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This paper deals with a class of nonlinear elliptic equations in an unbounded domain
D of R", n = 3, with a nonempty compact boundary, where the nonlinear term satisfies
some appropriate conditions related to a certain Kato class K* (D). Our purpose is to
give some existence results and asymptotic behaviour for positive solutions by using the
Green function approach and the Schauder fixed point theorem.
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1. Introduction

In this paper, we are concerned with the following nonlinear elliptic equation
Aw)+ f(-,u)=0 inD, (1.1)

(in the sense of distributions) with some boundary values (see problems (1.8), (1.15) be-
low), where D is an unbounded domain in R” (# > 3) with a nonempty compact bound-
ary.

Numerous results are obtained for (1.1), in both bounded and unbounded domains
D c R" with different boundary conditions (see, e.g., [2, 5-9, 11, 12] and the reference
therein).

Our aim in this paper is to undertake a study of (1.1) when the nonlinear term f (x,?)
satisfies some appropriate conditions related to a certain Kato class of functions K (D)
and to answer the questions of existence and asymptotic behaviour of positive solutions.

Our tools are based essentially on some inequalities satisfied by the Green function
Gp(x,y) of (—=A) in D which allow to some properties of functions belonging to the class
K= (D) introduced in [1] as the following definition.
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2 Positive solutions on some exterior domains

Definition 1.1. A Borel measurable function g in D belongs to the class K® (D) if g satisfies
the following conditions:

. PD(}’) ) _
o (ilelg L\x—ylsamb pp(x) Goloaldy | =0

i )
| J PD Gp(x, d ) -0,
M (ilelg Gyieanop polx) P yla(y)|dy

where pp(x) = dp(x)/(1+8p(x)) and dp(x) denotes the euclidien distance from x to the
boundary of D.

(1.2)

We will often refer in this paper to the bounded continuous solution Hg of the Dirich-
let problem

Aw=0 1inD,
w/op = g, (1.3)
‘llim w(x) =0,

where g is a nonnegative bounded continuous function in dD.
We also refer to the Green potential of a measurable nonnegative function f, defined
in D by

V@) = | Gol)f()dy. (1.4

Our paper is organized as follows. Our existence results are proved in Sections 3 and 4.
In Section 2, we collect and improve some preliminary results about the Green function
Gp and the class K®(D). In Section 3, we establish an existence result for (1.1) where a
singular term and a sublinear term are combined in the nonlinearity f(x,t).

The pure singular elliptic equation

Au+px)u?=0, y>0,xeDCR" (1.5)

has been extensively studied for both bounded and unbounded domain D. We refer to
([5-9] and the references therein) for various existence and uniqueness results related to
solutions for (1.5).

For more general situations and when D is an unbounded domain with a nonempty
compact boundary Bachar et al. showed in [1] that the following problem:

Au+¢(x,u)=0 inD,
I/I/aD =0, (16)

lim u(x) =0,

| x| =00
admits a unique positive solution if ¢ is a nonnegative measurable function on (0, %),
which is nonincreasing and continuous with respect to the second variable and for each
¢ >0, the function ¢(-,c) € K (D).
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On the other hand, (1.1) with a sublinear term f(-, ) have been studied in R” by Bre-
sis and Kamin [2]. Indeed, the authors proved the existence and uniqueness of a positive
solution for the problem

Au+p(x)u®=0 inR",
liminf u(x) = 0, (1.7)

[x| =00

with 0 < @ < 1 and p is a nonnegative measurable function satisfying some appropriate
conditions.

