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This paper deals with the problem ∆u= g onG and ∂u/∂n+u f = L on ∂G. Here,G⊂Rm,
m> 2, is a bounded domain with Lyapunov boundary, f is a bounded nonnegative func-
tion on the boundary of G, L is a bounded linear functional on W1,2(G) representable by
a real measure µ on the boundary of G, and g ∈ L2(G)∩Lp(G), p > m/2. It is shown that
a weak solution of this problem is bounded in G if and only if the Newtonian potential
corresponding to the boundary condition µ is bounded in G.

Suppose that G ⊂ Rm, m > 2, is a bounded domain with Lyapunov boundary (i.e.,
of class C1+α). Denote by n(y) the outer unit normal of G at y. If f ,g,h ∈ C(∂G) and
u∈ C2(clG) is a classical solution of

∆u= g on G,

∂u

∂n
+u f = h on ∂G,

(1)

then Green’s formula yields∫
G
∇u ·∇vd�m +

∫
∂G
u f vd�m−1 =

∫
∂G
hvd�m−1−

∫
G
gvd�m (2)

for each v ∈�, the space of all compactly supported infinitely differentiable functions
in Rm. Here, ∂G denotes the boundary of G and clG is the closure of G; �k is the k-
dimensional Hausdorff measure normalized so that �k is the Lebesgue measure in Rk.
Denote by �(G) the set of all functions from � with the support in G.

For an open set V ⊂Rm, denote by W1,2(V) the collection of all functions f ∈ L2(V),
the distributional gradient of which belongs to [L2(V)]m.

Definition 1. Let f ∈ L∞(�), g ∈ L2(G) and let L be a bounded linear functional on
W1,2(G) such that L(ϕ)= 0 for each ϕ∈�(G). We say that u∈W1,2(G) is a weak solution
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in W1,2(G) of the third problem for the Poisson equation

∆u= g on G,

∂u

∂n
+u f = L on ∂G,

(3)

if ∫
G
∇u ·∇vd�m +

∫
∂G
u f vd�= L(v)−

∫
G
gvd�m (4)

for each v ∈W1,2(G).

Denote by �′(∂G) the Banach space of all finite signed Borel measures with support
in ∂G with the total variation as a norm. We say that the bounded linear functional L on
W1,2(G) is representable by µ∈�′(∂G) if L(ϕ)= ∫ ϕdµ for each ϕ∈�. Since � is dense
in W1,2(G), the operator L is uniquely determined by its representation µ∈�′(∂G).

For x, y ∈Rm, denote

hx(y)=
(m− 2)−1A−1|x− y|2−m for x �= y,

∞ for x = y,
(5)

where A is the area of the unit sphere in Rm. For the finite real Borel measure ν, denote

�ν(x)=
∫

Rm
hx(y)dν(y) (6)

the Newtonian potential corresponding to ν, for each x for which this integral has sense.
We denote by �′

b(∂G) the set of all µ∈�′(∂G) for which �µ is bounded on Rm \ ∂G.
Remark that �′

b(∂G) is the set of all µ∈�′(∂G) for which there is a polar set M such
that �µ(x) is meaningful and bounded on Rm \M, because Rm \ ∂G is finely dense in Rm

(see [1, Chapter VII, Sections 2, 6], [7, Theorems 5.10 and 5.11]) and �µ=�µ+−�µ−

is finite and fine-continuous outside of a polar set. Remark that �m−1(M) = 0 for each
polar set M (see [7, Theorem 3.13]). (For the definition of polar sets, see [4, Chapter 7,
Section 1]; for the definition of the fine topology, see [4, Chapter 10].)

Denote by � the restriction of �m−1 to ∂G.

Lemma 2. Let µ∈�′(∂G). Then the following assertions are equivalent:

(1) µ∈�′
b(∂G),

(2) �µ is bounded in G,
(3) �µ∈ L∞(�).

