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Existence result for strongly nonlinear elliptic equation with a natural growth condition
on the nonlinearity is proved.

1. Introduction

Let Ω be a bounded domain in RN (N ≥ 2) with the segment property.
Consider the nonlinear Dirichlet problem

A(u) + g(x,u,∇u)= f , (1.1)

where A(u)=−diva(x,u,∇u) is a Leray-Lions operator defined on D(A)⊂W1
0LM(Ω)→

W−1LM(Ω) with M an N-function and where g is a nonlinearity with the “natural”
growth condition

∣∣g(x,s,ξ)
∣∣≤ b

(|s|)(c(x) +M
(|ξ|)) (1.2)

and which satisfies the classical sign condition g(x,s,ξ)s ≥ 0. The right-hand side f is
assumed to belong to W−1EM(Ω).

It is well known that Gossez [12] solved (1.1) in the case where g depends only on x and
u. If g depends also on ∇u, existence theorems have recently been proved by Benkirane
and Elmahi in [3, 4] by making some restrictions.

In [3], g is supposed to satisfy a “nonnatural” growth condition of the form

∣∣g(x,s,ξ)
∣∣≤ b

(|s|)(c(x) +P
(|ξ|)) with P�M, (1.3)

and in [4], g is supposed to satisfy a natural growth of the form (1.2) but the result is
restricted to N-functions M satisfying a ∆2-condition.

It is our purpose in this paper to extend the result of [4] to general N-functions (i.e.,
without assuming a ∆2-condition on M) and hence generalize the results of [3, 4, 7].
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As an example of equations to which the present result can be applied, we give

(1)

−div
(

exp
(
m|u|)exp

(|∇u|)− 1
|∇u|2 ∇u

)
+usin2uexp

(|∇u|)= f , m≥ 0,

with f = f0 +
N∑
i=1

∂ fi
∂xi

,
∫
Ω
fi log

∣∣ fi∣∣dx <∞,

(1.4)

(2)

−div
(
p
(|∇u|)
|∇u| ∇u

)
+ug(u)p

(|∇u|)= f , (1.5)

with suitable data f , where p is a given positive and continuous function which
increases from 0 to +∞ and where g is a positive function on R.

For classical existence results for nonlinear elliptic equations in Orlicz-Sobolev spaces,
see, for example, [2, 3, 4, 6, 8, 9, 10].

2. Preliminaries

2.1. LetM : R+ →R+ be anN-function, that is,M is continuous and convex, withM(t) >
0 for t > 0, M(t)/t→ 0 as t→ 0, and M(t)/t→∞ as t→∞.

Equivalently, M admits the following representation: M(t) = ∫ t0 m(τ)dτ, where m :
R+ → R+ is nondecreasing and right continuous, with m(0) = 0, m(t) > 0 for t > 0, and
m(t)→∞ as t→∞.

The N-function M, conjugate to M, is defined by M(t)= ∫ t0 m(τ)dτ, where m : R+ →
R+ is given by m(t)= sup{s : m(s)≤ t} (see [1, 14, 15]).

The N-function M is said to satisfy the ∆2-condition if, for some k > 0,

M(2t)≤ kM(t) ∀t ≥ 0. (2.1)

When (2.1) holds only for t ≥ some t0 > 0, then M is said to satisfy the ∆2-condition near
infinity.

We will extend these N-functions into even functions on all R.
Let P and Q be two N-functions. P� Q means that P grows essentially less rapidly

than Q, that is, for each ε > 0,

P(t)
Q(εt)

−→ 0 as t −→∞. (2.2)

This is the case if and only if

lim
t→∞

Q−1(t)
P−1(t)

= 0. (2.3)

2.2. Let Ω be an open subset of RN . The Orlicz class �M(Ω) (resp., the Orlicz space
LM(Ω)) is defined as the set of (equivalence classes of) real-valued measurable functions
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u on Ω such that∫
Ω
M
(
u(x)

)
dx < +∞

(
resp.,

∫
Ω
M
(
u(x)
λ

)
dx < +∞ for some λ > 0

)
. (2.4)

