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We study the existence and multiplicity of solutions for a class of quasilinear elliptic prob-
lem in exterior domain with Neumann boundary conditions.

1. Introduction

In this paper, we are concerned with the existence and multiplicity of solutions for the
following class of quasilinear elliptic problem with Neumann conditions:

—Apu+ lulP2u = Q(x)f(u) inRN\Q,
du (1.1)

where Q ¢ RY is a bounded domain with smooth boundary, 1 < p <N, and A,u is the
p-Laplacian operator, that is,

N
dpu=3 2 (jvupr224), (12)

Q is a continuous function satisfying

Q(x)>0 inRN\Q, |1‘ir_n Qx)=Q>0, (1.3)

and the nonlinearity f : R — R is an odd function of C! class satisfying the following
hypotheses.

(fi) Thereexists2 < p<q+1<yx+1<p*=Np/(N — p) verifying

i 1S O]

sl~0 [s]9~1

—0, limsup ||J:|§f)l| < 400, (1.4)

[s]—o00
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252 Multiplicity of solutions for a quasilinear problem
(f;) There exists 8 € (p,% + 1] such that
0<OF(s) <sf(s) Vs#0. (1.5)

(f3) The function s — f(s)/sP~! is increasing in (0,+00).

In [5], Benci and Cerami studied the problem (1.1) assuming that p =2, Q = 1, and
f(u) = ul"'uwith 1 <5< (N+2)/(N —2). They showed that (1.1), with Dirichlet con-
dition, has not a ground-state solution. However, Esteban [8] proved that the same prob-
lem with Neumann condition has a ground-state. We recall that by a ground-state we mean
solution of (1.1) with minimum energy.

In [6], Cao also studied the problem (1.1) for p =2, f(u) = |ul|" 'u, and Q satisfying
the condition (1.3). The author showed that the problem has at least two solutions, where
the first solution is related to the minimization problem

I(Q)= inf {J (IVu|2+|u|2):J Q(x) || =1} (1.6)
ueHI(RN\Q) LJrRM\0 RN\Q

and the second solution is nodal, that is, a solution of (1.1) with change of sign. In that

paper, one of the main points is a compactness global result proved in [5].

In this work, motivated by [6], we prove the existence of ground-state and nodal so-
lutions to (1.1). We used variational methods such as mountain pass theorem without
Palais-Smale condition (see [14]) to obtain a positive ground-state solution. In relation
to nodal solutions, we apply the implicit function theorem. Here, we adapt to p-Laplacian
operator and to a general nonlinearity f some ideas found in [5, 6, 13]. However, the ar-
guments explored in the above articles cannot be carried out straightforwardly in our case
because some estimates become more subtle to be established. A main point in this paper
is a version of a compactness global lemma (CGL) to study the behavior of Palais-Smale
sequences, which is a version for p-Laplacian from a result shown by Benci and Cerami
in [5].

To state our main results, we need some definitions and notations.

If h is a Lebesgue integrable function and B is a measurable set, we write [yh for
Jghdx. Moreover, if h € WEP(RN \ ), we denote by ||kl its usual norm. We denote
by I: WhP(RN \ Q) — R the functional related to (1.1) given by

1
1= [ varsqun - | Quorw), (17)

where F(u) = fO” f(t)dt. We have the following problem:
—Apu+|ulp_2u:Qf(u) inRN, ue Whe(RYN), (1.8)

and by I, : WHP(RY) — R the functional related to (1.8) given by

L= [ (vulr+julf) - | Qrw) (19)

Concerning the existence of ground-state, we have the following result.
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THEOREM 1.1. Suppose that f satisfies (f1), (f»), and (f3), p = 2 and the function Q satisfies
(1.3) and

Q(x) = Q—Ce™*, |x| — oo, (1.10)

where C is a positive constant and m > p(q+1)/((q+1) — p). Then, (1.1) has a positive
ground-state solution.

