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1. Introduction

The theory of modular space was initiated by Nakano [1] in connection with the theory
of order spaces and was redefined and generalized by Musielak and Orlicz [2]. By defining
a norm, particular Banach spaces of functions can be considered. Metric fixed theory for
these Banach spaces of functions has been widely studied (see [3]). Another direction
is based on considering and abstractly given functional which control the growth of the
functions. Even though a metric is not defined, many problems in fixed point theory for
nonexpansive mappings can be reformulated in modular spaces.

In this paper, a fixed point theorem for nonlinear contraction in the modular space
is proved. Moreover, Kirk’s fixed point theorem for asymptotic contraction is presented
in this space. In order to do this and for the sake of convenience, some definitions and
notations are recalled from [1-6].

Definition 1.1. Let X be an arbitrary vector space over K(= R or C). A functional p: X —
[0,+00) is called modular if
(1) p(x) = 0if and only if x = 0;
(2) p(ax) = p(x) for « € K with |a| = 1, forall x, y € X;
(3) plax+By) <px)+p(y)ifa,f=0,a+S=1,forallx,y € X;
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Definition 1.2. 1f (3) in Definition 1.1 is replaced by

plax+By) < a’p(x)+p(y), (1.1)

for o, = 0, & +* = 1 with an s € (0,1], then the modular p is called an s-convex mod-
ular, and if s = 1, p is called a convex modular.

Definition 1.3. A modular p defines a corresponding modular space, that is, the space X,
given by

X,={xeX|plx) — 0asA — 0}. (1.2)

Definition 1.4. Let X, be a modular space.
(1) A sequence {x,}, in X, is said to be
(a) p-convergent to x if p(x, —x) — 0 as n — +0co;
(b) p-Cauchy if p(x,, — x,4) — 0 as n,m — +oo.
(2) X, is p-complete if any p-Cauchy sequence is p-convergent.
(3) A subset B C X, is said to be p-closed if for any sequence {x,}, C B with x, — x,
one has x € B. B denotes the closure of B in the sense of p.
(4) A subset B C X, is called p-bounded if

0,(B) = sup p(x —y) < +oo, (1.3)
X,yEB

where 6, (B) is called the p-diameter of B.
(5) Say that p has Fatou property if

p(x—y) <liminfp(x, — yu), (1.4)
whenever
X L%, Vn 2, ¥. (1.5)

(6) p is said to satisfy the A,-condition if p(2x,) — 0 as n — +oo whenever p(x,) — 0
asn — +oo.

Example 1.5. Let (X,,p) be a modular space, then the function d, defined on X, X X, by

0 x=y,

1.6
plx)+p(y) x#y, (16

dp(x,y) = ‘l

is a metric and (X,,d,) is a metric space.

Remark 1.6. Let (X,,d,) be a metric space which is given in Example 1.5 and let {x,} be
a Cauchy sequence in it. This means that

dy (XpsXm) — 0 as n,m — oo, (1.7)
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hence
p(x4) +p(xm) — 0 asn,m— oo, (1.8)
and this shows that
p(x,) — 0 asn— oo, (1.9)
Therefore
dy(%1,0) — 0 asn— oo, (1.10)

and this proves that (X,,d,) is a complete metric space. In addition, it implies that all
nonconstant sequences for large indices that are convergent must be convergent to zero.

THEOREM 1.7. Suppose that (X,,p) is a modular space and T : X, — X,, satisfies the follow-
ing condition:

p(T(x)) +p(T(y)) < y(p(x)+p(y)) (1.11)

for all x,y € X,, where y : P — [0, 00) is upper semicontinuous from the right on P and for
allt € P— {0}, y(t) <t and

P={0}U{p(x)+p(») | x,y € X,, x # y}. (1.12)

Then 0 is the only fixed point of T.