LM(Ω) is a Banach space under the norm

‖u‖M = inf
{
λ > 0 :

∫
Ω
M
(
u(x)
λ

)
dx ≤ 1

}
(2.5)

and �M(Ω) is a convex subset of LM(Ω).
The closure in LM(Ω) of the set of bounded measurable functions with compact sup-

port in Ω is denoted by EM(Ω).
The equality EM(Ω)= LM(Ω) holds if and only if M satisfies the ∆2-condition for all t

or for t large according to whether Ω has infinite measure or not.
The dual of EM(Ω) can be identified with LM(Ω) by means of the pairing∫

Ωu(x)v(x)dx, and the dual norm on LM(Ω) is equivalent to ‖ · ‖M .
The space LM(Ω) is reflexive if and only if M and M satisfy the ∆2-condition, for all t

or for t large, according to whether Ω has infinite measure or not.

2.3. We now turn to the Orlicz-Sobolev space. W1LM(Ω) (resp., W1EM(Ω)) is the space
of all functions u such that u and its distributional derivatives up to order 1 lie in LM(Ω)
(resp., EM(Ω)). It is a Banach space under the norm

‖u‖1,M =
∑
|α|≤1

∥∥Dαu
∥∥
M , (2.6)

thus W1LM(Ω) and W1EM(Ω) can be identified with subspaces of the product of N +
1 copies of LM(Ω). Denoting this product by ΠLM , we will use the weak topologies
σ(ΠLM ,ΠEM) and σ(ΠLM ,ΠLM).

The space W1
0EM(Ω) is defined as the (norm) closure of the Schwartz space �(Ω) in

W1EM(Ω) and the space W1
0LM(Ω) as the σ(ΠLM ,ΠEM) closure of �(Ω) in W1LM(Ω).

We say that un converges to u for the modular convergence in W1LM(Ω) if for some
λ > 0,

∫
Ω
M
(
Dαun−Dαu

λ

)
dx −→ 0 ∀|α| ≤ 1; (2.7)

this implies convergence for σ(ΠLM ,ΠLM).
If M satisfies the ∆2-condition on R+ (near infinity only if Ω has finite measure), then

modular convergence coincides with norm convergence.

2.4. Let W−1LM(Ω) (resp., W−1EM(Ω)) denote the space of distributions on Ω which
can be written as sums of derivatives of order less than or equal to 1 of functions in
LM(Ω) (resp., EM(Ω)). It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space �(Ω) is dense in W1
0LM(Ω)

for the modular convergence and thus for the topology σ(ΠLM ,ΠLM) (cf. [9, 11]). Con-
sequently, the action of a distribution S in W−1LM(Ω) on an element u of W 1

0 LM(Ω) is
well defined. It will be denoted by 〈S,u〉.
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3. The main result

Let Ω be a bounded open subset of RN (N ≥ 2) with the segment property. Let M and P
be two N-functions such that P�M.

Let A : D(A) ⊂W1
0LM(Ω) →W−1LM(Ω) be a mapping (not everywhere defined)

given by

A(u)=−diva(x,u,∇u), (3.1)

where a : Ω×R×RN →RN is a Carathéodory function satisfying, for a.e. x ∈Ω, and for
all s∈R and all ξ, ξ∗ ∈RN , ξ �= ξ∗,

∣∣a(x,s,ξ)
∣∣≤ β

[
c(x) +P

−1
M
(
γ|s|)+M

−1
M
(
γ|ξ|)], (3.2)[

a(x,s,ξ)− a(x,s,ξ∗)
]
[ξ − ξ∗] > 0, (3.3)

αM
(|ξ|)≤ a(x,s,ξ)ξ, (3.4)

where c(x) belongs to EM(Ω), c ≥ 0, and α,β,γ > 0.
Furthermore, let g(x,s,ξ) : Ω×R×RN →R be a Carathéodory function such that for

a.e. x ∈Ω and for all s∈R, ξ ∈RN ,

g(x,s,ξ)s≥ 0, (3.5)∣∣g(x,s,ξ)
∣∣≤ b

(|s|)(c′(x) +M
(|ξ|)), (3.6)

where b : R→ R is a continuous and non decreasing function and c′(x) is a given non-
negative function in L1(Ω). Finally, we assume that

f ∈W−1EM(Ω). (3.7)

Consider the following elliptic problem with Dirichlet boundary condition:

u∈W1
0LM(Ω), g(x,u,∇u)∈ L1(Ω), g(x,u,∇u)u∈ L1(Ω),

〈
A(u),v

〉
+
∫
Ω
g(x,u,∇u)vdx = 〈 f ,v〉

for all v ∈W1
0LM(Ω)∩L∞(Ω) and for v = u.