Proof. (2)⇒(3). Since ∂G is a subset of the fine closure of G by [1, Chapter VII, Sections
2, 6] and [7, Theorems 5.10 and 5.11], �µ =�µ+ −�µ− is finite and fine-continuous
outside of a polar set M, and �m−1(M)= 0 by [4, Theorem 7.33] and [7, Theorem 3.13],
then we obtain that �µ∈ L∞(�).
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(3)⇒(1). Let µ = µ+ − µ− be the Jordan decomposition of µ. For z ∈ G, denote by µz
the harmonic measure corresponding to G and z. If y ∈ ∂G and z ∈G, then∫

∂G
hy(x)dµz(x)= hy(z) (7)

by [7, pages 264, 299]. Using Fubini’s theorem, we get∫
�µ+dµz =

∫
∂G

∫
∂G
hy(x)dµz(x)dµ+(y)=

∫
∂G
hy(z)dµ+(y)=�µ+(z). (8)

Similarly,
∫

�µ−dµz =�µ−(z). Since �µ∈ L∞(�), µz is a nonnegative measure with the
total variation 1 (see [4, Lemma 8.12]) which is absolutely continuous with respect to �
by [2, Theorem 1], then we obtain that |�µ(z)| ≤ ‖�µ‖L∞(�).

If z ∈Rm \ clG, choose a bounded domain V with smooth boundary such that clG∪
{z} ⊂ V . Repeating the previous reasonings for V \ clG, we get |�µ(z)| ≤ ‖�µ‖L∞(�).

�

Lemma 3. Let f ∈ L∞(�) and g ∈ L2(G)∩Lp(Rm), where p > m/2, g = 0 on Rm \G. Then
�(g�m)∈�(Rm)∩W1,2(G). Moreover, there is a bounded linear functional L onW1,2(G)
representable by µ∈�′

b(∂G) such that �(g�m) is a weak solution in W1,2(G) of the third
problem for the Poisson equation

∆u=−g on G,
∂u

∂n
+u f = L on ∂G. (9)

Proof. Suppose first that g is nonnegative. Since �(g�m)∈�(Rm) by [3, Theorem A.6],
the energy

∫
g�(g�m)d�m <∞. According to [7, Theorem 1.20], we have∫ ∣∣∇�

(
g�m

)∣∣2
d�m =

∫
g�
(
g�m

)
d�m <∞, (10)

and therefore �(g�m)∈W1,2(G) (see [7, Lemma 1.6] and [16, Theorem 2.1.4]).
Since �(g�m) ∈ �(Rm)∩W1,2(G), f ∈ L∞(�) and the trace operator is a bounded

operator from W1,2(G) to L2(�) by [8, Theorem 3.38], then the operator

L(ϕ)=
∫
G
∇ϕ ·∇�

(
g�m

)
d�m +

∫
∂G

�
(
g�m

)
f ϕd�m−1−

∫
G
gϕd�m (11)

is a bounded linear functional on W1,2(G).
According to [7, Theorem 4.2], there is a nonnegative ν ∈ �′(∂G) such that �ν =

�(g�m) on Rm \ clG. Choose a bounded domain V with smooth boundary such that
clG⊂ V . Since �ν is bounded in V \ clG⊂Rm \ clG, Lemma 2 yields that ν∈�′

b(∂(V \
clG)). Therefore, ν∈�′

b(∂G). According to [13, Lemma 4], there is ν̃∈�′
b(∂G) such that∫

Rm\clG
∇ϕ ·∇�

(
g�m

)
d�m =

∫
Rm\clG

∇ϕ ·∇�νd�m =
∫
∂G
ϕdν̃ (12)

for each ϕ∈�. Let µ= ν̃− f�(g�m)�. Since �( f�(g�m)�)∈�(Rm) by [6, Corollary
2.17 and Lemma 2.18] and �( f�(g�m)�)(x) → 0 as |x| → ∞, we have f�(g�m)�
∈�′

b(∂G). Therefore, µ∈�′
b(∂G).
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If ϕ ∈ �, then ϕ = �((−∆ϕ)�m) by [3, Theorem A.2]. According to [7, Theorem
1.20],

∫
Rm
∇ϕ ·∇�

(
g�m

)
d�m =

∫
Rm
∇�

(
(−∆ϕ)�m

) ·∇�
(
g�m

)
d�m

=
∫

Rm
g�
(
(−∆ϕ)�m

)
d�m

=
∫

Rm
gϕd�m.

(13)

Since �m(∂G)= 0,

∫
G
∇ϕ ·∇�

(
g�m

)
d�m +

∫
∂G

�
(
g�m

)
f ϕd�m−1

=
∫
G
gϕd�m +

∫
∂G

�
(
g�m

)
f ϕd�m−1

−
∫

Rm\clG
∇ϕ ·∇�

(
g�m

)
d�m

=
∫
G
gϕd�m +

∫
∂G
ϕdµ.

(14)

�

Lemma 4. Let f ∈ L∞(�) and g ∈ L2(G)∩Lp(Rm), where p > m/2, g = 0 on Rm \G. Let
L be a bounded linear functional on W1,2(G) representable by µ∈�′(∂G). If u∈ L∞(G)∩
W1,2(G) is a weak solution in W1,2(G) of problem (3), then µ∈�′

b(∂G).

