

EXISTENCE OF SOLUTIONS FOR ELLIPTIC EQUATIONS HAVING NATURAL GROWTH TERMS IN ORLICZ SPACES

A. ELMAHI AND D. MESKINE

Received 24 September 2003

Existence result for strongly nonlinear elliptic equation with a natural growth condition on the nonlinearity is proved.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^N ($N \geq 2$) with the segment property.

Consider the nonlinear Dirichlet problem

$$A(u) + g(x, u, \nabla u) = f, \quad (1.1)$$

where $A(u) = -\operatorname{div} a(x, u, \nabla u)$ is a Leray-Lions operator defined on $D(A) \subset W_0^1 L_M(\Omega) \rightarrow W^{-1} L_{\bar{M}}(\Omega)$ with M an N -function and where g is a nonlinearity with the “natural” growth condition

$$|g(x, s, \xi)| \leq b(|s|)(c(x) + M(|\xi|)) \quad (1.2)$$

and which satisfies the classical sign condition $g(x, s, \xi)s \geq 0$. The right-hand side f is assumed to belong to $W^{-1} L_{\bar{M}}(\Omega)$.

It is well known that Gossez [12] solved (1.1) in the case where g depends only on x and u . If g depends also on ∇u , existence theorems have recently been proved by Benkirane and Elmahi in [3, 4] by making some restrictions.

In [3], g is supposed to satisfy a “nonnatural” growth condition of the form

$$|g(x, s, \xi)| \leq b(|s|)(c(x) + P(|\xi|)) \quad \text{with } P \ll M, \quad (1.3)$$

and in [4], g is supposed to satisfy a natural growth of the form (1.2) but the result is restricted to N -functions M satisfying a Δ_2 -condition.

It is our purpose in this paper to extend the result of [4] to general N -functions (i.e., without assuming a Δ_2 -condition on M) and hence generalize the results of [3, 4, 7].

As an example of equations to which the present result can be applied, we give

(1)

$$\begin{aligned} -\operatorname{div}\left(\exp(m|u|) \frac{\exp(|\nabla u|)-1}{|\nabla u|^2} \nabla u\right) + u \sin^2 u \exp(|\nabla u|) &= f, \quad m \geq 0, \\ \text{with } f = f_0 + \sum_{i=1}^N \frac{\partial f_i}{\partial x_i}, \int_{\Omega} f_i \log |f_i| dx < \infty, \end{aligned} \quad (1.4)$$

(2)

$$-\operatorname{div}\left(\frac{p(|\nabla u|)}{|\nabla u|} \nabla u\right) + ug(u)p(|\nabla u|) = f, \quad (1.5)$$

with suitable data f , where p is a given positive and continuous function which increases from 0 to $+\infty$ and where g is a positive function on \mathbb{R} .

For classical existence results for nonlinear elliptic equations in Orlicz-Sobolev spaces, see, for example, [2, 3, 4, 6, 8, 9, 10].

2. Preliminaries

2.1. Let $M : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ be an N -function, that is, M is continuous and convex, with $M(t) > 0$ for $t > 0$, $M(t)/t \rightarrow 0$ as $t \rightarrow 0$, and $M(t)/t \rightarrow \infty$ as $t \rightarrow \infty$.

Equivalently, M admits the following representation: $M(t) = \int_0^t m(\tau) d\tau$, where $m : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is nondecreasing and right continuous, with $m(0) = 0$, $m(t) > 0$ for $t > 0$, and $m(t) \rightarrow \infty$ as $t \rightarrow \infty$.

The N -function \bar{M} , conjugate to M , is defined by $\bar{M}(t) = \int_0^t \bar{m}(\tau) d\tau$, where $\bar{m} : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is given by $\bar{m}(t) = \sup\{s : m(s) \leq t\}$ (see [1, 14, 15]).

The N -function M is said to satisfy the Δ_2 -condition if, for some $k > 0$,

$$M(2t) \leq kM(t) \quad \forall t \geq 0. \quad (2.1)$$

When (2.1) holds only for $t \geq$ some $t_0 > 0$, then M is said to satisfy the Δ_2 -condition near infinity.

We will extend these N -functions into even functions on all \mathbb{R} .

Let P and Q be two N -functions. $P \ll Q$ means that P grows essentially less rapidly than Q , that is, for each $\varepsilon > 0$,

$$\frac{P(t)}{Q(\varepsilon t)} \rightarrow 0 \quad \text{as } t \rightarrow \infty. \quad (2.2)$$

This is the case if and only if

$$\lim_{t \rightarrow \infty} \frac{Q^{-1}(t)}{P^{-1}(t)} = 0. \quad (2.3)$$

2.2. Let Ω be an open subset of \mathbb{R}^N . The Orlicz class $\mathcal{L}_M(\Omega)$ (resp., the Orlicz space $L_M(\Omega)$) is defined as the set of (equivalence classes of) real-valued measurable functions

u on Ω such that

$$\int_{\Omega} M(u(x)) dx < +\infty \quad \left(\text{resp., } \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) dx < +\infty \text{ for some } \lambda > 0 \right). \quad (2.4)$$

$L_M(\Omega)$ is a Banach space under the norm

$$\|u\|_M = \inf \left\{ \lambda > 0 : \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) dx \leq 1 \right\} \quad (2.5)$$

and $\mathcal{L}_M(\Omega)$ is a convex subset of $L_M(\Omega)$.