(3.8)

We will prove the following existence theorem.

Theorem 3.1. Assume that (3.2), (3.3), (3.4), (3.5), (3.6), and (3.7) hold true. Then there
exists at least one solution u of (3.8).
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Remark 3.2. Note that conditions (3.4) and (3.6) can be replaced by the following ones:

αM
( |ξ|

λ

)
≤ a(x,s,ξ)ξ,

∣∣g(x,s,ξ)
∣∣≤ b

(|s|)
(
c′(x) +M

( |ξ|
λ′

))
,

(3.9)

with λ′ ≥ λ > 0.

Remark 3.3. The Euler equation of the integral

∫
Ω

(
a(u)

∫ |∇u|
0

M(t)
t

dt
)
dx−〈 f ,u〉 (3.10)

is

−
N∑
i=1

∂

∂xi

(
a(u)

M
(|∇u|)
|∇u|2

∂u

∂xi

)
+ a′(u)

∫ |∇u|
0

M(t)
t

dt = f , (3.11)

where a(s) is a smooth function satisfying a′(s)s≥ 0. Note that

a′(u)
∫ |∇u|

0

M(t)
t

dt (3.12)

satisfies the growth condition (3.6) and then Theorem 3.1 can be applied to Dirichlet
problems related to (3.11).

Proof of Theorem 3.1
Step 1 (a priori estimates). Consider the sequence of approximate problems

un ∈W1
0LM(Ω),

〈
A
(
un
)
,v
〉

+
∫
Ω
gn
(
x,un,∇un

)
vdx = 〈 f ,v〉 ∀v ∈W1

0LM(Ω),
(3.13)

where

gn(x,s,ξ)= Tn
(
g(x,s,ξ)

)
(3.14)

and where for k > 0, Tk is the usual truncation at height k defined by Tk(s) =max(−k,
min(k,s)) for all s∈R.

Note that gn(x,s,ξ)s ≥ 0, |gn(x,s,ξ)| ≤ |g(x,s,ξ)|, and |gn(x,s,ξ)| ≤ n. Since gn is
bounded for any fixed n > 0, there exists at least one solution un of (3.13) (see [13, Propo-
sitions 1 and 5]).

Using in (3.13) the test function un, we get

∫
Ω
a
(
x,un,∇un

)∇un dx ≤ 〈 f ,un
〉
. (3.15)
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Consequently, one has that (un) is bounded in W1
0LM(Ω). By [13, Proposition 5] (see [13,

Remark 8]), (a(x,un,∇un))n is bounded in (LM(Ω))N ,

∫
Ω
gn
(
x,un,∇un

)
un dx ≤ C, (3.16)

where C is a real constant which does not depend on n.
Passing to a subsequence, if necessary, we can assume that

un⇀ u weakly in W1
0LM(Ω) for σ

(
ΠLM ,ΠEM

)
, strongly in EM(Ω), and a.e. in Ω;

a
(
x,un,∇un

)
⇀ h and a

(
x,Tk

(
un
)
,∇Tk

(
un
))
⇀ hk weakly in

(
LM(Ω)

)N
for σ

(
ΠLM ,ΠEM

)
for some h and hk ∈

(
LM(Ω)

)N
.

(3.17)

Step 2 (almost everywhere convergence of the gradients). Fix k > 0 and let ϕ(t) = teσt
2
,

σ > 0. It is well known that when σ ≥ (b(k)/2α)2, one has

ϕ′(t)− b(k)
α

∣∣ϕ(t)
∣∣≥ 1

2
∀t ∈R. (3.18)

Take a sequence (vj) ⊂ �(Ω) which converges to u for the modular convergence in

W1
0LM(Ω) (cf. [11]) and set θ

j
n = Tk(un)−Tk(vj), θ j = Tk(u)−Tk(vj), and z

j
n = ϕ(θ

j
n).