Using the ground-state obtained in the above theorem together with some estimates
given in Sections 4 and 5, we establish a second theorem which shows the existence of a
nodal solution. For this result, we will need the following hypothesis:

(f4) there exists # < 0 < p* — 1 verifying
f'Ot+(1=p)f()=Cltl” ', n<o=<p*-1. (1.11)

THEOREM 1.2. Suppose that f satisfies (1), (f2), (f3), and (1.11), p = 2, and the function Q
satisfies (1.3) and

Qx)=Q+Ce ™ vxeRN, (1.12)

where C is a positive constant and y < q/(q +1). Then, (1.1) has a nodal solution.

Remark 1.3. In the proof of Theorems 1.1 and 1.2, we used variational methods and
adapted some arguments explored by Cao in [6]. These results complete the study made
in [6] in the sense that we consider the p-Laplacian operator and a general class of non-
linearity.

2. Technical lemmas

In this section, we state some results necessary for the proof of Theorems 1.1 and 1.2. It is
known that, under assumptions (f;), (f2), and (f3), the arguments used in [3] show that
(1.8) possesses a ground-state solution. About the behavior of the solutions at infinity, we
have the following result.

LeEmMA 2.1. Any positive solution it € WHP(RYN) of problem (1.8) with p > 2 has the fol-
lowing asymptotic behavior:

lim @(x) =0,

[x|—o0

(2.1)
Cie ™ < qi(x) < Ce ™ in RN,

where Cy,C, > 0 are positive constants and 0 < b < 1 < a. Moreover, numbers a,b can be
chosen of the forma=1+8 andb=1-0 for § >0.

Proof. The proof follows by similar arguments found in [11, Theorem 3.1]. O

Remark 2.2. With the same arguments used in the proof of the above lemma, we can
show that all positive weak solutions of (1.1) have exponential decaying.
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The next lemma shows an important inequality related to the vectors of RN, and its
proof can be found in [15, Lemma 4.2].

LeEmMA 2.3. Forallv,w € RN withN > 1 and p > 2,
([v]272v — |w|P2w) (v —w) = |v — w]|?. (2.2)

LEmMA 2.4. Let F € C*(R,R;.) be a convex and even function such that F(0) = 0 and f(s) =
F'(s) = 0 forall s € [0,00). Then, for all u,v > 0,

|F(u—v)—F(u V)| <2(f(wv+ f(V)u). (2.3)
Proof. Indeed, we have two cases to consider. If v < u, by convexity, we have

F(v) - F(0
7V .

< flu (24)

that is, F(v) < f(u)v. On the other hand, since f' = F"" = 0, we have that f is nonde-
creasing and consequently

|F(u—v)—F(u)] svff(u—tv)dtsvf(u). (2.5)
0

Therefore,

|F(u—v)—F(u)—F(v)| <2vf(u). (2.6)
If u < v, we repeat the above argument to find

|F(u—v)—F(u)—F(v)| <2uf(v). (2.7)
From (2.6) and (2.7) the lemma follows. O

Remark 2.5. Notice that, if f satisfies (f;), (f»), and (f3), the primitive F of f verifies the
hypothesis from Lemma 2.4.

3. Behavior of the Palais-Smale sequence

In this section, we prove some important lemmas to establish the CGL. The CGL is a key
result for the understanding of the behavior of Palais-Smale sequence. We recall that a
sequence (u,) C WHP(RN \ Q) is called a (PS), sequence for I, at level ¢ € R, if

I(u,) — ¢, I'(u,) — 0. (3.1)

Lemma 3.1. Let B < RN be an open set and g, : B — R with g, € L'(B) n LP" (B) (t > p),
|gnlpe+ (B) < C, and g,(x) — 0 a.e. in B.
(I) Suppose that f satisfies (fi). Then,

[ 1@ w) - Fg) - Fn | =01, (.2)

for each w € L'""(B) N L1*(B) where F is the primitive of f.
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(IT) Assume that f satisfies (f1), (f»), and (f3). Then,

J, 1 @tw) = Fle) = fon" =oun), forre (

= |

,§>, (3.3)

andw € LP(B) N L™ (B).

