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Let D be a bounded domain in R” (n > 2). We consider the following nonlinear elliptic
problem: Au = f(-,u) in D (in the sense of distributions), uj3p = ¢, where ¢ is a non-
negative continuous function on dD and f is a nonnegative function satisfying some
appropriate conditions related to some Kato class of functions K(D). Our aim is to prove
that the above problem has a continuous positive solution bounded below by a fixed har-
monic function, which is continuous on D. Next, we will be interested in the Dirichlet
problem Au = —p(-,u) in D (in the sense of distributions), uj3p = 0, where p is a nonneg-
ative function satisfying some assumptions detailed below. Our approach is based on the
Schauder fixed-point theorem.

Copyright © 2006 Faten Toumi. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let D be a bounded C»'-domain in R” (n = 2), and let G be the Green function for
the Laplace operator with zero Dirichlet boundary condition on dD. In [4], Chung and
Zhao have established interesting inequalities for the Green function G. In particular, they
showed that there exists a constant C > 0 such that for each x, y in D,

éH(x,y) <G(x,y) < CH(x,y), (1.1)

where

Umin(l,W), ifn>3,
lx — y|n lx =yl

H(x,y):= (1.2)

Log(l-l-é(x)a()/)), ifn=2,
lx — y|?

and & (x) denotes the Euclidean distance between x and oD.
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2 Nonlinear elliptic problems

Another crucial inequality for the Green function G called 3G-theorem is given by
Kalton and Verbitsky [7] for #n = 3 and by Selmi [12] for n = 2, namely, there exists a
constant Cy > 0 depending only on D such that for all x, y, and z in D,

d(x) o(y)

This 3G-theorem was investigated by Maagli and Zribi [10], Zeddini [13], and Maagli
and Maatoug [9] to introduce a new class of functions denoted by K(D), (see Definition
1.1 below), which contains properly the classical Kato class introduced by Aizenman and
Simon [1]. Moreover, they used the properties of functions belonging to this class K(D)
to study some nonlinear differential equations.

Gx2)G(zy) _ ~ (8(2) (2)
my) _co( G(x,2) + G(y,z)). (1.3)

Definition 1.1. A Borel measurable function q in D belongs to the class K(D) if g satisfies

a=0 \ yep JDnB(xa) 8(x)

lim (sup MG(x,y) la(y)| dy) =0. (1.4)

In this paper, we will exploit the properties pertaining to K(D) to give some results
about the existence of positive solutions of nonlinear elliptic problems. Our plan is as
follows.

In Section 2, we establish some estimates on the Green function G and some properties
of functions belonging to the Kato class K(D).

In Section 3, we are concerned with the existence of positive continuous solutions of
the nonlinear elliptic problem

Au= f(-,u) (in the sense of distributions),

. 1.5
u>0 1nD, Ujap = ¢, (1.5)

where ¢ is a nontrivial nonnegative continuous function on 0D. Then, we fix a nontrivial
nonnegative harmonic function kg in D, which is continuous in D, and we suppose that
f satisfies the following hypotheses.
(Hy) f:Dx(0,400) — [0,+00) is measurable, continuous with respect to the second
variable and satisfies

f(x,t) <0(x,t), for (x,t) €D x(0,+00), (1.6)

where 6 is a nonnegative measurable function on D X (0,+o0) such that the func-
tion t — 0(x,t) is nonincreasing on (0,+0).

(H;) The function y defined on D by y(x) = 0(x,ho(x))/ho(x) belongs to the class
K(D).

Remark 1.2. Note that the condition “V¢ >0, 6(-,c8(-))/8(-) € K(D)” implies the hy-
pothesis (H,). Indeed, from [14], there exists ¢ > 0 such that for each x € D, hy(x) >
cd(x). So, using the fact that t — 8(x, )/t is nonincreasing function on (0, +00), we obtain
(Ha).
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Under the assumptions (H;)-(H,), we aim at proving the following result: there exists
a constant ¢ > 1 such that if ¢ > chy on 9D, then problem (1.5) has a positive continuous
solution u satisfying for each x € D,

ho(x) < u(x) < Hpp(x), (1.7)

where Hpg is the harmonic continuous function having boundary value ¢ on dD.
This result improves the one of Atherya [2], who considered the following problem:

Au=g(u) inQ, Upa = ¢, (P)

where Q) is a simply connected bounded C*-domain in R"(n > 3) and g(u) < max(1,u™%),
for 0 < a < 1. He proved the existence of a positive continuous solution bounded below
by a fixed positive harmonic function hy provided that there exists a positive constant
¢ > 1 such that ¢ = chy on oD.