Using in (3.13) the test function z
j
n, we get

〈
A
(
un
)
,z

j
n
〉

+
∫
Ω
gn
(
x,un,∇un

)
z
j
n dx = 〈 f ,z

j
n
〉
. (3.19)

Denote by εi(n, j) (i = 0,1,2, . . .) various sequences of real numbers which tend to 0
when n and j →∞, that is,

lim
j→∞

lim
n→∞εi(n, j)= 0. (3.20)

In view of (3.17), we have z
j
n→ ϕ(θ j) weakly in W1

0LM(Ω) for σ(ΠLM ,ΠEM) as n→∞
and then 〈 f ,z

j
n〉 → 〈 f ,ϕ(θ j)〉 as n→∞. Using, now, the modular convergence of (vj), we

get 〈 f ,ϕ(θ j)〉 → 0 as j →∞ so that

〈
f ,z

j
n
〉= ε0(n, j). (3.21)

Since gn(x,un,∇un)z
j
n ≥ 0 on the subset {x ∈Ω : |un| > k}, we have

〈
A
(
un
)
,z

j
n
〉

+
∫
{|un|≤k}

gn
(
x,un,∇un

)
z
j
n dx ≤ ε0(n, j). (3.22)
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The first term on the left-hand side of (3.22) reads as

〈
A
(
un
)
,z

j
n
〉=

∫
{|un|≤k}

a
(
x,un,∇un

)[∇Tk
(
un
)−∇Tk

(
vj
)]
ϕ′
(
θ
j
n
)
dx

−
∫
{|un|>k}

a
(
x,un,∇un

)∇Tk
(
vj
)
ϕ′
(
θ
j
n
)
dx

=
∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))[∇Tk

(
un
)−∇Tk

(
vj
)]
ϕ′
(
θ
j
n
)
dx

−
∫
{|un|>k}

a
(
x,un,∇un

)∇Tk
(
vj
)
ϕ′
(
θ
j
n
)
dx

(3.23)

and then

〈
A
(
un
)
,z

j
n
〉=

∫
Ω

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)]

× [∇Tk
(
un
)−∇Tk

(
vj
)
χsj
]
ϕ′
(
θ
j
n
)
dx

+
∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)[∇Tk

(
un
)−∇Tk

(
vj
)
χsj
]
ϕ′
(
θ
j
n
)
dx

−
∫
Ω\Ωs

j

a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
vj
)
ϕ′
(
θ
j
n
)
dx

−
∫
{|un|>k}

a
(
x,un,∇un

)∇Tk
(
vj
)
ϕ′
(
θ
j
n
)
dx,

(3.24)

where χsj denotes the characteristic function of the subset

Ωs
j =
{
x ∈Ω :

∣∣∇Tk
(
vj
)∣∣≤ s

}
. (3.25)

We will pass to the limit in n and in j for s fixed in the last three terms of the right-hand
side of (3.24).

Starting with the fourth term, observe that, since

∣∣∇Tk
(
vj
)
χ{|un|>k}ϕ

′(θ j
n
)∣∣≤ ϕ′(2k)

∣∣∇Tk
(
vj
)∣∣≤ ϕ′(2k)

∥∥∇vj∥∥∞ = aj ∈R, (3.26)

we have

∇Tk
(
vj
)
χ{|un|>k}ϕ

′(θ j
n
)−→∇Tk

(
vj
)
χ{|u|≥k}ϕ′

(
θ j
)

strongly in
(
EM(Ω)

)N
as n−→∞,

(3.27)

and hence
∫
{|un|>k}

a
(
x,un,∇un

)∇Tk
(
vj
)
ϕ′
(
θ
j
n
)
dx −→

∫
{|u|≥k}

h∇Tk
(
vj
)
ϕ′
(
θ j
)
dx as n−→∞.