Proof. Let w = u−�(g�m). According to Lemma 3, there is a bounded linear functional
L̃ on W1,2(G) representable by ν∈�′

b(∂G) such that w is a weak solution in W1,2(G) of
the problem

∆w = 0 on G,

∂w

∂n
+w f = L− L̃ on ∂G.

(15)

Fix x ∈G. Choose a sequence Gj of open sets with C∞ boundary such that clGj ⊂Gj+1 ⊂
G, x ∈ G1, and ∪Gj = G. Fix r > 0 such that Ω2r(x) ⊂ G1. Choose an infinitely differ-
entiable function ψ such that ψ = 0 on Ωr(x) and ψ = 1 on Rm \Ω2r(x). According to
Green’s identity,

w(x)= lim
j→∞

[∫
∂Gj

hx(y)
∂w(y)
∂n

d�m−1(y)−
∫
∂Gj

w(y)n(y) ·∇hx(y)d�m−1(y)

]

= lim
j→∞

[∫
Gj

∇w(y) ·∇(hx(y)ψ(y)
)
d�m(y)

−
∫
Gj

∇(w(y)ψ(y)
) ·∇hx(y)d�m(y)

]
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=
∫
G
∇w(y) ·∇(hx(y)ψ(y)

)
d�m(y)−

∫
G
∇(w(y)ψ(y)

) ·∇hx(y)d�m(y)

=�(µ− ν− f w�)(x)−
∫
G
∇(w(y)ψ(y)

) ·∇hx(y)d�m(y).

(16)

According to [16, Theorem 2.3.2], there is a sequence of infinitely differentiable func-
tions wn such that wn→wψ in W1,2(G). According to [6, Section 2],

w(x)=�(µ− ν− f w�)(x)− lim
n→∞

∫
G
∇wn(y) ·∇hx(y)d�m(y)

=�(µ− ν− f w�)(x)− lim
n→∞

∫
∂G
wn(y)n(y) ·∇hx(y)d�m−1(y).

(17)

Since the trace operator is a bounded operator from W1,2(G) to L2(�) by [8, Theorem
3.38], we obtain

w(x)=�(µ− ν− f w�)(x)−
∫
∂G
w(y)n(y) ·∇hx(y)d�m−1(y). (18)

Since w ∈ L∞(G) by Lemma 3, the trace of w is an element of L∞(�). Since∣∣∣∣∣
∫
∂G
w(y)n(y) ·∇hx(y)d�m−1(y)

∣∣∣∣∣
≤ ‖w‖L∞(�)

∫
∂G

∣∣n(y) ·∇hx(y)
∣∣d�m−1(y)

≤ ‖w‖L∞(�)

[
sup
z∈∂G

∫
∂G

∣∣n(y) ·∇hz(y)
∣∣d�m−1(y) +

1
2

]
<∞

(19)

by [6, Lemma 2.15 and Theorem 2.16] and the fact that ∂G is of class C1+α, the function

x 
−→
∫
∂G
w(y)n(y) ·∇hx(y)d�m−1(y) (20)

is bounded inG. Since �ν is bounded inG and �( f w�) is bounded inG by [6, Corollary
2.17 and Lemma 2.18], the function �µ is bounded in G by (18). Thus, µ ∈ �′

b(∂G) by
Lemma 2. �

Notation 5. Let X be a complex Banach space and T a bounded linear operator on X . We
denote by KerT the kernel of T , by σ(T) the spectrum of T , by r(T) the spectral radius of
T , by X ′ the dual space of X , and by T′ the adjoint operator of T . Denote by I the identity
operator.

Theorem 6. Let X be a complex Banach space and K a compact linear operator on X . Let Y
be a subspace of X ′ and T a closed linear operator from Y to X such that y(Tx)= x(Ty) for
each x, y ∈ Y . Suppose that K ′(Y)⊂ Y and KTy = TK ′y for each y ∈ Y . Let α∈ C \ {0},
Ker(K ′ − αI)2 = Ker(K ′ − αI) ⊂ Y , and {β ∈ σ(K ′); (β− α) · α ≤ 0} ⊂ {α}. If x, y ∈ X ,
(K ′ −αI)x = y, then x ∈ Y if and only if y ∈ Y .
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Proof. If x ∈ Y , then y ∈ Y . Suppose that y ∈ Y . Since K is a compact operator, the
operator K ′ is a compact operator by [14, Chapter IV, Theorem 4.1]. Suppose first that
α∈ σ(K ′). Since K ′ is compact, then α is a pol of the resolvent by [5, Satz 50.4]. Since