Proof. We use the metric d, and note that the closure of P which is denoted by P is with
respect to metric d,. This metric and the mapping T satisfy the conditions of [7, Theorem
1], so the proof is complete. O

2. A fixed point of nonlinear contraction

The Banach contraction mapping principle shows the existence and uniqueness of a fixed
point in a complete metric space. this has been generalized by many mathematicians such
as Arandelovi¢ [8], Edelstein [9], Ciri¢ [10], Rakotch [11], Reich [12], Kirk [13], and so
forth. In addition, Boyd and Wong [7] studied mappings which are nonlinear contrac-
tions in the metric space. It is necessary to mention that the applications of contraction,
generalized contraction principle for self-mappings, and the applications of nonlinear
contractions are well known. In this section, an existence fixed point theorem for nonlin-
ear contractions in modular spaces is proved as follows.

Tueorem 2.1. Let X, be a p-complete modular space, where p satisfies the A;-condition.
Assume that ¢ : R* — [0, ) is an increasing and upper semicontinuous function satisfying

y(t)<t, Vt>O0. (2.1)
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Let B be a p-closed subset of X, and T : B — B a mapping such that there exist ¢,] € R* with
c>1

p(c(Tx—Ty)) =y (p((x—y))) (2.2)

forallx,y € B. Then T has a fixed point.

Proof. Let x € X,. At first, we show that the sequence {p(c(T"x — T" 'x))} converges to
0. For n € N, we have

(T~ T 1) = y(p(I(T"x— T*2x))) -
2.3
<p((T" % —T"2x)) <p(c(T" 'x — T" 2x)).

Consequently, {p(c(T"x — T"x))} is decreasing and bounded from below (p(x) > 0).
Therefore, {p(c(T"x — T""'x))} converges to a.

Now, if a # 0,
a=limp(c(T"x— T"'x)) = lim y (p(I(T" x — T"2))
(2.4)
< lim y (p(c(T"'x — T"2)),
then
a<vy(a), (2.5)

which is a contradiction, so a = 0.

Now, we show that {T"x} is a p-Cauchy sequence for x € X,. Suppose that {{T"x} is
not a p-Cauchy sequence. Then, there are an € > 0 and sequences of integers {my}, {ni},
with my > ng > k, and such that

dy =p(I(T"™x—T™x)) =€ fork=1,2,.... (2.6)
We can assume that
p(I(t™1x — t™x)) <. (2.7)
Let my be the smallest number exceeding n for which (2.6) holds, and
Sk={meN|IneN; p(I(T"x — T"x)) = €,m > ni > k}. (2.8)

Obviously, Zx # @ and since Z; C N, then by Well ordering principle, the minimum
element of X is denoted by m1, and clearly (2.7) holds.
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Now, let oy € R* be such that I/c+ 1/ay = 1, then we have
di = p(I(T™x — T™x)) = p(l?c (T™x — Ty + T x — T"kx))
<p(c(T™x—T" " x)) +p(aol (T x — T"x))
<y (p(I(T™ 'x = T™x))) +p (el (T x — T"x)) (2.9)
<p(I(T™ x — T x)) + p(aol (T"x — T™x))
<€+p(aol(T™x — T™x)).

If k tends to infinity, and by A,-condition, p(agl(T"*'x — T™x)) — 0 (note that agl =
c(ag —1)). Hence, dr. — €, as k — . Now,

di = p(I(T™x — T™x))
< p(e(TmHx — T™Hx)) + p (a0l (T x — T™ %)) + p (ool (T™H x — T"x))

<y (p(I(T™x—T"x))) +p (200l (T™x — T™ ' x)) + p(2a0l (T x — T™x)).
(2.10)

Thus, as k — o, we obtain € < y(€), which is a contradiction for € > 0. Therefore {IT"x}
is a p-Cauchy sequence, and by A,-condition, {T"x} is a p-Cauchy sequence, and by the
fact that X, is p-complete, there is a z € B such that p(T"x — z) — 0 as n — +oo. Now, it is
enough to show that z is a fixed point of T. Indeed,

p(Sirz-2) = p(§(Tz- 11 + S o))
<p(c(Tz = T"'%)) +p(c(T™'x - 2))

<y(p((z=T"x))) +p(c(T""'x —2))

<plc(z=T"x)) +p(c(T"'x - 2)).