(3.28)

Observe that

∣∣∇Tk
(
vj
)
χ{|u|≥k}ϕ′

(
θ j
)∣∣≤ ϕ′(2k)

∣∣∇Tk
(
vj
)∣∣≤ ϕ′(2k)

∣∣∇vj∣∣; (3.29)
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then, by using the modular convergence of |∇vj| in LM(Ω) and Vitali’s theorem, we get

∇Tk
(
vj
)
χ{|u|≥k}ϕ′

(
θ j
)−→ 0 (3.30)

for the modular convergence in (LM(Ω))N , and thus

∫
{|u|≥k}

h∇Tk
(
vj
)
ϕ′
(
θ j
)
dx −→ 0 as j −→∞. (3.31)

We have then proved that

∫
{|un|>k}

a
(
x,un,∇un

)∇Tk
(
vj
)
ϕ′
(
θ
j
n
)
dx = ε1(n, j). (3.32)

The second term on the right-hand side of (3.24) tends to (by letting n→∞)

∫
Ω
a
(
x,Tk(u),∇Tk

(
vj
)
χsj
)[∇Tk(u)−∇Tk

(
vj
)
χsj
]
ϕ′
(
θ j
)
dx (3.33)

since a(x,Tk(un),∇Tk(vj)χsj)ϕ
′(θ j

n)→ a(x,Tk(u),∇Tk(vj)χsj)ϕ
′(θ j) strongly in (EM(Ω))N

as n→∞ by [3, Lemma 2.3], while∇Tk(un)⇀∇Tk(u) weakly in (LM(Ω))N by (3.17).
Since ∇Tk(vj)χsj →∇Tk(u)χs strongly in (EM(Ω))N as j →∞, where χs denotes the

characteristic function of Ωs = {x ∈Ω : |∇Tk(u)| ≤ s}, it is easy to see that

∫
Ω
a
(
x,Tk(u),∇Tk

(
vj
)
χsj
)[∇Tk(u)−∇Tk

(
vj
)
χsj
]
ϕ′
(
θ j
)
dx −→ 0 as j −→∞, (3.34)

and thus
∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)[∇Tk

(
un
)−∇Tk

(
vj
)
χsj
]
ϕ′
(
θ
j
n
)
dx = ε2(n, j). (3.35)

Concerning the third term on the right-hand side of (3.24), we have

−
∫
Ω\Ωs

j

a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
vj
)
ϕ′
(
θ
j
n
)
dx −→−

∫
Ω\Ωs

j

hk∇Tk
(
vj
)
ϕ′
(
θ j
)
dx

(3.36)

as n→∞ by using the fact that∇Tk(vj) belongs to (EM(Ω))N .
In view of the modular convergence of (∇vj) in (LM(Ω))N , we have

−
∫
Ω\Ωs

j

hk∇Tk
(
vj
)
ϕ′
(
θ j
)
dx −→−

∫
Ω\Ωs

hk∇Tk(u)dx as j −→∞ (3.37)

and thus

−
∫
Ω\Ωs

j

a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
vj
)
ϕ′
(
θ
j
n
)
dx = ε3(n, j)−

∫
Ω\Ωs

hk∇Tk(u)dx.

(3.38)
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Combining now (3.32), (3.35), and (3.38), we obtain

〈
A
(
un
)
,z

j
n
〉=

∫
Ω

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)]

× [∇Tk
(
un
)−∇Tk

(
vj
)
χsj
]
ϕ′
(
θ
j
n
)
dx−

∫
Ω\Ωs

hk∇Tk(u)dx+ ε4(n, j).

(3.39)

We now turn to the second term on the left-hand side of (3.22). We have
∣∣∣∣
∫
{|un|≤k}

gn
(
x,un,∇un

)
z
j
n dx

∣∣∣∣
=
∣∣∣∣
∫
{|un|≤k}

gn
(
x,Tk

(
un
)
,∇Tk

(
un
))
z
j
n dx

∣∣∣∣
≤
∫
Ω
b(k)c′(x)

∣∣ϕ(θ j
n
)∣∣dx+ b(k)

∫
Ω
M
(∣∣∇Tk

(
un
)∣∣)∣∣ϕ(θ j

n
)∣∣dx

≤ b(k)
α

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
un
)∣∣ϕ(θ j

n
)∣∣dx+ ε5(n, j).