In the third section, we combine a singular term and a sublinear term in the nonlin-
earity. Indeed, we consider the following boundary value problem

Au+@(x,u)+w(-,u) =0 in D (in the sense of distributions),

u>0 inD,

U/aD — O, (18)

lim u(x) =0,
[x[— o0
where ¢ and v are required to satisfy the following hypotheses.
(Hy) ¢ is a nonnegative Borel measurable function on D X (0, ), continuous and
nonincreasing with respect to the second variable .
(Hy) V¢ >0, x — ¢(x,c0(x)) € K*(D), where 6(x) = 8p(x)/(1+ |x|)"1.
(Hs) w is a nonnegative Borel measurable function on D X (0, o), continuous with re-
spect to the second variable such that there exist a nontrivial nonnegative func-
tion p and a nonnegative function g € K* (D) satistying for x € D and ¢ > 0

p)f(1) = y(xt) < q(x)g(1), (1.9)
where f is a measurable nondecreasing function on [0, c0) satisfying

lim vAO)

lim &= = +oo (1.10)

and g is a nonnegative measurable function locally bounded on [0, ) satisfying

) g(t) 1
limsupS—= < . 1.11
SUP S < g (L1D)

By using a fixed point argument, we will state the following existence result.

THEOREM 1.2. Assume (H,)—(Hsz). Then the problem (1.8) has a positive solution u €
Co(D) satisfying for each x € D

af(x) < u(x) < V(p(-,a0))(x)+bVq(x), (1.12)

where a, b are positive constants.
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Note that in [11] Maagli and Masmoudi studied the case ¢ = 0, under similar condi-
tions to those in (H3). Indeed the authors gave an existence result for

Au+y(-,u)=0, inD, (1.13)

with some boundary conditions, where D is an unbounded domain in R” (n > 2) with a
compact nonempty boundary.
Typical examples of nonlinearities satisfying (H,)—(H3) are

@(x,t) = p(x)(0(x))'t™?, fory=0,

(1.14)
v(x,t) = p(x)t*log(1+1tF), fora,f = 0suchthata+pB<1,
where p is a nonnegative function in K* (D).
In Section 4, we consider the nonlinearity f(x,t) = —¢(x,t) and we use a fixed point
argument to investigate an existence result for (1.1). More precisely we fix a nonnegative
function & continuous on dD and we consider the following problem:

Au = ¢(x,u) in D (in the sense of distributions)

ulop =§ (1.15)
lim u(x) =1=0,

[x] =00

where ¢ : D X [0,00) — [0, 00) is a Borel measurable function satistying the following hy-
potheses:

(H4) ¢ is continuous and nondecreasing with respect to the second variable,

(Hs) ¢(x,0) =0; Vx € D,

(He) Yc>0, ¢(-,c) € K*(D).
Under these hypothesis, we prove the following theorem.

THEOREM 1.3. Assume (Hy)—(Hg). Then the problem (1.15) has a unique nontrivial non-
negative solution u € Cy(D) satisfying

0 <Ah(x)+HE(x) —u(x) < Vo(-,0)(x); VxeD, (1.16)
where h is the harmonic function given by

h(x) =1-HI1(x). (1.17)

Remark 1.4 (see [3, page 116]). If we suppose further that there exists « € (0,1) such that
¢ is locally a-holder continuous on D X [0, ), then the solution u of the problem (1.15)
is in C**% (D).

As consequence of the preceding theorem we prove the following corollary.

CoROLLARY 1.5. Let a: [0,00) — [0,00) be a continuous function. Assume that ¢ is a lo-
cally holder continuous function satisfying (Ha)—(Hg) and let & be a nontrivial nonnegative
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continuous function on 0D. Then the following problem:

Au+a(u)|Vul*> =¢(-,u) inD
u=§& onoD (1.18)
|l‘im ux)=A=0
x|—o00
has a unique nontrivial nonnegative bounded solution u € C*(D).

In order to simplify our statements, we define some convenient notations.