In the last section, we will study the following nonlinear problem:

Au=—p(-,u) in D (in the sense of distributions), upp =0, (1.8)

where p is required to verify the following hypotheses.
(Hs) p is nonnegative Borel measurable function on D X (0, o), continuous with re-
spect to the second variable.
(H4) There exist p,q: D — (0,0) nontrivial Borel measurable functions and h,k : (0,
00) — [0, 00) nontrivial and nondecreasing Borel measurable functions satisfying

p)h(t) < p(x,t) < q(x)k(t), for (x,t) € DX (0,00), (1.9)

such that

(A1) p € L, (D),

(A2) q € K(D),

(A3) limy .o+ (h(£)/t) = +oo,

(Ay) limy— i oo (k(8)/t) = 0.
Under these hypotheses, we will prove that (1.8) has a positive continuous solution u
satisfying on D,

ad(x) <u(x) <b, (1.10)

where a, b are positive constants.

Problem (1.8) has been studied by Dalmasso [5] on the unit ball with more restrictive
conditions on p. Indeed, Dalmasso proved the existence of positive solutions provided
that p is nondecreasing with respect to the second variable and satisfies

lim (minp(};’t)> = 400, lim (maxp();’t)> =0. (1.11)

t=0" \ x€B t—+oo \ xeB

When p(x,t) = p(|x|,t), he showed the uniqueness of positive radial solution of (1.8).
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On the other hand, problem (1.8) has been studied on the entire space R” by Brezis
and Kamin [3] for the special nonlinearity p(x,t) = v(x)t%, 0 < a < 1. More precisely they
proved the existence and the uniqueness of positive solution for the problem below:

Au=—v(x)u* inR" lim infu=0. (1.12)

x| =00

Notations and preliminaries. In order to simplify our statement, we adopt the following
notations.

(1) Co(D) :={f € C(D) :lim,_yp f(x) = 0}.
We note that Cy(D) is a Banach space endowed with the uniform norm

Il fllo =sup | f(x)]. (1.13)

xeD

(ii) Let f and g be two nonnegative functions on a set S.
We call f ~ g, if there exists a constant ¢ > 0 such that

%g(x) < f(x) <cglx) Vxes (1.14)
We call f < g, if there exists a constant ¢ > 0 such that
f(x)<cg(x) VxeSs (1.15)

(iii) Let f be a nonnegative function in D, then we denote by V f the potential of f
defined on D by

Vi = | Glunf(ndy. (1.16)

We recall that if f € L}, (D) and V f € L} (D), then we have A(V f) = — f in D (in the
sense of distributions) (see [4, page 52]).

(iv) We denote by d the diameter of D.

(v) For x, y € D, we denote [x, y]* = [x — y[>+8(x)d(y).

2. Properties of the Green function and the class K (D)

In this section, we establish some results concerning the Green function G(x, y) and the
Kato class K(D).

ProrosriTioN 2.1 (see [9, 10]). Let q be a nonnegative function in K(D). Then
(i) the potential Vq € Cy(D),
(i) the function x — 8(x)q(x) is in L}(D).
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In the sequel, we put
3(y)
- ) Gx, dy, 2.1
lIqllp i‘égjué(x) (%) [q(y) | dy 2.1)

o= s JD G(x,2)G(z,y)

G y) lq(z)|dz (2.2)

x,yeD

We recall that if ¢ € K(D), then ||gllp < co.
Now, it is obvious to see that by (1.3), we have

ay <2Glqllp, (2.3)

where C, is the constant given by (1.3).
Next, we will prove that a; ~ [|gl|p.

ProrosITION 2.2. Let q be a function in K(D). Then

(i) for any nonnegative superharmonic function h in D, we have

| awnlam)hndy < aht, vaep, (2.4)
(ii) there exists a constant C > 0 such that
Cligllp < ay. (2.5)

Proof. (i) Let h be a nonnegative superharmonic function in D, then from [11, Theorem
2.1, page 164], there exists a sequence ( fx) of nonnegative measurable functions on D
such that for all y € D,

%mw=LGmnmaw (2.6)

increases to h(y).
Since for each x, y € D, we have

JD G(x, )| q(y) | hi(y)dy < aghi(x). (2.7)

Thus, from the monotone convergence theorem, we deduce the result.