(3.40)

The first term of the right-hand side of this inequality reads as

b(k)
α

∫
Ω

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)]

× [∇Tk
(
un
)−∇Tk

(
vj
)
χsj
]∣∣ϕ(θ j

n
)∣∣dx

+
b(k)
α

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)[∇Tk

(
un
)−∇Tk

(
vj
)
χsj
]∣∣ϕ(θ j

n
)∣∣dx

− b(k)
α

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
vj
)
χsj
∣∣ϕ(θ j

n
)∣∣dx

(3.41)

and, as above, it is easy to see that

b(k)
α

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)[∇Tk

(
un
)−∇Tk

(
vj
)
χsj
]∣∣ϕ(θ j

n
)∣∣dx = ε6(n, j)

(3.42)

and that

−b(k)
α

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
vj
)
χsj
∣∣ϕ(θ j

n
)∣∣dx = ε7(n, j) (3.43)

so that
∣∣∣∣
∫
{|un|≤k}

gn
(
x,un,∇un

)
z
j
n dx

∣∣∣∣
≤ b(k)

α

∫
Ω

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)]

× [∇Tk
(
un
)−∇Tk

(
vj
)
χsj
]∣∣ϕ(θ j

n
)∣∣dx+ ε8(n, j).

(3.44)
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Combining this inequality with (3.22) and (3.39), we obtain

∫
Ω

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)][∇Tk

(
un
)−∇Tk

(
vj
)
χsj
]

×
[
ϕ′
(
θ
j
n
)− b(k)

α

∣∣ϕ(θ j
n
)∣∣]dx ≤ ε9(n, j) +

∫
Ω\Ωs

hk∇Tk(u)dx.

(3.45)

Consequently,

∫
Ω

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)][∇Tk

(
un
)−∇Tk

(
vj
)
χsj
]
dx

≤ 2ε9(n, j) + 2
∫
Ω\Ωs

hk∇Tk(u)dx.

(3.46)

On the other hand,
∫
Ω

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk(u)χs

)][∇Tk
(
un
)−∇Tk(u)χs

]
dx

=
∫
Ω

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))−a(x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)][∇Tk

(
un
)−∇Tk

(
vj
)
χsj
]
dx

+
∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))[∇Tk

(
vj
)
χsj −∇Tk(u)χs

]
dx

−
∫
Ω
a
(
x,Tk

(
un
)
,∇Tk(u)χs

)[∇Tk
(
un
)−∇Tk(u)χs

]
dx

+
∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)[∇Tk

(
un
)−∇Tk

(
vj
)
χsj
]
dx.

(3.47)

We will pass to the limit in n and in j in the last three terms on the right-hand side of
the above equality. Similar tools as in (3.24) and (3.41) give

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))[∇Tk

(
vj
)
χsj −∇Tk(u)χs

]
dx = ε10(n, j), (3.48)

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk(u)χs

)[∇Tk
(
un
)−∇Tk(u)χs

]
dx = ε11(n, j), (3.49)

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)[∇Tk

(
un
)−∇Tk

(
vj
)
χsj
]
dx = ε12(n, j) (3.50)

which imply that

∫
Ω

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk(u)χs

)][∇Tk
(
un
)−∇Tk(u)χs

]
dx

=
∫
Ω

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))−a(x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)][∇Tk

(
un
)−∇Tk

(
vj
)
χsj
]
dx

+ ε13(n, j).
(3.51)



A. Elmahi and D. Meskine 1041

For r ≤ s, one has

0≤
∫
Ωr

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk(u)

)][∇Tk
(
un
)−∇Tk(u)

]
dx

≤
∫
Ωs

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk(u)

)][∇Tk
(
un
)−∇Tk(u)

]
dx

=
∫
Ωs

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk(u)χs

)][∇Tk
(
un
)−∇Tk(u)χs

]
dx

≤
∫
Ω

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk(u)χs

)][∇Tk
(
un
)−∇Tk(u)χs

]
dx

=
∫
Ω

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)][∇Tk

(
un
)−∇Tk

(
vj
)
χsj
]
dx

+ ε13(n, j)

≤ ε14(n, j) + 2
∫
Ω\Ωs

hk∇Tk(u)dx.