Ker(K ′ −αI)2 = Ker(K ′ −αI), (21)

the ascent of (K ′ − αI) is equal to 1. Since α is a pol of the resolvent and the ascent of
(K ′ −αI) is equal to 1, [5, Satz 50.2] yields that the space X ′ is the direct sum of Ker(K ′ −
αI) and (K ′ − αI)(X ′) and the descent of (K ′ − αI) is equal to 1. Since the descent of
(K ′ −αI) is equal to 1, we have

(K ′ −αI)2(X ′)= (K ′ −αI)(X ′). (22)

Since the space X ′ is the direct sum of Ker(K ′ −αI) and (K ′ −αI)(X ′)= (K ′ −αI)2(X ′),
the operator (K ′ −αI) is invertible on (K ′ −αI)(X ′). If α �∈ σ(K ′), then the spaceX ′ is the
direct sum of Ker(K ′ −αI) and (K ′ −αI)(X ′), and the operator (K ′ −αI) is invertible on
(K ′ − αI)(X ′). Therefore, there are x1 ∈ Ker(K ′ − αI) ⊂ Y and x2 ∈ (K ′ − αI)(X ′) such
that x1 + x2 = x. We have (K ′ −αI)x2 = y.

Denote by Z the closure of Y . Since K ′(Y) ⊂ Y , we obtain K ′(Z) ⊂ Z. Denote by K ′Z
the restriction of K ′ to Z. Then K ′Z is a compact operator in Z. Since Ker(K ′ −αI)2 ⊂ Y ,
we have

Ker
(
K ′Z −αI

)2 = Ker(K ′ −αI)2 = Ker(K ′ −αI)= Ker
(
K ′Z −αI

)
. (23)

If α �∈ σ(K ′Z), then the space Z is the direct sum of Ker(K ′Z − αI) and (K ′Z − αI)(Z), and
the operator (K ′Z − αI) is invertible on Z. Suppose that α∈ σ(K ′Z). Since K ′Z is compact,
then α is a pol of the resolvent by [5, Satz 50.4]. Since

Ker
(
K ′Z −αI

)2 = Ker
(
K ′Z −αI

)
, (24)

the ascent of (K ′Z − αI) is equal to 1. Since α is a pol of the resolvent and the ascent of
(K ′Z −αI) is equal to 1, [5, Satz 50.2] yields that the space Z is the direct sum of Ker(K ′Z −
αI) and (K ′Z − αI)(Z) and the descent of (K ′Z − αI) is equal to 1. Since the descent of
(K ′Z −αI) is equal to 1, we have

(
K ′Z −αI

)2
(Z)= (K ′ −αI)(Z). (25)

Since the space Z is the direct sum of Ker(K ′Z − αI) and (K ′Z − αI)(Z) = (K ′Z − αI)2(Z),
the operator (K ′Z − αI) is invertible on (K ′Z − αI)(Z). Since y ∈ Y ⊂ Z, there are y1 ∈
Ker(K ′Z − αI) and y2 ∈ (K ′Z − αI)(Z) such that y = y1 + y2. Since X ′ is the direct sum of
Ker(K ′ − αI) = Ker(K ′Z − αI) and (K ′ − αI)(X ′) ⊃ (K ′Z − αI)(Z) and y ∈ (K ′ − αI)(X ′),
we obtain that y1 = 0 and y2 = y. Thus, y ∈ (K ′Z − αI)(Z). Since (K ′Z − αI) is invertible
on (K ′Z −αI)(Z), there is z ∈ (K ′Z −αI)(Z) such that (K ′Z −αI)(z)= y. Since (K ′ −αI) is
invertible on (K ′ −αI)(X ′), we deduce that x2 = z ∈ (K ′Z −αI)(Z)⊂ Z.
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Now, let w ∈ Ker(K ′ −αI). Fix a sequence {zk} ⊂ Y such that zk → z = x2. Then

w(Ty)= y(Tw)= [(K ′ −αI)x2
]
(Tw)= lim

k→∞
[
(K ′ −αI)zk

]
(Tw)

= lim
k→∞

zk
(
(K −αI)Tw)= lim

k→∞
zk
(
T(K ′ −αI)w)= lim

k→∞
zk(0)= 0.