Notations. Throughout this paper, we will adopt the following notations.
(i) D is an unbounded domain in R” (n > 2) such that the complementary of D
inR", D" = U7:1Dj where Dj is a bounded C"!'-domain and D;(\D; = @, for
i+ .
(ii) Cb(;)) ={f € C(D): f is bounded in Dj}.
(ifi) Co(D) = [f € C(D) :limy—zeap f(x) = limjy o f(x) = 0.
We note that C,(D) and Cy(D) are two Banach spaces endowed with the uni-

form norm
||f||m=ztelg|f(x)|. (1.19)
(iv) For x € D, we denote by
Ap(x) = 8p(x) (Op(x) +1). (1.20)

(v) Let f and g be two positive functions on a set S.
We denote f ~ g, if there exists a constant ¢ > 0 such that

%g(x) < f(x) <cg(x) VxeS. (1.21)
We denote f < g, if there exists a constant ¢ > 0 such that
f(x) <cg(x) VxeS (1.22)

(vi) Werecall thatif f € L} (D) and V f € L{, (D), then we have in the distributional
sense (see [3, page 52])

A(Vf)=—f inD, (1.23)

(vii) For each g € B*(D) such that V(q) < o, we denote by V, the unique Kernel
which satisfies the following resolvent equation (see [10])

V=V,+V,(qV) =V +V(qVy). (1.24)

(viii) Let f € B*(D) such that V f < co. We recall that for each x € D, the function
t — Viy f (x) is completely monotone on [0, +).
(ix) Let a € R"\D and r > 0 such that B(a,7) € R"\D.
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Then we have

Gp(x,y) = r27nG(D7a)/r(x ; 4 g) forx,y € D,

. (1.25)

&xx):raw_@ﬁ( ), for x € D,

So without loss of generality, we may suppose throughout this paper that B(0,1) C
R"™\D. Moreover, we denote by D* the open set given by

D* ={x* € B(0,1):x € DU {o0}}, (1.26)

where x* = x/|x|? is the Kelvin inversion from D U {0} onto D*. Then, (see [1]), we
have for x,y € D,

Gp(x,y) = x> "|y|* "Gps (x*, y*). (1.27)

2. Properties of the green function and the class K*(D)

In this section, we recall and improve some results concerning the Green function Gp(x, y)
and the Kato class K* (D), which are stated in [1].

3G-Theorem. There exists a constant Cy > 0 depending only on D such that for all x, y
and zin D

PD(Z)
po(y)

GD(X,Z) +

Gp(x,2)Gp(z,y) - CO<pD(Z)

Gp(x,y) pp(x) GD(%Z))- (2.1)

ProrosiTION 2.1. On D? (i.e., x,y € D), we have

N Ap(x)Ap(y)
Go oY) ~ (=i n(L s ) (2.2)
pp(y) 2
oo (%) Gp(x,y) = (ép(»))" (2.3)
dp(x)dp(y)
|xD|n—l|;|n)il < Gp(x,y). (2.4)

Moreover, for M > 1 and r > 0 there exists a constant C > 0 such that for each x € D and
y € D satisfying |x — y| = r and | y| < M, we have

GM%wsc@gki§. (2.5)
[x—yl"
In the sequel, we use the notation
ligllp = sup Po ) Gp(x,y)|q(y)|dy, (2.6)

xeDJD pD(x)

J GD(x>Z)GD(Zay)
D

ey lat2)dz (27)

(Xq = Sup
x,y€eD
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It is shown in [1] that
If g€ K*(D), thenlqllp < . (2.8)
Now, we remark that from the 3G-theorem we have
ay <2Gllqllp, (2.9)

where Cy is the constant given in the 3G-theorem.