(2.11)

Since p(c(z — T"x)) +p(c(T"'x — z)) — 0 as n — oo, then p(¢/2(Tz—z)) =0and Tz = z.
The proof is complete. 0

The following two corollaries (see [5, 14]) are immediate consequences of Theorem
2.1.

CoroLLARY 2.2. Let X, be a p-complete modular space where p satisfies the A,-condition.
Let B be a p-closed subset of X, and let T : B — B be a mapping such that there exist ¢, k,l €
Rt c>1landk € (0,1),

p(c(Tx=Ty)) <kp(l(x—y)), (2.12)

forallx,y € B. Then T has a fixed point.
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CoroLLARY 2.3. Let X, be a p-complete modular space, where p is s-convex and satisfies the
Az-condition. Also, assume that B < X, is a p-closed subset of X, and T : B — B is a mapping
such that there exist ¢, k,1 € RT with ¢ > max{L kl},

p(c(Tx—Ty)) <k’p(l(x—y)), (2.13)

forallx,y € B. Then T has a fixed point.

Proof. Consider Iy to be one constant such that ¢ > [y > max {/,kl}. Then we have

ple(Tx=Ty) < Ko=) = Kp(htx =) < () ploz=»). @10
Thus we get
p(c(Tx—Ty)) <kop(lo(x—y)), (2.15)

where ¢ > [y and ko = (Ik/ly)* < 1. So by using Corollary 2.2, the proof is complete. O

3. A fixed point of asymptotic contraction

The concept of “asymptotic contraction” is suggested by one of the earliest versions of
Banach’s principle attributed to Caccioppoli [15] and it has a long history in the nonlin-
ear functional analysis [16]. Many mathematicians (such as Chen [17], Gerhardy [18],
Jachymski and J6zwik [19], Kirk [20], Suzuki [21], Xu [22], etc.) studied this concept
and proved the existence of fixed points. In this section, Kirk’s fixed point theorem for as-
ymptotic contraction is proved in modular spaces. In order to do this, we need a theorem
from [14] as follows.

TuEOREM 3.1. Let X, be a p-complete modular space. Let {F, }, be a decreasing sequence of
nonempty p-closed subsets of X, with 8,(F,) — 0 as n — +oo. Then (1, F, is reduced to one
point.

Definition 3.2. A function T : X, — X,, is called p-continuous if
p(xy —x) — 0, then p(T(x,)— T(x)) — 0. (3.1)

Now, we state Kirk’s fixed point theorem for asymptotic contraction in modular spaces
(see [8]).

TuEOREM 3.3. Let X, be a p-complete modular space. Also, assume that p satisfies the A,-
condition and the Fatou property. Let f : X, — X,, be a p-continuous mapping and there
exists a sequence {@;}; of continuous functions such that ¢; : [0,+00) — [0,+00) for i € N
and there exists ¢ > 1 such that

pc(fi(x) = f1(»)) < pilp(x—»)), (3.2)

forall x,y € X,. Let ¢; — ¢ uniformly on the range of p, where ¢ : [0,+00) — [0,+00) and
@(r) <r forallr >0 and ¢(0) = 0. If there exists an x € X, such that the sequence { f"(x)} nen
is p-bounded, then f has a unique fixed point.
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Proof. Note that {¢;}; is continuous for all i and since {¢;}; converge uniformly to ¢, then
¢ is continuous.
Now for each x,y € X,, x # y,

limsupp(c(f"(x) = f"())) <limsupg,(p(x = y)) = @(p(x = y)) <px—y).  (3.3)