Proof. We will show only (I) because the same arguments can be used in the proof of (II).
We begin remarking that

1
Flgy+w) — Flg) :J (%F(gn+tw)>dt. (3.4)
0
Then
1
F(gn+w) - F(g,) =j Flgn+tw)wd, (3.5)
0
hence, by (f1),
1
|F(gntw) —F(gn)| < L [8|gn+tw|TIwl+cs| g+ tw]|"Iwl]dt, (3.6)
that is,
|F(g,+w) —F(ga) | < (81 |ga|Iwl+81 1wl +c5 | gu|TIw| +cs1lw]T1). (3.7)

For each € > 0, we obtain using Young’s inequality that

|F(gn+w) —F(gn) —F(w)|

(3.8)
< Cl(elgnl™ +Celwlt™) + (e]gal ™" +Celwl™)].
We consider the function G, given by
Gen(x) = max{ |F(gn+w) — Flga) = F(w) | (x) — €| gn] ™" (x) — €| g |q+1(x),0}
(3.9)
which satisfies
Gen(x) — 0 ae.in B,
(3.10)

0 < Gepu(x) < G3lw|1™ + Cylw|T! € LY(B).

Therefore, by Lebesgue’s theorem, we have

JB Gen()dx — 0. (3.11)
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From the definition of G, it follows that

|F(ga+w) —F(g) —Fw)| <€|gal ™ +€lgal"™ +Cs5|Genl.  (3.12)
Thus, we obtain the following inequality
lll;lssp | F(gy+w) —F(gn) — F(w)| < Ce, (3.13)
which implies that
Lg |F(gn+w)—F(gu) — F(w)| = 0,(1). (3.14)

The next result can be found in [2].

LemMma 3.2. Let B < RN be an open set and g, : B — RX (K > 1) with g, € LP(B) X - - - X
LP(B) (p=2),gu(x) — Oa.e. in B, and A(y) = |y|?2y forall y € B. Then, if |gu|r(5) < C
foralln €N,

J|A@WHW—A@M—AWMW@*ux:%u) (3.15)
B

for each w € LP(B) X - - - X LP(B) fixed.

LEmMa 3.3 (compactness global lemma). Suppose that f satisfies (f1), (f), and (f3). Let
(un) be a sequence in WhP (RN \ Q) verifying

I(u,) — ¢, I'(u,) — 0, (3.16)

and uy € WHP (RN \ Q) such that u,, — uy in WH2 (RN \ Q). Then, either

(a) uy — ug in WHP(RN \ Q) or
(b) there exzsts keN, (yn) € RN with Iynl — o0, j =1,...,k, and nontrivial solutions
ul,...,u* of the problem (1.8), such that

k
—0,  I(uy) — I(uo) Z (3.17)

_uo_zuf —yn

Proof. The arguments used in this proof follow the same ideas found in [2, 5]. The se-
quence (u,) is bounded, thus there exists uy € WP (RN \ Q) such that

u, — up in WHP (RN \ Q). (3.18)
Adapting arguments found in [1, 9, 10, 15], it follows that I’ (uy) = 0. Define the function

WL (%) = um(x) —up(x), x€RN\Q. (3.19)
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Then
¥l 0 in W (RN \Q),
1 . (3.20)
¥, (x) —0 ae inRY\Q.
It follows, using Lemmas 2.4 and 3.2, that
(VL) = 1(um) — I(up) +0,(1), (3.21)
I'(¥)) =0,(1) in (WHE(RVN\Q))". (3.22)
Suppose that
wloLo in WHP (RN Q). (3.23)
Consequently, by (), (f2), and (f3), there exists « > 0 such that
I(¥)) =a>0. (3.24)

Now, we decompose RY into N-dimensional unit hypercubes Q; with vertex having inte-
ger coordinates and put

dyy = max [¥}, [y (3.25)
where U; = Q; N (RN \ Q). From (3.24) and (f}), (f2), and (f3), we find y > 0 verifying
dm =y >0. (3.26)
Fix y}, the center of hypercube Q; in which
WL ) = dm =y >0. (3.27)
It follows from Sobolev imbeddings and the last equality that {y,,} is unbounded, that is,
| Y| — oo (3.28)
Let
Zm(x) =L (x+yL), xeD) ={x-yl :xeRV\Q}. (3.29)
From boundedness of {u,}, there exists u! € WLP(RN)\ {0} with
Zm —u' in WP (RY), (3.30)

