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First, we trace the genesis of the canonical form of Heun’s biconfluent equation. Second,
we present a method which allows us to find an integral expression as a solution to our
equation, and finally, using the properties of Meijer G-functions, we give an integral rep-
resentation of a fundamental system of solutions to the biconfluent equation.

1. Preliminaries

Heun’s differential equation and its confluent forms are used to build up new classes
of solvable potentials. The Schrodinger equation formed with those potentials can be
reduced to Heun’s biconfluent differential equation. We list some examples:

(i) radial Schrodinger equation for the harmonic oscillator [15];
(ii) radial Schrodinger equation for the doubly anharmonic oscillator [4, 5, 10];
(iii) radial Schrodinger equation of a three-dimensional anharmonic oscillator [7, 8,
10];
(iv) radial Schrodinger equation of a class of confinement potentials [10, 16].

For other kinds of potentials, see [11, 12].

Recently, a very interesting and valuable monography was dedicated to Heun’s equa-
tions [17]. Arscott [1] conjectures that solutions of Heun’s equations are not expressible
in terms of definite or contour integrals involving simpler functions. One should men-
tion the work of Sleeman who gave a solution in the form of factorial series, which leads
to Barnes-type contour integrals [18]. In the sequel, we will see that it is possible to give
integral representations in terms of Mellin’s kernel of solutions to biconfluent Heun’s
equation.

We start with the canonical form of a second-order differential equation with p (p = 2)
elementary singular points (p — 1 finite singularities and the o0):

y,,+P§ 2p o, SP7S Apxp-3k

al =0. (1.1)
Sx—a’ P xa)’
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Many differential equations which occur in a large variety of problems arising from pure
or applied mathematics or mathematical physics, often after appropriate algebraic or
transcendental changes of variable, can be derived by the confluences of the singulari-
ties from (1.1). The classes of these equations are characterized by the Klein-B&cher-Ince
symbol (¢,q,11,12,...,7s) with

p=E€+2gq+ Z (k+2)r, (1.2)

where ¢ is the number of elementary singular points, g is the number of nonelementary
regular singular points, and 7 is the number of irregular singular points of kind k. For
the terminology, see [9].

If we set p = 8 by means of confluence process and after parametric reduction, we
mention hereby some remarkable equations.

(1) Heun’s equation (0,4,0). The confluence of a7,as — 0, as,as — a, as,a, — 1, and
a; — o leads to

e (S B 2 Yy DN
y (x)+(x+x_1+x_a y x+x(x—l)(x—a)y(x)_0’ (1.3)
where a, 8, , 8, A, and a are six independent parameters and y = a+f+9y -85 — 1.

(2) Confluent Heun’s equation (0,2, 15). The confluence of a;,as,as — o, as,a3 — 1,

and a,,a; — 0 leads to

y”(x)+<oc+’8x yti)}’,(")
SO0 @ry+D)lxtntpa+ DG -9E+D Y
x(x—1) o

with five independent parameters: a, 3, y, 6, and 7.
(3) Biconfluent of Heun’s equation (0, 1,14). The confluence of a;,as,as,as,a; — o
and a,,a; — 0 leads to

xy" (x)+ (1+a—PBx—2x*)y'(x)

(1.5
+[(y—a—Z)x—%(é‘+/5+oc/5)]y(x)=O, )

with four independent parameters: «, 3, y, and 6.
(4) Double confluent of Heun’s equation (0,0,2;). The confluence of a7,as,as — o
and ay,as,ax,a; — 0 leads to

x*y" (x)+ [1+oc<x+ 1)]xy’(x)

[ L)oo

with four independent parameters: «, f3, y, and §.

(1.6)
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(5) Triconfluent of Heun’s equation (0,0,1¢). The confluence of ay,as,as,as,as,a,
a; — o leads to

Y (%) + (p+3x%) ¥ (x) + [a+ (B - 3)x]y(x) = 0, (1.7)
with three independent parameters: «, f3, and y.