(26)

Since w(Ty) = 0 for each w ∈ Ker(K ′ − αI), [15, Chapter 10, Theorem 3] yields Ty ∈
(K −αI)(X).

Denote by K̃ ′ the restriction of K ′ to (K ′ − αI)(X). If we denote by P the spectral
projection corresponding to the spectral set {α} and the operator K ′, then P(X ′)= (K ′ −
αI)(X ′) by [5, Satz 50.2] and σ(K̃ ′) = σ(K ′) \ {α} by [14, Chapter VI, Theorem 4.1].
Therefore,

σ
(
K̃ ′
)= σ(K ′) \ {α} ⊂ {β; (β−α) ·α > 0

}⊂ ∪
t>0

{
β; |β−α− tα| < |tα|}. (27)

Since {β; |β− α− t1α| < |t1α|} ⊂ {β; |β− α− t2α| < |t2α|} for 0 < t1 < t2 and σ(K̃ ′) is
a compact set (see [14, Chapter VI, Theorem 1.3, and Lemma 1.5], there is t > 0 such
that σ(K̃ ′) ⊂ {β; |β− α− tα| < |tα|}. Therefore, r(K̃ ′ − αI − tαI) < |tα|. Since we have
r(t−1α−1(K̃ ′ −αI − tαI)) < 1, the series

V =
∞∑
k=0

(−1)k
[
t−1α−1(K̃ ′ −αI − tαI)]k (28)

converges. Easy calculation yields that V is the inverse operator of the operator I +
t−1α−1(K̃ ′ − αI − tαI) = t−1α−1(K̃ ′ − αI). Since t−1α−1y = t−1α−1(K̃ ′ − αI)x2, we have
x2 = t−1α−1V y. Denote zk = t−1α−1[−t−1α−1(K̃ ′ −αI − tαI)]k y. Then

x2 =
∞∑
k=0

zk. (29)

SinceK ′(Y)⊂Y , zk∈Y for each k. SinceKT=TK ′ onY , we haveTzk= t−1α−1[−t−1α−1(K
−αI − tαI)]kT y.

Since (K −αI), (K −αI)2, (K ′ −αI), and (K ′ −αI)2 are Fredholm operators with in-
dex 0 (see [14, Chapter V, Theorem 3.1]), [14, Chapter VII, Theorem 3.2] yields

dimKer(K −αI)2 = dimKer(K ′ −αI)2 = dimKer(K ′ −αI)= dimKer(K −αI), (30)

and thus Ker(K −αI)2 = Ker(K −αI). If α �∈ σ(K), then the space X is the direct sum of
Ker(K −αI) and (K −αI)(X), and the operator (K −αI) is invertible on X . Suppose that
α∈ σ(K). Since K is compact, then α is a pol of the resolvent by [5, Satz 50.4]. Since

Ker(K −αI)2 = Ker(K −αI), (31)

the ascent of (K − αI) is equal to 1. Since α is a pol of the resolvent and the ascent of
(K −αI) is equal to 1, [5, Satz 50.2] yields that the spaceX is the direct sum of Ker(K −αI)
and (K −αI)(X) and the descent of (K −αI) is equal to 1. Since the descent of (K −αI)
is equal to 1, we have (K − αI)2(X) = (K − αI)(X). Since the space X is the direct sum
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of Ker(K − αI) and (K − αI)(X) = (K − αI)2(X), the operator (K − αI) is invertible on
(K − αI)(X). Denote by K̂ the restriction of K to (K − αI)(X). If we denote by Q the
spectral projection corresponding to the spectral set {α} and the operatorK , thenQ(X)=
(K − αI)(X) by [5, Satz 50.2] and σ(K̂)= σ(K) \ {α} by [14, Chapter VI, Theorem 4.1].
Since σ(K) = σ(K ′) by [14, Chapter VI, Theorem 4.6], we obtain σ(K̂) ⊂ {β; |β− α−
tα| < |tα|}. Therefore, r(K̂ − αI − tαI) < |tα|. Since Ty ∈ (K − αX) and r(t−1α−1(K̂ −
αI − tαI)) < 1, the series

∞∑
k=0

Tzk =
∞∑
k=0

t−1α−1[− t−1α−1(K̂ −αI − tαI)]kT y (32)

converges. Since T is closed, x2 =
∑
zk, and

∑
Tzk converges, then the vector x2 lies in Y ,

the domain of T . �

Theorem 7. Let f ∈ L∞(�), f ≥ 0, and g ∈ L2(G)∩ Lp(Rm), where p > m/2, g = 0 on
Rm \G. Let L be a bounded linear functional on W1,2(G) representable by µ∈�′(∂G). If u
is a weak solution in W1,2(G) of problem (3), then u∈ L∞(G) if and only if µ∈�′

b(∂G).