Using (3.22) and the fact that D}, — RY, we conclude that ! is a nontrivial solution of
(1.8). Define

W5, (x) = ¥, (x + ) — ! (x). (3.31)
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If [[¥2,(- — y1) |l — 0, the theorem is finished, otherwise for the contrary case, we repeat
the arguments and we will find u',u?,...,u* nontrivial solutions for (1.8) and sequences

( yiﬁ) with | y#l — oo such that

k o
tm =g = 2.1 (- =ym)|| = om(D),
= . (3.32)
LW (- =yim)) = 1(um) = 1(u0) = > I (/) + 04(1).
j=1

Notice that there exists £ > 0 verifying

I.(u)=& Yuey, (3.33)
where

Y = {ue WH(RN)\ {0} | I, (u)u = 0}. (3.34)

Inequality (3.33) along with (3.32) tell us that the iteration must finish at some index
k € N. This completes the proof of this lemma. O

CoROLLARY 3.4. The functional I satisfies (PS). condition for all
0< €< Cooy (3.35)
where co is the mountain pass level of the energy functional associated to (1.8).

4. Existence of ground-state solution

In this section, we will prove the existence of a positive ground-state solution for the
functional I. To this end, we suppose that f(¢) = 0 as ¢t < 0. The first lemma is related to
the mountain pass geometry, and its proof uses well-known arguments.

LemMa 4.1. The functional I verifies the mountain pass geometry, that is,
(i) there exists r,p > 0 such that I(u) = r, |lull = p,
(ii) there exists e € B;(O) such that I(e) < 0.

Using a version of mountain pass theorem without Palais-Smale condition (see [14,
Theorem 1.15]) and (f3), there exists (u,) C WH? (RN \ Q) satisfying

I(up) —c1, I'(uy) — 0, asn— oo, (4.1)
where
€= inf{sup](tu); ue WHP(RV\ Q) \ {0}}. (4.2)
=0

The next result establishes a relation between the levels ¢; and c..
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PrOPOSITION 4.2. Assume that Q satisfies (1.3) and (1.10). Then
0<¢1 < Co (4.3)

Proof. Let i1 be a ground-state solution of problem (1.8) and define u,(x) = @1(x — x,),
Xxn = (0,...,n). By the characterization of c;, given in (4.2), we have

€1 < ntlze}]xl(tun). (4.4)
Let y, € (0, ) such that
I(ynttn) = maxI (tun), (4.5)
then we have
a1 < I(ynttn)
- % JRN\Q (|yuVtn | P+ |ynun|?) - JRN\Q Q(xX)F (ynun) 46)

_ Lo > ol
=l (ynun) ptn)/n + JQ QF(Ynun) + JRN\Q(Q Q)F()’nun)>
where
tn:j (| Vttn|” + |00 |?). (4.7)
Q

Now, notice that I(y,u,) = ntla%)xl (tu,) if and only if

P Py _ S nttn) p
JRN\Q(Wun\ +|un|") = JRN\QQ(x) (Ynun)P_lun' (4.8)

It is not difficult to see that (y,) is bounded and therefore y, — y, for some subse-
quence still denoted by (y,). We claim that y, = 1. In fact, since |x,| — oo, it follows from
(4.8) that

JRN(|va|P+|a|P) = JRNQ S (otl) k. (4.9)

(Yoa)p71

Since # is a ground-state, we get

5 f@) (5 fel)
JRN Q(ﬁ)P*I ur = JRN Q(yoﬂ)p—l il (4.10)

Therefore, by (f3), we have that y, = 1.
From (f;), we obtain

4
e sIm(u)—tn(y?"—O(e))+sn, (4.11)
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where
Sn = CIJ | +J (Q = QF (ynutn).
Q RN\Q
We claim that

— —0.