(ii) Let ¢; be a positive eigenfunction corresponding to the first eigenvalue of the
Dirichlet problem Au + Au =0, ujpp = 0. Then, from [8, Proposition 2.6] we have for
xeD

@1(x) ~ 8(x). (2.8)
Since, ¢, is a superharmonic function in D, then by applying (i) to ¢;, we deduce (ii). [
ProrosrITION 2.3. Let p > n/2. Then for each A < 2 — n/p, we have

1
o))"

L?(D) C K(D). (2.9)
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To prove Proposition 2.3, we need the two next lemmas.

LEmMA 2.4. On D2, we have
(i) for n >3, G(x,y) ~ 8(x)8(y)/1x — yI"2[x, y]?,
(i) for n =2, G(x,y) ~ (8(x)8(y)/[x, y]*) Log(1 + [x, y]*/1x — y|?).

Proof. (i) For each a,b > 0, we have

. ab
min(a,b) ~ b (2.10)
So, by (1.1) we deduce (i).
(ii) Using (1.1), the fact that for each > 0, Log(1 +¢) ~ min(1,#) Log(2 +¢), and (2.10)
we obtain that

G(x, y) ~ min (1, S(x)s(y))Log (2+ 5(x)6(y)) ICLIC)) Log (1 + [x, y]? )

lx — yI? lx — yI? [x, y]? lx — yI?
(2.11)
O
LEMMA 2.5. Let A € R. Then on D?, we have
1
_—, ifn=>3,
] 6()/) |x_y|n—2+/1 f
T35 Gy) 2 (2.12)
(8(y))" 0(x) L ( 2d ) ifn=2
lx — y|+* 8 lx=yl)’ ’
where AT = max(0,1).
Proof. By Lemma 2.4, we have on D?
2-A
L o)™t N
1 8(y) lx=yln=2 [xy]
(6( )))1 WG(X,)/) < ( )27)L ) (213)
y d(y) [x, 7] e
4[%)/]2 Log(1+—x_y|2 , ifn=2.
Now, we remark that
[x,y]* ~ |x — y|* +48(x)S(y). (2.14)
So, we have
[x, ]2 = max (| 8(x) — 8(y) | > +48(x)8(y), |1x — yI?) o15)

> max ((8())°, 1x - yI?).
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Therefore by (2.15) we have

LR ! . (2.16)

Loyl ™ -y (0()* "

Hence, it follows that

@™, 1

[y lx—yM 2.17)
Thus, for n > 3, we obtain
1 4(y) 1
7 < - -
(B 80 T = ey (219)
Next, it is obvious to see that
[x, y]? [x, y]? 4d?
Log(1+ o= P2 <Log 2|x—y|2 <Log =) (2.19)
Then, for n = 2, we obtain by (2.17) and (2.19) that
1 8y 1 2d
havas <
s AS(x)G(x’y)_ =y Log(|x_y>. (2.20)
(6(»)
This completes the proof. O

Proof of Proposition 2.3. Let a >0, p >n/2 and q = 1 such that (1/p) + (1/q) = 1. To show
the claim, we use Lemma 2.5 and the Holder inequality. We distinguish two cases.
Case 1 (n=3). Let f € LP(D) and A <2 — n/p. Then, for x € D, we have

8(y) LfD)]
L)ms(x,a) d(x) G (S(y))kdy

1/q
|f(y)| “ n(1-q)+(2-1%)g-1 dn oAt
5Jm(mmdyf”f”p Lr dr) < fllpe2eN,
(2.21)

which tends to zero as « — 0.
Case2 (n=2). Let f € LP(D) and A < 2/q. Then, for x € D, we have

8(y) fW)]
JDmB(x,tx) 0(x) G x’y) (M}’))Ad

1/q
)] 2d J“ " 24\’
< L dy < Log2?%) ar|
L)nB(x,a) lx — y|** 8 [x — yl y=Ifly 0 ' o8 '
(2.22)

which tends to zero as « —0. This completes the proof. O
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In the sequel, we put for f € B(D) and x € D,

_ /() |
V(x)—JDG( XY) 50 ) dy. (2.23)

Remark 2.6. From (1.1), we remark that for x,y € D, we have §(x)3(y) < G(x, y). This
implies that there exists a constant C > 0 such that for each f € B(D) and x € D,

cox) | (0070 ldy < v, (2.24)

In the next proposition, we will give upper estimates on the function v.