(3.52)

This implies that, by passing at first to the limit sup over n and next over j,

0≤ limsup
n→∞

∫
Ωr

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk(u)

)][∇Tk
(
un
)−∇Tk(u)

]
dx

≤ 2
∫
Ω\Ωs

hk∇Tk(u)dx.

(3.53)

Using the fact that hk∇Tk(u)∈ L1(Ω) and letting s→∞, we get
∫
Ωr

[
a
(
x,Tk

(
un
)
,∇Tk

(
un
))− a

(
x,Tk

(
un
)
,∇Tk(u)

)][∇Tk
(
un
)−∇Tk(u)

]
dx −→ 0

(3.54)

as n→∞.
As in [3], we deduce that there exists a subsequence still denoted by un such that

∇un −→∇u a.e. in Ω, (3.55)

which implies that

a
(
x,un,∇un

)
⇀ a(x,u,∇u) weakly in

(
LM
(
Ω
))N

for σ
(
ΠLM ,ΠEM

)
. (3.56)

Step 3 (modular convergence of the truncations). Going back to (3.46), we can write
∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
un
)
dx ≤

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
vj
)
χsj dx

+
∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
vj
)
χsj
)

× [∇Tk
(
un
)−∇Tk

(
vj
)
χsj
]
dx

+ 2ε9(n, j) + 2
∫
Ω\Ωs

hk∇Tk(u)dx,

(3.57)
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which implies, by using (3.50),

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
un
)
dx

≤
∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
vj
)
χsj dx+ ε15(n, j) + 2

∫
Ω\Ωs

hk∇Tk(u)dx.
(3.58)

Passing to the limit sup over n in both sides of this inequality yields

limsup
n→∞

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
un
)
dx

≤
∫
Ω
a
(
x,Tk(u),∇Tk(u)

)∇Tk
(
vj
)
χsj dx+ lim

n→∞ε15(n, j) + 2
∫
Ω\Ωs

hk∇Tk(u)dx,

(3.59)

in which we can pass to the limit in j to obtain

limsup
n→∞

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
un
)
dx

≤
∫
Ω
a
(
x,Tk(u),∇Tk(u)

)∇Tk(u)χs dx+ 2
∫
Ω\Ωs

hk∇Tk(u)dx
(3.60)

which gives, by letting s→∞,

limsup
n→∞

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
un
)
dx ≤

∫
Ω
a
(
x,Tk(u),∇Tk(u)

)∇Tk(u)dx.

(3.61)

On the other hand, we have, by using Fatou’s lemma,

∫
Ω
a
(
x,Tk(u),∇Tk(u)

)∇Tk(u)dx ≤ liminf
n→∞

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
un
)
dx,

(3.62)

which implies that

∫
Ω
a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
un
)
dx −→

∫
Ω
a
(
x,Tk(u),∇Tk(u)

)∇Tk(u)dx as n−→∞,

(3.63)

and by using [4, Lemma 2.4], we conclude that

a
(
x,Tk

(
un
)
,∇Tk

(
un
))∇Tk

(
un
)−→ a

(
x,Tk(u),∇Tk(u)

)∇Tk(u) in L1(Ω). (3.64)

This implies, by using (3.4), that

Tk
(
un
)−→ Tk(u) in W1

0LM(Ω) (3.65)

for the modular convergence.
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Step 4 (equi-integrability of the nonlinearities and passage to the limit). We will prove
that gn(x,un,∇un)→ g(x,u,∇u) strongly in L1(Ω) by using Vitali’s theorem.