n

Indeed, by Lemma 2.1, we have

t,,:I (|Vun|p+|u,,|p)zI | > Coepon,
Q Q

J | U, | n+l < C3€7lm(’1+1).
Q
Fix r,, € (0,7n) and observe that

J (Q - Q)F(Ynun) = (Q - Q)F(Ynun)
RN\Q

J(RN\Q)F\{\XINVI}

+ J (
(RN\Q)N{|x|<r,}

On the other hand, by (1.10), it follows that

J (Q - Q)F(Ynun) < Cye M,
(RN\Q)N{|x|>r,}

and by condition (f;), we have

| (Q= QF (yuitn)
(RM\Q)N{]x|<r,}

+1 +1
sCseJ | | +C6I 14, |
RN\Q) {|x]<r,} ®RN\Q) {|x] <1y}

< C7nNef(n7rn)(q+l)h.

Consequently, using the estimates obtained,

Sn <C eban +epna+ epannN
t, = ¥ ebn(rt) T gmry T gln=ra)(q+D)b §

Since a/b — 1 as § — 0 (see Lemma 2.1), there exists € > 0 such that

pab(g+1)
b(g+1)—pla+e)

Choosing r, = n(1 — p(a+€)/b(q+ 1)), we obtain s,/t, — 0 and hence ¢ < ¢w.

Q - Q)F(Ynun)-

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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Proof of Theorem 1.1. Tt follows from Corollary 3.4 and mountain pass theorem (see Am-
brosetti and Rabinowitz [4]) that I has a critical point u; in the level ¢;. We claim that u,
is nonnegative. Indeed, we know that I' (1, )u; ~ = 0, thus

0= Vauy |2+ |uy |} =llur]l”. (4.20)

Hence u; = 0. Using the strong maximum principle, we have u; >0 in RN\ Q. Thus, we
conclude that u; is a ground-state solution. O

5. Existence of nodal solution

In this section, we will show that there is a solution of (1.1) that changes sign. Here, we
adapt for our case some arguments explored by Cerami et al. [7] (see also Cao [6] and
Noussair and Wei [13]). We start with some notations. Consider the closed set

M= {ue WP (RN\ Q) | u* #£0, I' (u*)u* =0} (5.1)
Using well-known arguments, we can show that there exists a constant y; > 0 verifying
JRN\Q lu= |™ > Yue . (5.2)
Consider the real number
c= uigﬂl(u). (5.3)
LemMa 5.1. There exists a sequence (u,) C M satisfying
I{us) — ¢ I'(ua) — 0. (5.4)

Proof. Tt is easy to verify that I is bounded from below on Jil. Hence we may apply the
Ekeland variational principle to obtain a minimizing sequence {u,} C Jl for ¢ satisfying

> (5.5)

I(v)zl(un)—%Hv—unH Vv e . (5.6)
Using standard arguments, we have that u, is bounded. We claim that

I'(u,) — 0 asn— oo, (5.7)
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To this end, for each ¢ € WLP(RN \ Q) and n € N, we introduce the functions ki, : R? —
R, i=1,2, given by
hl(t,s,1) = J | V(un+l‘(p+suz+lu;)Jr |7+ (uﬂ+tg1)+su;+lu,;)Jr |7
RN\Q
—J f((u,,+tg0+su;+lu;)+)((un+t(p+su:§+lu;)+),
BN (5.8)

h2(t,s,1) =J |V (uy+to+sul +1uy) " |+ | (uy +to+sult +1uy) " |7
RN\Q

- f(un+to+suf+1u,) ) ((un+to+suf+lu,) ).
RN\Q

Note that the functions ki, i = 1,2, are of class C' and #/,(0,0,0) = 0, (dh/91)(0,0,0) = 0,
(0h2/95)(0,0,0) = 0, and