2. The statement of the problem

Let &, be a three-term differential operator [2, 3, 9]

0
X

+ Py(0) + xR, (0), (2.1)

where P;(0), Py(6), and R, (8) are polynomials and 6 = x(d/dx).
We are looking for a solution to

Felyl=0 (2.2)
as
y(x) = LK(x, HZ(bdt, (2.3)
where
K(xn =X ixt) + Ko(xt) + xLy (x). (2.4)

The path of integration C and the function Z(t) will be defined in the sequel. We respec-
tively introduce an auxiliary kernel and a companion differential operator:

K(x,t) = tK; (xt) + Ko (xt) + il(:t)’

(2.5)
My = l’p1(9) +13()(6) +

Ry(0)
o
In this last equation 8 symbolizes the operator t(d/dt). We have the following assumption:
LalK(x,0)] = Me[K (x,0)]. (2.6)
We denote by .il; and A(K, Z), respectively, the formal adjoint of Ji(; and the concomitant
(a bilinear functional of K, Z and their derivatives).
If
M[Z(1)] =0, 2.7)

and A(K,Z)|¢ = 0, then (2.3) is a solution to (2.2).
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Setting { = xt, (2.6) may be translated into the following system:
P60 - D)[K(O)] = P8+ DK ()],

P1(0)[Ko(Q)] +Po(6 — D[K1(O)] = {{P1(O)[Ko(O)] + Po(6+ D[Ki ()]},
P10+ 1)[Li(Q)]+Po(0)[Ko({)] +Ri(6—1)[Ki({)]

=Pi(0-1) [L1 O]+ Po(0)[Ko(O)] + Ri(0+ DK (D], 2
C{Po(0+ DILi(D] + Ri(O[Ko(D)]} = Po(6 = D[Li()] +Ri(O)[Ko(D)],
(2R1 9+1)[L1(()] =Ri(0-1)[Li(D)].
According to the study in [2, 3], the previous system may be reduced to
Pi(0)[Ko(0)] = {Po(0+ 1) [Ki ()], (2.9)
Po(0)[Ko(0)] = Po(0)[Ko({)], (2.10)
(RI(O)[Ko(O)] = Pr(6 — D[Li(O)]. (2.11)

In the last system, we have three equations for four unknowns. To solve this system, we
have to choose two basic equations and an interdependency relation between the com-
ponents of the auxiliary kernel. Our choice will be guided by the kind of solution we are
looking for.

3. Heun’s biconfluent equation

The canonical form of an equation of class (0,1, 14) reads (see [6, 14])

xy"(x)+ (1+a—Px—2x")y (x) + {(y— a—2)x— %[8+(1 +(x)[3]}y(x) =0. (3.1)

Using the operator 0 = x(d/dx), we get that

{19(9+(x (/50+——[6+(1+(x)ﬁ]> +x(y—oc—2—20)}[y] —0. (32)
X
We set

Pi(0) = 0(0+«), (3.3)
Py(0) = —p(O+a), (3.4)

where a = (1/2)(8/f+ a+ 1), with  # 0, and
Ri(0) = —2(0+Db), (3.5)

where b = (« —y+2)/2.
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According to the scheme described in Section 2, the companion operator reads
My =Py(0)=0+1+d, (3.6)

where d € C.
To solve the system defined by (2.9), (2.10), and (2.11), we will take the first two equa-
tions as basic equations; the interdependency relation is

K = \Ko, (3.7)
with A € C*. By elimination, we obtain
{Po(6 —1)P1(0) —ALPy(6+1)Py(0)} [Ko] = 0. (3.8)

Taking into account (3.3), (3.4), and (3.5), we have

10(0+a)(0+d)+BA(O+2+d)(0+a)}[Ko] = 0. (3.9)
If we take
1
A=—=, 3.10
B (3.10)
then K satisfies
{00+a)(0+d)—{(0+2+d)(0+a)}[Ko] =0, (3.11)

which is nothing but a generalized hypergeometric differential equation whose solutions
may be expressed as

2+d,a
1+d,1+«

Ko({) = 2Fz<

c), (3.12)
2—a+d,a—«
l—a+d,1—«

Ko(¢) = C_d2Fz<1 —fl:?;Z—d ()-

Ko(¢) = C_“2F2<

(>, (3.13)

(3.14)

3.1. First integral representation. In this subsection, we will use the kernel given by
(3.12). First, we will compute the components of the auxiliary kernel. From (2.10), we
have