ProrosriTION 2.2. For any nonnegative superharmonic function v in D and any q € K* (D),
we have

J;J Gp(x, »)v(y) |q(»)|dy < agv(x), VxeD. (2.10)

Proof. Let v be a positive superharmonic function in D. Then by ([13, Theorem 2.1, page
164]), there exists a sequence ( fi)x of positive measurable functions in D such that the
sequence (vk)x defined on D by

vily) = JD Go(1,2) fi(2)dz (2.11)

increases to v.
Since for each x € D, we have

jD oo y)i(») | a) | dy < agui(x), (2.12)

the result follows from the monotone convergence theorem. O

ProrosriTioN 2.3 (see [1]). Let q be a function in K* (D). Then
(a) the potential V q is bounded in D and limy_.,cap Vq(x) =0,
(b) the function x — (8p(x)/|x|""1)q(x) is in L'(D),
(c)

0(x) X Vq(x). (2.13)

ProrosITION 2.4 (see [1]). Let q be a nonnegative function in K® (D). Then the family of
function

Fq=1Vp; p=q} (2.14)

is relatively compact in Co(D).

Example 2.5. Let p >n/2 and A,u € R such that A < 2 — n/p < p. Then using the Holder
inequality and the same arguments as in ([ 1, Proposition 3.4]), we prove that for each f €
L?(D), the function defined on D by f(x)/|x|#**(8p(x))" belongs to K* (D). Moreover,
by taking p = +o0, we find again the results of [1].
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ProposITION 2.6. Let v be a nonnegative superharmonic function in D and q € K (D).
Then for each x € D such that 0 < v(x) < 0, we have

exp (—ay) - v(x) < v(x) = Va(gqv)(x) < v(x). (2.15)

Proof. Let v be a nonnegative superharmonic function in D. Then by [13, Theorem 2.1,
page 164], there exists a sequence ( fi)x of positive measurable functions in D such that
the sequence (vk)x given in D by

ye(x) = jD Go(x,9) fi()dy (2.16)

increases to v.

Let x € D such that 0 < v(x) < co. Then there exists kg € N such that 0 < V fi(x) < oo,
for k > k.

Now, for a fixed k = ko, we consider the function y(t) = Vi, fi(x).

Since by (viii) the function y is completely monotone on [0, ), then logy is convex

on [0, 00).
Therefore
y'(0) )
0) <y(1 ( — , 2.17
y0) < yesp (-1 (217)
which means
V(igV
V filx) < Vi filx) exp (%) (2.18)
Hence, it follows from Proposition 2.3 that
exp (—ag) - Vfilx) < Vg fi(x). (2.19)
Consequently, from (1.24) we obtain that
exp (—ag) - Vfi(x) < Vfilx) = V4 (qV fi(x)) (x) < V fr(x). (2.20)
By letting k — o0, we deduce the result. O

3. First existence result

In this section, we give an existence result for problem (1.8). We recall that 0(x) = ép(x)/
((1+ |x])"1) ~ 8p(x)/|x|"~! and we prove Theorem 1.2.

Proof of Theorem 1.2. Assuming (H;)—(Hs), we will use the Schauder fixed point theo-
rem. Let K be a compact of D such that we have

0<a:= JKG(y)p(y)dy<00, (3.1)

where p is given in (Hs).
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We put := min{0(x) : x € K}. We note that by (2.4) there exists a constant a; >0
such that for each x,y € D

a10(x)0(y) < Gp(x, ). (3.2)
Then from (1.10), we deduce that there exists a > 0 such that
ajaf(af) = a. (3.3)

On the other hand, since g € K* (D), then by Proposition 2.4 we have that || Vg« < .
So taking limsup,_ , g(£)/t <& < 1/[|Vqll~ we deduce by (1.11) that there exists p >0
such that for ¢ > p we have g(t) < 6t. Put y = sup,_,.,g(t). So we have that

0<g(t)<dt+y; t=0. (3.4)
Furthermore by (2.13), we note that there exists a constant a, > 0 such that
®0(x) < Vg(x); VxeD, (3.5)

and from (H,) and Proposition 2.4, we have || V¢(+,a0) |l < .
Let b = max{a/az, (8l|V(-,a0)|ls +y)/(1 —38lVqlle)} and consider the closed con-
vex set

A={ue CyD):ab(x) <u(x) < Ve(-,a0)(x) +bVq(x); Vx € D}. (3.6)