1
(Z)00.0=p[ (17617 +w)")
s ENO (5.9)
P (1) 2 Y (4
— + ,
o 00 )+ £ 0 )
thus
(ah;)(o 0,0)=— [ F) ()24 (1= p)f (u) (). (5.10)
Os Vs BRV\Q n n n n
Since u, € JM, from condition (1.11), there exists C > 0 verifying
liminf | () () + (1= p) f () (uf) > C (5.11)
n—oo ]RN\Q
which implies that
1
(E"h")(o,o,O)«c1 Vs, (5.12)
Js
for some positive constant C;. Using similar arguments, we have
2
(a;’l")(o,o,m <—C Vn>n, (5.13)

Therefore there are, by the implicit function theorem, functions s,(t), I,(t) of class C!
defined on some interval (-6,,68,), 0, > 0, such that s, (0) = [,(0) = 0, and

B (ts0(t),1n(£) =0, t€ (—68,,0,),i=1,2. (5.14)
This shows that for t € (=6,,,6,),

Vo = Uy +to+s,(Duy +1,(Hu, € M. (5.15)
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Furthermore,
0)| <C, Lo <c (5.16)
for some constant C, independent of n. In fact,
1 1
5(0) = (ah )(o 0, 0)/((88}1 )(o 0 0)) (5.17)

thus

PI}RN\Q | V““P_zvu:?Vﬁ”_ fRN\Q (f'(uZ)”:? +f(”;))§0
Jewya 7 () () + (1= p) f (il

From the boundedness of u, in WH?(RN \ Q) and (5.11), it follows that {s,(0)} is
bounded. A similar argument can be applied for the sequence {/,(0)} to conclude that
it is also bounded.

From (5.6), we have

$(0) = — (5.18)

I(up +to+ sy ()i + 1,(H)uy, ) — 1 (uy)

1 (5.19)
2—;||tgo+sn( u+L(Ou, || Vte (—68,6,)
which implies that
, 1 C
I'(un)o=——llol = (5.20)
Then, for all p € WHP(RN \ Q) with [lg]| < 1, we get
I’(un)qJZ—%, (5.21)
hence
|15, () || — . (5.22)
O
ProPOSITION 5.2. Suppose that Q satisfies (1.3), (1.10), and (1.12). Then
0< <)+ Coo. (5.23)

Proof. Let &1 be a ground-state of (1.8). Define #,(x) = @(x — x,,) and u, = auy — Py,
where u; is a positive ground-state of (1.1), x,, = (0,...0,n), &, 3 > 0. Consider the func-
tions

W) = [ 19 G = B,) | | e )|

) (5.24)
_JRN\Q Qf (s = itn) ™) (octiy = Bitn) ™.
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Since

J (|VM1|P+UI1))—J Qf (u1)ur =0, (5.25)
RN\Q RN\Q

by (fS))

P

JRN\Q(‘%VLH P) _LRN\QQf<%u1)I%u1

) JRN\0Q< ({n()u’:)1 ) ({1(/(;;51);;)1> (%)P oo

‘1
+ | —u
p

(5.26)
| o P+ Lol = [ @f (pur)pus
RN\Q RN\Q
f(w) f(pu) ) P
= — <0.
.[RN\QQ( (ul)l’*l (pul)Pq (pw)
Thus, for n large enough, we get
1__|? ‘ 1._ P> J 1_\1._
J (‘—Vun + | =iy, - Qx)f —un)—uu>0,
RNM\Q \I p P RN\Q (p p (5.27)
I (|PVﬂn|p+ |Pﬁn|p)_J Q(x) f (pitn) pitn < 0.
RN\Q RN\Q
Since @1(x) — 0 as |x| — oo, there exists #n, > 0 such that
1
h*(;,ﬂ,n) 50, W (p,pim) <0, (5.28)
for n = n, and § € [1/p, p]. Now, for all « € [1/p, p], we have
h~ <0c, %,n) >0, h™ (e, p,n) <O0. (5.29)

By the mean value theorem (see [12]), we have a*, §* such that 1/p < a*, f* < p,
h*(a*,*,n) =0 forn=>n,, (5.30)
that is,
a*uy —pFa, e M for n = n,. (5.31)
Hence, we only need to verify that

sup I(au; —Biiy) <c1+cw  forn > n,. (5.32)
1/p<a,f<p
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Indeed, since