Ro(Q) = [Po(8)] ' [Po(8) [Ko(D)]]. (3.15)

If we take into account (3.4), (3.6), and (3.12), then (3.15) becomes

Ko@) = ~plo+1+a) [O+a)E( 2577 10) (3.16)
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Using the properties of the operator 8, we get that

Koy = B L L g ()

l+dl1+a" "2+«

a
1+a

() +(711F1<

)]s (3.17)
with R(1+d) >0.
According to (3.5), (3.6), and (3.12), L; satisfies the following differential equation:

L(C):—26(0+1+d)*1[(9+b)[2F2( 2+d,a ‘c)“ (3.18)

1+d,1+«

The solution to the previous equation is

202 { a 1<1+a

Cl+dl1va N \1+a

Li(() =

(>+b(711F1( ? ‘()}, (3.19)

1+a

with R(1+d) >0.
Thus, the auxiliary kernel reads

Rixt) = 1 {axt2 [1_2x+/3]1F1(1+ax

1+d 1+« t 2+«
(3.20)
[ 2bx+aﬁ] a
a2 (9 L)
t 1+«
with R(1+d) > 0.
Using (3.6), the solution to (2.7) takes the form
Z(t) =t (3.21)
The concomitant associated with (2.6) is given by
AK,Z) = tZ(t)K(x,t). (3.22)
The conjunction of (3.20), (3.21), and (3.22) leads to
. 1 (axt’™ 2x+ l+a
AlK.Z) = 1+d{ l+a [1_ t ]lFl <2+oc xt)
b+ (3.23)
+t2+d[a— a aﬁ]lFl( a xt)},
t 1+a

with R(1+d) >0.

Now it is time to seek for a path of integration along which the concomitant will van-
ish. With this end in view, we need asymptotic expansion of generalized hypergeometric
function which is obtainable via G-functions.
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ProprosITION 3.1 [13]. Recall that

1F1 (2 u) = %Gﬂ(—u

1-A )
0,1-B/)’
where Gys is a Meijer G-function.
Ifay €N, a, €C, and 8, — n/2 < Arg(u) < /2 + 83, 61,8, >0, then

N-1
Gi;(—u blalbz) = u“l_l{ z Mku_k+O(u_N));, |u| — oo,
> k=0
with
M, = f(1+b1 —611) (1+b1 —al,k)(1+b2 —al,k)
kT F(m —bz) k! ’
I(y+k)
k) = —=.
(y,k) I

(3.24)

(3.25)

(3.26)

CoROLLARY 3.2. IfA & {1 —n, n e N}, and §, — /2 < Arg(u) < /2 + 63, 61,6, >0, then

A N-1

\Fi (B u) = u‘A{ > Mku‘kJrO(u‘N)}, |u| — oo,
k=0

where My = (T'(B)/T'(A))Mq.

Finally, we have

t27a+d

A(K,Z) = T5d {ax‘“(l

2x+f
t

N-1
) [ > Myy(xt) ™ +O((Xt)_N)}
k=0

N-1
+x_a<a_ 2’””“/3) [ D Mz,k(xt)—uo((xt)-N)B,
t k=0

with
(i)
W Ir2+a) (1+a,k)(a—ak)
T Tl +a—a) k! ’
- T(+a) (ak)(a-ak)
T T1+a-a) k! ’

(ii))aé {1—n, neN}and R(1+d) >0,
(iii) &) + /2 < Arg(xt) < 37/2+ 63, 61,6, > 0.

In accordance with what we have already seen, we have the following theorem.

(3.27)

(3.28)

(3.29)
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THEOREM 3.3. Ifaé {1—-n, ne N}, R(a—a) >R +d) >0, § +71/2 < Arg(xt) <
37/2 4 6, 81,0, >0, and C is the path of integration running from oo along the direction
Arg(t), surrounding the origin and going back to o following the same direction, then

—J F( 2tda ‘ t)tddt 3.30
)’(x)—czzler’“_ax (3.30)

is a solution of Heun’s biconfluent equation.