Obviously, by (3.5) we have that the set A is nonempty. Define the integral operator T on
Aby

Tu(x) = JD Gp(x, ) [e(y,u(y)) +v(y,u(y))]ldy; VxeD. (3.7)

Let us prove that TA C A. Let u € A and x € D, then by (3.4) we have

Tu(x) < Vo(-,a0)(x) + JD Gp(x,y)q(y)g(y)dy

< Vo(-,a0)(x) + L) Gp(x,y)q(y) [6u(y) +y]dy 8

< Vo(.aB))+ [ Golx2)a)8(1V(-,ad)ll. + bl Valle) + y)dy
< Vo(-,a0)(x) +bVq(x).
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Moreover from the monotonicity of f, (3.2) and (3.3), we have
Tu(a) > | Gotw )y () dy

> ,60(x) j 0»)p(y)f (ab(y))dy

(3.9)
> @0 fa) | 00np(rdy
= maf(ap)o(x)
> af(x).
On the other hand, we have that for u € A,
o(-,u) < ¢(-,ab), v(u) < [0(||Ve(-,a0)||, +blVglle) +ylg. (3.10)

This implies by Proposition 2.6 that T'A is relatively compact in Cy(D). In particular, we
deduce that TA C A.

Next we prove the continuity of T in A. Let (1 )x be a sequence in A which converges
uniformly to a function u in A. Then since ¢ and y are continuous with respect to the
second variable, we deduce by the dominated convergence theorem that

VxeD, Tug(x)— Tu(x) ask— . (3.11)

Now, since T'A is relatively compact in Cy(D), then we have the uniform convergence.
Hence T is a compact operator mapping A to itself. So the Schauder fixed point theorem
yields to the existence of a function u € A such that

u(x) = JD Gp(x, ) [o(y,u(y)) +v(y,u(y))]ldy; VxeD. (3.12)

Finally since g and ¢(-,af) are in K®(D), we deduce by (3.10) and Proposition 2.4, that
the map y — ¢(y,u(y)) + y(y,u(y)) € L\, .(D). Moreover, since u € Co(D), we deduce
from (3.12) that V(¢(-,u) + y(-,u)) € L, (D).

Hence u satisfies in the sense of distributions the elliptic equation

Au+g¢(-u)+y(-,u)=0, inD (3.13)
and so it is a solution of the problem (1.8). O

Example 3.1. Leta,3 = 0suchthat0 <a+f <1,y >0and p € K®(D). Then the problem

Bt pG) () 7 (0G0)” + () log (1+ () )] =0, inD
u>0 inD '
has a solution u € Cy(D) satisfying
af(x) < u(x) < bVp(x), (3.15)

where g, b are two positive constants.
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4. Second existence result

In this section, we aim at proving Theorem 1.3. The proof is based on the following
lemma related to the maximum principle for elliptic equation.
For u € C(D), put u* = max(u,0).

LemMA 4.1. Let ¢ and ¢, satisfying (Hy)—(He ). Assume that ¢, < @, on D X R, and there
exist two continuous functions u, v on D satisfying

(@) Au—¢1(u") =0=Av—g,(-,v") in D;

(b) u,v € Cp(D);

(¢) u=vonoD and lim|y e u(x) = limy o V().
Then u=v inD.

Proof. Suppose that the open set Q = {x € D : u(x) < v(x)} is nonempty. Put z = u — v.
Then z € C,(D) and satisfies

Az=@1(u") —a(-,v")
= (@1 u") = @2 u")) + (@2, u") = @2(+,v7)) <0 inQ

z=0 onodQ) (4.1)
li > 0.
IxIHgBCGQZ(x) =

Hence from ([4, page 420]), we conclude that z > 0 in ), which is in contradiction with
the definition of Q. This completes the proof. O

Proof of Theorem 1.3. An immediate consequence of the comparison principle, given by
Lemma 4.1, is that the problem (1.15) has at most one solution in D. The existence of
such a solution is assured by the Schauder fixed point theorem. Indeed, to construct a
solution, we consider the convex set