I(au; — [Sun)z—I | Vau, — Vi, | P + |auy — ity | P
RN\Q

(5.33)
_ JRN\Q Q(x)F (auy — Pity),
from Lemmas 2.3 and 2.4, we get
I(“”l—ﬁﬂn) <L+L-1I, (5.34)
where
Il:lj (19 (o) |P 72V (awr) = |V (Bita) | P29 (Bian) ) (V (@) = V (Bin)),
P JrMQ
L= ]%JRN\Q (o |P*2(xul | Bit, | P~ [j’un auy — Biiy),
I; = JRN\Q QF (auy) + JRN\Q QF (Bit,) —2 JRN\Qf((xul)ﬁﬂn +auy f(Bity).
(5.35)

Since u; is a solution of (1.1) and i, is related with a ground-state of (1.8), we have

@y — Bity) < T(atr) + L (Bity) — LRN\Q(Q ~ Q)F (B

(5.36)
e (f(ul)an+u1f(an))+J QF (Bi).
RN\Q Q
Therefore, we conclude that
_ _ - 1._
sup I(awu — fir,) < supl(auy) +suple (Bity) — J (Q- Q)F(—u,,
1/p<a,f<p a=0 B=0 RN\Q p (5.37)
+C1J (f () Bt + s f (Bi)) +J QF (pity).
RN\Q Q
Now, by (1.12), we obtain
[, @-@F@)=cem, (5.38)
RN\Q

and, by (f;), we get

[ QF (i1,) < €e @)  Cye=mb(tl) < Cenbla+D), (5.39)
Q
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On the other hand, one has

JRN\Qf(ul)anSC |u1|q|ﬁn|

) )
( J(]RN\Q)W{\x\<(l/(q+1))n} RNM\Q)N{x|=(1/(q+1))n}

o[ +f )"
RN {Ix|<(V/(g+D))nt  JRNMD)N{|x|=(1/(n+1))n} (5.40)

< Cle—(q/(q+1))bn + Cze—bn(q/(q+l)) + C3ef(r1/(11+1))bn + Czefbn(n/(r/-%—l))

< Ce—nb(q/(qul)),

JRN\Q w f (it,) < Ce mbl@/(arD), (5.41)

Recalling that y < g/(g + 1), and substituting (5.38), (5.39), and (5.40) in (5.37), with a
and b near 1, we have for n large enough that

sup I(auy — Bii,) <supl(auy) +suple (Bity) = €1 + Coo- (5.42)
Vp=<a,f<p =0 B=0
Thus
€< €1+ Coos (5.43)
which proves the proposition. O

As an immediate consequence of Lemma 3.3 and the last proposition, we get the fol-
lowing lemma.

LemMa 5.3. Let (u,) C M be the sequence obtained in Lemma 5.1. Then (u,) has a subse-
quence converging strongly in WHP (RN \ Q).

Proof. Tt is easy to see that (u,) is bounded in WHP (RN \ ). Denote by u the weak limit
of (u,) in WLP(RN \ Q). Thus, either u,, — uin WHP(RN \ Q) or there exist k functions
w with 1 < j < k satisfying Lemma 3.3. It is clear that k < 1. Suppose that u = 0. Since
¢, >0,wehavek =1and

ul —u'(-—yl) in WRP(RN\ Q). (5.44)

On the other hand, since u, € M and |y},| — o, we obtain
J | ()™ ™ dx = £ >0, (5.45)
RN 2

So, we can conclude that

0=ILo(4") = 2¢, (5.46)
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which is a contradiction. Thus u # 0. If (u,) does not converge strongly to u, then u! # 0.
Hence,

C=I(u)+1o(u') = c) + ooy (5.47)

which contradicts the inequality ¢ < ¢; + c¢w. Hence, there is no k and (u,) is strongly
convergent to u in WP (RN \ Q). O

Proof of Theorem 1.2. By Lemma 5.3, there exists u € Jl such that
I(u) =, I'(u) =0, (5.48)
hence, u is a nodal solution of (1.1). O
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