ProrosiTION 2.7. Let p >n/2 and A < 2 — n/p. Then there exists a constant ¢ > 0, such that
foreach f € LP(D) and x € D,

(el fll,(8(x)> ", if1- % <A<2- %,
2d .
v(x) < {cll fll8(x (Logé( )> , 1f)t=1—%, (2.25)
cllfll,0(x), ifl<1- %.

To prove Proposition 2.7, we need the following lemma.

LEmMA 2.8 (see [8]). Letx,y € D. Then we have the following properties:
(i) if 8(x)8(y) < |x — yI? then min(8(x),8(y)) < ((/5+1)/2)|x — yl,
(if) if x — y I < 3(x)3(y) then (3 - /5)/2)d(x) = 6( ) < ((3+V5)/2)8(x).

Proof of Proposition 2.7. Let p >n/2, g = 1 such that (1/p) +(1/q) =1 and A <2 — n/p.
Let f € LP(D), then for each x € D, we have

(») (»)
v(x)=JDl G(x,y)g(—;}))kdy+ DZG(x,y) f& Ldyz[ﬁ-lz, (2.26)

where

D1 ={yeD:8(x)8(y) = Ix—yl*},

2.27
Dy ={yeD:8(x)8(y) < Ix—yl*}. 227)

Now, we remark that for each x € D and y € D;, we have by (1.1) and Lemma 2.8

1 1
1 (8x))" b=yl

WG(JCJ) - 71 Log (1 + ( 20(x) >2> forn=2 (228
(8(x)" =yl ) '

forn = 3,
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Then, by the Holder inequality and Lemma 2.8, we obtain for n > 3

I < ||f||p(6(x>)*(jD %dﬂ N

1 ‘X—)’Wl_z)q

2 ((v5+1)/2)8(x)
< 1£1,(6() ( [ P dr)

<N fll, (8>,

4 (2.29)

Now, assume that n = 2, then since g > 1 and Log(1 +t) < t/?4, for each t > 1, we obtain

1 (8(x)) """
G Y ey

(2.30)

So, by the Holder inequality and Lemma 2.8, it follows that

) 1/q
I < HfHP((S(x))l/q/\(JD = d)’)

+ X 1/q
< ||f||p(5(x))l/w(r”§ Ly2)8 ’dr> (2.31)
0
= ||f||p(6(x))2/q_A - ||f||P(6(x))2—)1—2/p'

Next, by (1.1), we have for eachx € D and y € D,

5(x)(5(y))H_

G(x,y) ~ =yl

(2.32)
6()*

Then, using the Holder inequality and Lemma 2.8, we obtain

1-A\ 4 1/q
Iz$||f||p<JDz<%> dy) . (233)

For each y € D,, it follows from Lemma 2.8 that §(y) < |x — y|. So, we will discuss two
cases.
Case 3. If A < 1, it follows that

1

1/q
L= ||f||p5(x)(L)2 m@’) (2.34)

d 1/q
< 11,6(x) J prol=1agy | (2.35)
((v/5-1)/2)8(x)
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Thus, we distinguish the following two subcases.
(a) If A < 1 — n/p, then from (2.35) it follows that

d 1/q
L= ||f||p6(x)(J r“”lp)/(l’l)dr>
((v/5-1)/2)8(x)
1/q
(Log%) ifA=1- %; (2.36)
< £ 1158(x)
1 ifl<1- 2.
p

(b) If 1 —n/p < A < 1, then by (2.34) we obtain

L s (A+n/p-1)q 1/q
L= Ifll,(8(x)) ! /p(JD mdy>

Va 2.37
y f||p(6(x>)“‘"/”(L ! dy) 237

(V5-1)/2)8(x)<|x—yl=<d) |x — y|"