A={ueCyD):u<c}, (4.2)

where c:= A+ [|&]| .
We define the integral operator T on A by

Tu(x) = Ah(x)+ Hé(x) — Vo(-,ut)(x); forx €D, (4.3)

where h is given by (1.17).
Since ||HE || o < ||€]l, then for each u € A, we have

Tu(x) <Ah(x)+HéE(x) <A+ |l =¢; foreach x € D. (4.4)

Furthermore, putting g = ¢(-,¢), we have by (Hg) that g € K®(D). So by (Hs), we deduce
that Vo(-,u*) € %,. This together with the fact that h and H¢ are in Cp(D) imply by
Proposition 2.4 that T'A is relatively compact in Cy(D) and in particular TA C A.

From the continuity of ¢ with respect to the second variable, we deduce that T is
continuous in A and so it is a compact operator from A to itself. Then by the Schauder
fixed point theorem, we deduce that there exists a function u € A satisfying

u(x) = A(x)+HE(x) — Vo(-,u")(x). (4.5)
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This implies, using Proposition 2.4 and the fact that Vo(-,u*) € Cy(D), that u satisfies in
the sense of distributions

Au—¢(-,u")=0 inD,

u=¢& onoaD, (4.6)
Il‘im u(x) = A
Therefore using hypothesis (Hs) and Lemma 4.1 we deduce that u > 0. O

CoOROLLARY 4.2. Let ¢ satisfying (Hy)—(Hs), & be a nontrivial nonnegative continuous func-
tion on 0D and A = 0. Suppose that there exists a function q € K* (D) such that

0<¢(x,t)<q(x)t onDX[0,A+[IEll]. (4.7)
Then the solution u of (1.15) given in Theorem 1.3 satisfies
e~ (Mi(x) + HE(x)) < u(x) < Mha(x) + HE(x (4.8)
Proof. Let w(x) = Ah(x) + HE(x). Since u satisfies the integral equation
u(x) = w(x) - Vo(-,u)(x), (4.9)
then using (1.24), we obtain
— Vy(qu) = 0 = Vy(qw) = [Vo(-,u) = Ve (qV (p(-,u)))] (w10)
= w = Vg(quw) = Vg (g(-,u)).
That is
u=w—Vy(qu)+ V(qu—o(-,u)). (4.11)

Now since 0 < u < A+ [|£]|» then by (4.7), we conclude the result from Proposition 2.6.
O

Example 4.3. Let & be nontrivial nonnegative continuous function on dD. Let ¢ >0 and
q € K*(D). Put ¢(x,t) = q(x)t°. Then for each A = 0 the following problem:

Au—q(x)u® =0, in D (in the sense of distributions),

u=¢& onoaD, (4.12)
hm u(x) =2

has a positive bounded continuous solution u satisfying in D
0 < Ah(x) + HE(x) —u(x) < (A+ [€llx)° Vq(x). (4.13)
In particular if ¢ > 1, then there exists ¢ € (0, 1) such that

c(M(x)+HE(x)) <u(x) <Mi(x)+HE(x (4.14)
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Proof of Corollary 1.5. Let p(t) = [;(el@dr)ds, for t = 0. Then p is a €2 diffeomorphism
from [0, c0) to itself. Let v = p(u). Then v satisfies

Av=p"(p~'())e(y,p~'(v)) inD,
v=pes onaD, (4.15)
I1‘i131 v(x) =p(A) = 0.

Put ¢(y,v) = p'(p~1(v))e(y,p 1 (v)) for y € D. Then ¢ satisfies the same hypothesis as
¢. Hence from Theorem 1.3 the problem (4.15) has a unique nontrivial nonnegative
bounded solution v € C*(D). Consequently u = p~!(v) is the unique nontrivial nonneg-
ative bounded solution in C?(D) of the problem (1.18). O
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