Proof. If u∈ L∞(G), then µ∈�′
b(∂G) by Lemma 4.

Suppose now that µ∈�′
b(∂G). Let w = u−�(g�m). According to Lemma 3, there is

a bounded linear functional L̃ on W1,2(G) representable by µ̃∈�′
b(∂G) such that w is a

weak solution in W1,2(G) of the problem

∆w = 0 on G,

∂w

∂n
+w f = L̃ on ∂G.

(33)

Define for ϕ∈ L∞(�) and x ∈ ∂G,

Tϕ(x)= 1
2
ϕ(x) +

∫
∂G
ϕ(y)

∂

n(y)
hx(y)d�(y) + �( f ϕ�). (34)

Since �( f�) ∈ �(Rm) by [6, Corollary 2.17 and Lemma 2.18], the operator T is a
bounded linear operator on L∞(�) by [11, Proposition 8] and [6, Lemma 2.15]. The
operator T − (1/2)I is compact by [12, Theorem 20] and [6, Theorem 4.1 and Corollary
1.11]. According to [10, Theorem 1], there is ν ∈ �′(∂G) ⊂ (L∞(�))′ such that T′ν = µ̃
and ∫

G
∇�ν ·∇vd�m +

∫
∂G

�ν f vd�=
∫
vdµ̃, (35)

for each v ∈�.
Remark that �′(∂G) is a closed subspace of (L∞(�))′. According to [11, Proposition

8], we have T′(�′(∂G))⊂�′(∂G). Denote by τ the restriction of T′ to �′(∂G). Accord-
ing to [10, Lemma 11] and [14, Chapter VI, Theorem 1.2], we have σ(τ) ⊂ {β; β ≥ 0}.
Since σ(τ′) = σ(τ) (see [15, Chapter VIII, Section 6, Theorem 2]), each β ∈ σ(T) is an
eigenvalue (see [14, Chapter VI, Theorem 1.2]), and T is the restriction of τ′ to L∞(�),
we obtain that σ(T′) = σ(T) ⊂ {β; β ≥ 0} by [15, Chapter VIII, Section 6, Theorem 2].
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According to [9, Theorem 1.11], we have KerT′ ⊂�′
b(∂G). According to [9, Lemma 1.10]

and [10, Lemmas 12 and 13], KerT′ = Ker(T′)2. Denote, for ρ ∈�′
b(∂G), by Vρ the re-

striction of �ρ to ∂G. Then V is a closed operator from �′
b(∂G) to L∞(�) by [13, Lemma

5]. If ρ ∈�′
b(∂G), then VT′ρ = TVρ by [13, Lemma 4]. If ρ1,ρ2 ∈�′

b(∂G), then ρ1 and
ρ2 have finite energy by [13, Proposition 23], [7, Theorem 1.20], and∫

�ρ1dρ2 =
∫

Rm
∇�ρ1 ·∇�ρ2d�m =

∫
�ρ2dρ1. (36)

Since T′ν = µ̃ ∈ �′
b(∂G), Theorem 6 yields that ν ∈ �′

b(∂G). Since ν has finite energy∫
�νdν and

∫
�νdν= ∫ |∇�ν|2d�m by [7, Theorem 1.20], we obtain that �ν∈W1,2(G)

(see [7, Lemma 1.6] and [16, Theorem 2.14]). Since � is dense in W1,2(G) by [16, The-
orem 2.3.2], relation (35) yields that the function �ν is a weak solution in W1,2(G) of
(33). Since v =�ν−w is a weak solution in W1,2(G) of the problem

∆v = 0 on G,

∂v

∂n
+ v f = 0 on ∂G,

(37)

and f ≥ 0, we obtain

0=
∫
G
∇v ·∇vd�m +

∫
∂G
v f vd�≥

∫
G
|∇v|2d�m ≥ 0. (38)

Therefore, ∇v = 0 on G and there is a constant c such that v(x) = c for �m-a.a. x ∈
G by [16, Corollary 2.1.9]. Since ν ∈ �′

b(∂G), the function �ν is bounded in G. Since
u(x) =�(g�m)(x) + �ν(x)− c for �m-a.a. x ∈ G and �(g�m) ∈ �(Rm) by Lemma 3,
we obtain u∈ L∞(G). �
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