3.2. The second integral representation. Now we will work with the kernel given by
(3.13), that is,

2—a+d,a—«
K = _"‘F< ' ) 3.31
O =cmn(] 0T (331)
Using the same technique as above, we get that
> 1 (a—a)xl’“tz’“<1—2x 1) <1+a—(x )
R(x,t) = - t
(1) 1—oc+d{ l-a t /N 2- *
(3.32)
+x,at1,“(a—(x—2(b—oc)x_ a—oc)lF1<a—06 xt)},
t B l-«a
with R(a — a+d) >0, and the concomitant takes the following expression:
. xlmepmerd (g 1-2x 1 I+a-a
AK,Z) = 1-a+d {1—a< t 7B>l 1( 2—-«a xt)
(3.33)
1<a—oc—2x(b—rx) a—oc) (a—oc )}
— - 1F1 xt .
xt t B -«

Using the machinery of G-functions, we have the following proposition.

ProrositTioN 3.4. Ifa—a & {1—n, n €N}, R(a) <R(1+d)<R(a—-1), §+n/2 <
Arg(xt) < 31/2+6,, 61,6, >0, and C is the path of integration running from co along the
direction Arg(t), surrounding the origin and going back to oo following the same direction,
then

AK,Z)|c=0. (3.34)

Under the hypothesis of the previous proposition, we get the following theorem.

THEOREM 3.5. Provided that the hypotheses of Proposition 3.4 are satisfied, then

u 2—a+d,a—«
y(x>=fc<xt> B ey

is a solution of Heun’s biconfluent equation.

xt) o (3.35)
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The conjunction of Theorems 3.3 and 3.5 gives a fundamental system of solutions to
Heun’s biconfluent equation.

Remarks. A similar study shows that

(i) the kernel Ko({) = (%, F, ( 17(21’,?154 ‘ () does not lead to a solution;
(ii) the interdependency relations

Kl = yil, K() = ‘Mil (336)
do not allow to produce a solution to the biconfluent equation.

4.Caseff=0

The Heun’s biconfluent equation reads

xy" (%) + (1+a—2x%)y (x) + {(y—oc—z)x— g}y(x) =0 (4.1)
or
{M—g—zx(eﬁ“jﬁ)}mxn=o. (4.2)

This situation gives rise to two subcases

4.1. Case § = 0. Heun’s biconfluent equation becomes a simple hypergeometric equa-
tion, that is,

xy" () + (1+a—2x%)y (x)+(y —a—2)xy(x) = 0, (4.3)
which has
24a—y

4 2
yi(x) = 1F « 1F D

2—a—y '

_ « 4 2
ya(x) =x"%F e
=3

as a fundamental system of solutions that admits an integral representation of Mellin’s
type (see [2]).

4.2. Case § # 0. In this case, (3.8) becomes

{9((9(+(x)(6(+d)+§((0(+2+d)}[1<0(()] _o. (4.5)
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Choosing A = —2/8, the previous equation takes the following form:

{00 (0 +a) (0 +d) — {(0; +2+d)} [Ko({)] = 0. (4.6)

Hence
K@=, 20 o) (47)
ko =r4m(, 2000 o), (18)
KO(OZ(_d1F2<1_d’12+“_d‘(>- (4.9)

Proceeding as in Section 3, we get the following proposition.

ProrosITION 4.1. The pairs of auxiliary kernel and the concomitant associated with (2.6)
are given by

» (4.10)
k- £ )
“rraFioral®) b
Kot =g [T ()
12x °F1< )%
(4.11)
d+2x2—a-y)

B —ag2+d—a 8+2 2
A(K,Z):L{[l M2 -a-

1+d—a ]
12x2 °F1< ' )}

Remark 4.2. The kernel given by (4.9) does not lead to an integral representation of a
solution.

A, e

THEOREM 4.3. If 0 < R(ar) < R1+d < (1/4)R(2a—3), u < Arg(xt) <2m —p, 4 >0, and
C is the path of integration running from oo along the direction Arg(t), surrounding the
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origin and going back to oo following the same direction, then

2+d d
yl(x)ZJC1F2<l+d’l+a'xt)t dt,

2—a+d

(4.12)
yi(x) = Jc(xt)*“1F2<1 Cwtd1 - a'xt) tldt,

is a fundamental system of solutions to the Heun’s biconfluent equation (4.1).
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