,h). (5.18)

By (f1) and (5.18), there exists a constant M independent of A, such that f'(x, Uy(x)) <
M for all A € (0,A9) and x € Q. Hence, by (5.17) and 0)(U,) < A for all A € (0,A), we
obtain that

lzL)f'(x,UA)(pi < MlgA||> = Moy (Uy) < M, (5.19)

This is a contradiction for all A < 1/M. Hence, for any Ay € (0,A*), we have that {U) : A €
(0,A*)} isunbounded in L (Q)). From this result, it is easy to see thatlim)_.g+ [| Uy || = c0.

(ii) Now, we show that {Uj : A € (0,19)} is unbounded in H}(Q) for any Ay € (0,1*).
If not, then there exists a constant M independent of A, such that

<M VAe (0,A). (5.20)

By (5.17), (5.20), (f2), the Holder inequality, the Sobolev embedding theorem, and
or(Uy) <Aforall A € (0,A*), we have that

1= | £ U0 =G [ (14U gt = Cllgall + LI lloal .

= Clllgal + Gl gl = Gligall” = Gor (L) < G,

where C;, C;, and C; are constants independent of A. Now, let A — 0%, then we obtain
a contradiction. Hence {U) : A € (0,A*)} is unbounded in H{(Q) and limy o+ |Uy|| =
+00., O

Proof of Theorems 1.1 and 1.2. First, we consider the case Q = S\D. Theorem 1.1 now
follows from Lemmas 3.3, 3.4, and Theorems 4.5, 5.2. Theorem 1.2 follows immediately
from Lemma 3.4, and Propositions 5.3, 5.4. O

With the same argument, we also have that Theorems 1.1 and 1.2 hold for QO = RN\D
orQ=SorQ=RN
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