Since gn(x,un,∇un)→ g(x,u,∇u) a.e. in Ω, thanks to (3.55), it suffices to prove that
gn(x,un,∇un) are uniformly equi-integrable in Ω. Let E ⊂Ω be a measurable subset of Ω.
We have, for any m> 0,

∫
E

∣∣gn(x,un,∇un
)∣∣dx =

∫
E∩{|un|≤m}

∣∣gn(x,un,∇un
)∣∣dx+

∫
E∩{|un|>m}

∣∣gn(x,un,∇un
)∣∣dx

≤ b(m)
∫
E
a
(
x,Tm

(
un
)
,∇Tm

(
un
))∇Tm

(
un
)
dx

+ b(m)
∫
E
c′(x)dx+

1
m

∫
Ω
gn
(
x,un,∇un

)
un dx.

(3.66)

Standard arguments allow to deduce, using the strong convergence (3.64), that there
exists µ > 0 such that

|E| < µ=⇒
∫
E

∣∣gn(x,un,∇un
)∣∣dx ≤ ε, ∀n, (3.67)

which shows that gn(x,un,∇un) are uniformly equi-integrable in Ω as required.
In order to pass to the limit, we have, by going back to approximate equations (3.13),

∫
Ω
a
(
x,un,∇un

)∇wdx+
∫
Ω
gn
(
x,un,∇un

)
wdx = 〈 f ,w〉 (3.68)

for all w ∈�(Ω), in which, we can easily pass to the limit as n→∞ to get

∫
Ω
a(x,u,∇u)∇wdx+

∫
Ω
g(x,u,∇u)wdx = 〈 f ,w〉. (3.69)

Let now v ∈W1
0LM(Ω)∩L∞(Ω). There exists (wj)⊂�(Ω) such that ‖wj‖∞,Ω ≤ (N +

1)‖v‖∞,Ω for all j ∈N and

wj −→ v (3.70)

for the modular convergence in W1
0LM(Ω). Taking w = wj in (3.69) and letting j →∞

yields

∫
Ω
a(x,u,∇u)∇vdx+

∫
Ω
g(x,u,∇u)vdx = 〈 f ,v〉. (3.71)

By choosing v = Tk(u) in the last equality, we get

∫
Ω
a(x,u,∇u)∇Tk(u)dx+

∫
Ω
g(x,u,∇u)Tk(u)dx = 〈 f ,Tk(u)

〉
. (3.72)

From (3.16), we deduce by Fatou’s lemma that g(x,u,∇u)u∈ L1(Ω) and since |g(x,u,
∇u)Tk(u)| ≤ g(x,u,∇u)u and Tk(u)→ u in W1

0LM(Ω) for the modular convergence and
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a.e. in Ω as k→∞, it is easy to pass to the limit in both sides of (3.72) (by using Lebesgue
theorem) to obtain

∫
Ω
a(x,u,∇u)∇udx+

∫
Ω
g(x,u,∇u)udx = 〈 f ,u〉. (3.73)

This completes the proof of Theorem 3.1. �

Remark 3.4. If we replace, as in [5], (3.2) by the general growth condition

∣∣a(x,s,ξ)
∣∣≤ b

(|s|)(c(x) +M
−1
M
(
γ
∣∣ξ∣∣)), (3.74)

where γ > 0, c ∈ EM(Ω), and b : R+ → R+ is a continuous nondecreasing function, we
prove the existence of solutions for the following problem:

u∈W1
0LM(Ω), g(x,u,∇u)∈ L1(Ω), g(x,u,∇u)u∈ L1(Ω),

〈
A(u),Tk(u− v)

〉
+
∫
Ω
g(x,u,∇u)Tk(u− v)dx ≤ 〈 f ,Tk(u− v)

〉

∀v ∈W1
0LM(Ω)∩L∞(Ω).

(3.75)

Indeed, we consider the following approximate problems:

un ∈W1
0LM(Ω),

−diva
(
x,Tn

(
un
)
,∇un

)
+ gn

(
x,un,∇un

)= f in Ω,
(3.76)

and we conclude by adapting the same steps.
As an application of this result, we can treat the following model equations:

−div
((

1 + |u|)m exp
(|∇u|)− 1
|∇u|2 ∇u

)
+ucos2uexp

(|∇u|)= f , m≥ 0. (3.77)

Remark that the solutions of (3.77) belong to L∞(Ω) so that (3.77) holds in the distri-
butional sense.
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