< £l (8x)* 2

Case 4. If A > 1, then from (2.33) it follows that

(A-1)q n/(p-1) /g
L= f||p(a(x>)””/P< JD (5<x>) (6(x)) dy)

" (A-1) |x_}’|"+"/p711/q (2.38)
o (], (4 L)
Since (A — 1)g €]0,1], it follows from [8, Corollary 2.8] that
L2 fll,(800)) . (239)
This completes the proof. O

Remark 2.9. By taking p = + (i.e., ¢ = 1), in Propositions 2.3 and 2.7, we find again the
results of Maagli in [8].
3. First existence result

In this section, we are interested in the existence of positive solutions for problem (1.5).
We recall that hy is a fixed nontrivial nonnegative harmonic function in D, which is con-
tinuous in D. Let ¢ be a nontrivial nonnegative continuous function on oD.

We denote by Hp¢ the solution of the Dirichlet problem

Aw=0 inD, Wijap = @. (3.1)

The main result of this section is the following.
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TaEOREM 3.1. Assume (H,)-(H,). Then there exists a constant ¢ > 1 such that if ¢ = chy on
0D, then problem (1.5) has a positive continuous solution satisfying for each x € D

ho(x) < u(x) < Hpe(x). (3.2)

To prove Theorem 3.1, we need the following lemma.
For a fixed g € K*(D), put

I,={veK(D):Ivl<gq}, (3.3)

then, we have

LEmMA 3.2. Let q be a nonnegative function belonging to K(D), the family of functions

81=1] GConmndyiver,] (3.4)
is uniformly bounded and equicontinuous in D, and consequently, it is relatively compact in
Co(D).

Proof. Let q € K(D) and T be the operator defined on §, by

1v(x) = | Glxyv(ndy. (3.5)

By Proposition 2.1(i), we obtain

sup | Tv(x)| < supJ G(x,y)gq(y)dy < oo. (3.6)
xeD xeDJD
Then the family T(g,) is uniformly bounded.

Next, we propose to prove the equicontinuity of T'(F,) in D.

Let v € §¢, X0 € D, and & > 0. Let x,x" € B(xo, ) N D.

Then

| Tv(x) — Tv(x')| < |Vg(x) - Vg(x)]. (3.7)
Since, by Proposition 2.1(i), Vg € Cy(D), it follows that
| Tv(x) - Tv(x')| — 0 as|x—x'| — 0. (3.8)

Similarly, we have lim,_.5p Tv(x) = 0. Which implies that the family T(J,) is equicontin-
uous in D.

Finally, by Ascoli’s theorem, the family T(3,) is relatively compact in Cy(D). Which
completes the proof. O

Proof of Theorem 3.1. We will use a fixed-point argument.
Let ¢ = 1 + ey, where ay, is the constant defined by (2.2) associated to the function y
given in (Hy). Let ¢ € C*(9D) such that ¢ > ch on oD.
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We consider the set A given by
A={ueCD):hy <u<Hpg}. (3.9)
Since ¢ > chy on 0D, we obtain
Hpy >chy onD. (3.10)

So A is a nonempty closed bounded and convex set in C(D).
For each u € A, define

Tulx) = Hog) = | Gxu)f (nu(»)dy, VxeD, (3.11)

Now, we will prove that the family TA is relatively compact in C(D).
For each y € D and u € A, we have by (H,)

0(y.h
0= f(yuy) < (yhToy()y))

with ¢ = SUpep ho(y). Then, the function y — f(y,u(y)) € I'ey.
Hence the family

ho(y) < ey (). (3.12)

{JDG(-,y)f(y,u(y))dy:uEA}ESCW. (3.13)

So, using Lemma 3.2 and the fact that Hp¢ is continuous in D, we conclude that TA is a
relatively compact set in C(D).

Next, we intend to show that T maps A to itself.

It’s obvious to see that

Tu(x) < Hpe(x), VxeD. (3.14)
Moreover, from (H;), and by using (3.11), (2.4), and (3.10), we obtain that for eachx € D
Tu(x) = Hpe(x) — ayho(x) = ho(x), (3.15)

which proves that TA C A.