Now, we prove that limp(f"(x) — f"(y)) = 0 for all x,y € X,. Otherwise, there exist
x,y € X, and € > 0 such that

limsupp(f"(x) — f"(y)) = (3.4)

Then there exists k such that
op(f*(x) = A () <e. (3.5)

Otherwise, pp(f*(x) — f*(y)) > ¢ for all k. Then by taking limsup from both sides of it,
continuity of ¢, and (3.4), we have ¢(¢) = e. This is in contradiction with ¢(e) < e.
Therefore, (3.4) and (3.5) state that

&= hmsupp(fn(x) _fn(y)) < limsupp(c(fn(x) _fn(y)))
= limsupp(c(f” (fk(x)) - f" (fk(y)))) < limsup(pnp((fk(x) _ fk()/))) (3.6)
=o(p(f*x) - f*(»)) <e.

This is clearly a contradiction. Thus we get

lim p(f"(x) — f"()) = 0, (37)

n— oo

for all x, y € X,,. Since p satisfies the A;-condition, then
lim p(c(f"(x) = f"(»))) =0, (3.8)

for all x,y € X,,. This means that the sequence {f"(x)}, for all x € X, and all n € N is
p-bounded.

Now, we assume that a € X,, is arbitrary and a, = f"(a) forn € N, and let Y = 1a, 7.
We can choose o € R* such that 1/a+ 1/c = 1. Consider the sets defined by

Fn={xeY;p(L(x—fk(x)))s%,kzl,...,n}, (3.9)

where L = max{c,2a}.

The p-boundedness of {a,} implies that Y is p-bounded. By using (3.8), and con-
sidering the A,-condition of p, we get F, # & for all n, and F, is p-closed, since f is
continuous. Indeed, if {x,,} C F, is a sequence such that x,, — xo, then

(LGt = £ () < (3.10)
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for all mand k = 1,2,...,n. By the Fatou property of p, and (3.10), we have

p(L o~ 1*(x0))) <liminfp(L(xn — () < . (3.11)

Therefore x € F, and this means that F,, is p-closed.

It is clear that F,,4; < Fy, for all n. Now, it is enough to show that 8P(Fn) —0,asn —
co. Suppose that {x,}, {y,} are two arbitrary sequences with x,, y, € F,. Consider the
subsequences {x, b Aym such that

lim p(x,; — yn,) = limsupp (x, — yu). (3.12)

nj—oco

Then
s, = ) = P & Gy = i)+ (7 ) = 17 () 4 S (7 () = )
pla(n; = 7 (xn))) + (" () = ymy)) +p(e(f" (o)) = 7 ()

IA

= (55 Gy = £ G ) + 250 ) = ) ) 2L ) = £ ()
Sp(za(xﬂj _fnj(xnj))) +P(20‘(fnj(}’nj) _}’nj)) +()0”j(P(xnj _y”j))
< p(L(xn, = £ (x0,))) +p(LUf™ () = ¥,)) + @y (p (X, = ;)

2
< n_ +¢Vlj (P(xnj _)/nj))-
]

(3.13)

Taking limit from both sides,

. . 2 . .
lim p(xy, = yn;) < lim =+ lim @, (p(xs, — yn;)) = @( Im_(p(xs, — yn,))).

Hj—too koo mj =t Hj—to0
(3.14)
Thus, we have
limsupp(x, — y») < @(limsupp(x, — yu))- (3.15)
On the other hand, we have ¢(limsupp(x, — y,,)) <limsupp(x, — y,). So, we get
limsupp(x, — yu) = 0. (3.16)
Therefore
8p(Fy) =0 asn— oo, (3.17)

Consequently, {F,} satisfies all conditions of Theorem 3.1, and then (), F, = {z}. Since
z € F,, for all n, then p(L(z — f(z))) < 1/n, for all n. Then letting n — co, we have p(L(z —
f(2))) =0.Thus L(z — f(z)) = 0. this means that f(z) = z, and the proofis complete. [J
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