Now, let us prove the continuity of the operator T in A in the supremum norm. Let
(ug ) be a sequence in A which converges uniformly to a function u in A. Then, for each
x € D, we have

| Tuk(x) — Tu(x)| < JD GO, | f(ru(») = f(y,u(y)) | dy. (3.16)
On the other hand, by hypothesis (H;), we have

L f (rour(p) = f (su(y)) | <2ho(0)y(y) < w(yp). (3.17)
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Since Vy € Cy(D), we conclude by the continuity of f with respect to the second variable
and the dominated convergence theorem that

VxeD, Tur(x)— Tulx) ask — +oo. (3.18)

Since TA is a relatively compact family in C(D), therefore the pointwise convergence
implies the uniform convergence, namely,

[|Tug — Tu||, — 0 ask — +oo. (3.19)

Thus, T is a compact mapping on A.
Finally the Schauder fixed-point theorem implies the existence of u € A such that Tu =
u, that is, for each x € D

u(x) = Hpo(x) — jD Gl ) f (y(y))dy. (3.20)

Now, let us verify that u is a solution of problem (1.5).

Since ¥ € K(D), it follows from Proposition 2.1(ii), that y € L}, (D).

Furthermore, we have f(-,u) < cy, then f(-,u) € LIIOC(D) and V(f(-,u)) € §ey. So by
Lemma 3.2, we have

V(f(-,u)) € Co(D) C L, (D). (3.21)

Thus, applying A to both sides of (3.20) and using the fact that A(V f) = — f, we obtain,
that u satisfies the elliptic differential equation

Au = f(-,u) in D (in the sense of distributions). (3.22)

Moreover, since Hpg = ¢ in 0D and V(f(+,u)) € Cy(D), we conclude that u5p = ¢. So u
is a positive continuous solution of problem (1.5). O

Now, let us state another comparison result for the solution u of problem (1.5), in the
case of the special nonlinearity f(x,t) = q(x)D(¢).

For this aim, suppose that the following hypotheses on g and @ are adopted.

(i) @:(0,00) — (0, 00) is continuously differentiable nonincreasing function.

(ii) g is a nontrivial nonnegative function on D such that

qeCr.(D),0<a<1, Vc>0, x— MCI)(C(S(x)) € K(D). (3.23)

6(x)

Moreover, let F be the function defined on [0, ) by

|
F(t) = L s (3.24)

It is obviously seen, from hypotheses adopted on @, that the function F is a bijection
from [0, o) to itself. Then, we have the following.



14  Nonlinear elliptic problems
THEOREM 3.3. Let u be the solution given by (3.20) of the following problem:
Au+q®(u) =0, inD, Ugp = . (3.25)
Then, we have u € C***(D) N C(D). Further, u satisfies on D
u(x) < min (Hpe(x),F ' (Hp(F o ¢)(x) — Vq(x))). (3.26)
Proof. Let v be the function defined on D by
v=F(u)—Hp(Fo¢)+Vq. (3.27)

Then v € C?*(D) and we have

_ 1 u_ D' (u)
O(u) (D(u))

vl —g= -2 g,z (3.28)

(O(u))’

Thus, Av > 0. In addition, since Vq € Cy(D), it follows that v € Cy(D). Then, the max-
imum principle (see [6, pages 465-466]) implies that v < 0, in D. This completes the
proof. O

Av

Remark 3.4. (1) Let A >0 and ¢(x) = A, Vx € dD. Then, we have for each x € D,
Hp(F o 9)(x) - Vq(x) = F)(x) - Vq(x) < F(L). (3.29)
Thus for each x € D,
F'(Hp(Fo¢)(x)—Vq(x)) <A = Hpep(x). (3.30)
Therefore, from (3.26) we have for each x € D,
ho(x) < u(x) < F'(Hp(F o 9)(x) — Vq(x)). (3.31)

(2) By hypothesis (i), we have

D(llull) = (llplles)- (3.32)
Therefore,
ho(x) < u(x) < Hpp(x) — ©(ll¢llw) Vq(x). (3.33)
Then we have
ho < u < min (Hpp — ®(ll¢llw),F (Hp(F o ¢) — Vq)). (3.34)

Example 3.5. Let hy be a nontrivial nonnegative harmonic function, which is continuous
on D. Then, from [14], there exists ¢; such that for each x € D

ho(x) = c18(x). (3.35)
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Let &« >0, and f be a nonnegative measurable function on D X (0, %), continuous with
respect to the second variable satisfying

o) < 5(8(x)) " g(x), (3.36)
where the function g belongs to K*(D).
Then, there exists ¢ > 0 such that if ¢ > (1 + ¢)hg on 0D, the problem

Au= f(-,u) (in the sense of distributions)

. 3.37
u>0 1inD, Ujpp = ¢, ( )

has a positive continuous solution in D satisfying
ho(x) < u(x) < Hpe(x). (3.38)

4. Second existence result
In this section, we prove the following result for problem (1.8).

THEOREM 4.1. Assume (H3)-(Ha). Then problem (1.8) has a positive solution u € Cy(D).
Moreover there exist positive constants a and b, such that

ad(x) <u(x) <b. (4.1)
Proof. By (A;) and (Hy), the function g € K*(D). Then, from Proposition 2.1(i), we have
Vg € Cy(D). So, M := sup, . (Vgq(x)) < 0.

From (A4), there exists b > 0 such that Mk(b) < b.
On the other hand, by (A,), there exists a compact K C D such that

0< JK(?(y)p(y)dy< . (4.2)
Furthermore, by (1.1), there exists « > 0 such that for each x, y in D
G(x,y) = ad(x)8(y). (4.3)
Next, let 7 be the constant given by

ri= }i’1€11f<6(y). (4.4)

Then, from (H,), there exists a > 0 such that

ah(ar) L 8(»)p(y)dy = a. (4.5)

Now, let Q be the convex set

Q:={ue Cy(D):ad(x) <u(x) < b} (4.6)
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and S be the operator defined on Q by

Su(x) = L) G(x, y)p(y>u(y))dy. (4.7)

We will prove that S is a compact mapping on Q.
By (Hy4), we have for each u € Q

p(-u) < k(b)q =§. (4.8)

Since g € K* (D), it follows that the function y — p(y,u(y)) € I'y.
Hence, the family

1], 6Cmptrumdyueal < g (4.9)

Consequently, by Lemma 3.2, the family S(Q) is relatively compact in Cy(D). Next, we
need to verify that for u € Q) and x € D, we have

ad(x) < Su(x) <b. (4.10)
Let u € Q and x € D, then by (H,), we have
Sutx) < | Gl y)aOk(u()dy
<k(b) JD G(x,y)q(y)dy (4-11)

<Mk(b) <b.

On the other hand, from (H4) and using (1.1) and (4.5), we have
Sux) = ad(x) | 8()p(IR(u()dy
> ad(x) | 80)p(»h(ad(y)dy (4.12)

> 8(x) [och(ar) JKS(y) p(y)dy] > ad(x).

Thus, it follows that S(Q) C Q.

Now, we consider a sequence (u)x in Q which converges uniformly to u in Q. Since p is
continuous with respect to the second variable, we deduce by the dominated convergence
theorem that for all x € D,

Sur(x) — Su(x) ask — +oo. (4.13)

Therefore, using the fact that S(Q) is relatively compact in Cy(D), we conclude that
[ISur — Sulle as k — +c0. Hence S is a compact mapping from Q to itself. Then by the
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Schauder fixed-point theorem, there exists a function u € Q such that

u(x) = JD G(x, y)p(y,u(y))dy. (4.14)

Now, since g € K*(D) then by Proposition 2.1(ii), we have p(-,u) € LIIOC(D) and V(p(-,
u)) € Co(D) C L}, (D).

So, u satisfies (in the sense of distributions) Au = —p(-,u) in D. Moreover, lim,_.5p #(x)
=lim,_5p V(p(-,u(-)))(x) = 0. So u is a solution of problem (1.8). O

Example 4.2. Let p>n/2and f € LY (D). Assume that the function g : (0,00) — [0, ) is
a nontrivial continuous and nondecreasing function satisfying

lim 40) = 400, lim gt) =0. (4.15)
=0+ t—+oo f
Then for each A < 2 — n/p the problem
Mu=—(8(x) ' f(x)gw) inD,  wap=0, (4.16)

has a positive solution u € Cy(D). Moreover, from Proposition 2.7, we have for each x €
D,

(cll £, (8x))> "7, if1-2<r<2-2,
2d (p-1/p ! n ’
u(x)54 C”f”pé(X)(LOg(S()C)) N ifA = 1—5, (417)
cll £1,8(x), ifA<1— %.
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