The closure in $L_M(\Omega)$ of the set of bounded measurable functions with compact support in $\overline{\Omega}$ is denoted by $E_M(\Omega)$.

The equality $E_M(\Omega) = L_M(\Omega)$ holds if and only if M satisfies the Δ_2 -condition for all t or for t large according to whether Ω has infinite measure or not.

The dual of $E_M(\Omega)$ can be identified with $L_{\overline{M}}(\Omega)$ by means of the pairing $\int_{\Omega} u(x)v(x)dx$, and the dual norm on $L_{\overline{M}}(\Omega)$ is equivalent to $\|\cdot\|_{\overline{M}}$.

The space $L_M(\Omega)$ is reflexive if and only if M and \overline{M} satisfy the Δ_2 -condition, for all t or for t large, according to whether Ω has infinite measure or not.

2.3. We now turn to the Orlicz-Sobolev space. $W^1L_M(\Omega)$ (resp., $W^1E_M(\Omega)$) is the space of all functions u such that u and its distributional derivatives up to order 1 lie in $L_M(\Omega)$ (resp., $E_M(\Omega)$). It is a Banach space under the norm

$$\|u\|_{1,M} = \sum_{|\alpha| \leq 1} \|D^{\alpha}u\|_M, \quad (2.6)$$

thus $W^1L_M(\Omega)$ and $W^1E_M(\Omega)$ can be identified with subspaces of the product of $N + 1$ copies of $L_M(\Omega)$. Denoting this product by ΠL_M , we will use the weak topologies $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ and $\sigma(\Pi L_M, \Pi L_{\overline{M}})$.

The space $W_0^1E_M(\Omega)$ is defined as the (norm) closure of the Schwartz space $\mathcal{D}(\Omega)$ in $W^1E_M(\Omega)$ and the space $W_0^1L_M(\Omega)$ as the $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ closure of $\mathcal{D}(\Omega)$ in $W^1L_M(\Omega)$.

We say that u_n converges to u for the modular convergence in $W^1L_M(\Omega)$ if for some $\lambda > 0$,

$$\int_{\Omega} M\left(\frac{D^{\alpha}u_n - D^{\alpha}u}{\lambda}\right) dx \rightarrow 0 \quad \forall |\alpha| \leq 1; \quad (2.7)$$

this implies convergence for $\sigma(\Pi L_M, \Pi L_{\overline{M}})$.

If M satisfies the Δ_2 -condition on \mathbb{R}^+ (near infinity only if Ω has finite measure), then modular convergence coincides with norm convergence.

2.4. Let $W^{-1}L_{\overline{M}}(\Omega)$ (resp., $W^{-1}E_{\overline{M}}(\Omega)$) denote the space of distributions on Ω which can be written as sums of derivatives of order less than or equal to 1 of functions in $L_{\overline{M}}(\Omega)$ (resp., $E_{\overline{M}}(\Omega)$). It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space $\mathcal{D}(\Omega)$ is dense in $W_0^1L_M(\Omega)$ for the modular convergence and thus for the topology $\sigma(\Pi L_M, \Pi L_{\overline{M}})$ (cf. [9, 11]). Consequently, the action of a distribution S in $W^{-1}L_{\overline{M}}(\Omega)$ on an element u of $W_0^1L_M(\Omega)$ is well defined. It will be denoted by $\langle S, u \rangle$.

3. The main result

Let Ω be a bounded open subset of \mathbb{R}^N ($N \geq 2$) with the segment property. Let M and P be two N -functions such that $P \ll M$.

Let $A : D(A) \subset W_0^1 L_M(\Omega) \rightarrow W^{-1} L_{\bar{M}}(\Omega)$ be a mapping (not everywhere defined) given by

$$A(u) = -\operatorname{div} a(x, u, \nabla u), \quad (3.1)$$

where $a : \Omega \times \mathbb{R} \times \mathbb{R}^N \rightarrow \mathbb{R}^N$ is a Carathéodory function satisfying, for a.e. $x \in \Omega$, and for all $s \in \mathbb{R}$ and all $\xi, \xi^* \in \mathbb{R}^N$, $\xi \neq \xi^*$,

$$|a(x, s, \xi)| \leq \beta[c(x) + \bar{P}^{-1}M(\gamma|s|) + \bar{M}^{-1}M(\gamma|\xi|)], \quad (3.2)$$

$$[a(x, s, \xi) - a(x, s, \xi^*)][\xi - \xi^*] > 0, \quad (3.3)$$

$$\alpha M(|\xi|) \leq a(x, s, \xi)\xi, \quad (3.4)$$

where $c(x)$ belongs to $E_{\bar{M}}(\Omega)$, $c \geq 0$, and $\alpha, \beta, \gamma > 0$.

Furthermore, let $g(x, s, \xi) : \Omega \times \mathbb{R} \times \mathbb{R}^N \rightarrow \mathbb{R}$ be a Carathéodory function such that for a.e. $x \in \Omega$ and for all $s \in \mathbb{R}$, $\xi \in \mathbb{R}^N$,

$$g(x, s, \xi)s \geq 0, \quad (3.5)$$

$$|g(x, s, \xi)| \leq b(|s|)(c'(x) + M(|\xi|)), \quad (3.6)$$

where $b : \mathbb{R} \rightarrow \mathbb{R}$ is a continuous and non decreasing function and $c'(x)$ is a given non-negative function in $L^1(\Omega)$. Finally, we assume that

$$f \in W^{-1} E_{\bar{M}}(\Omega). \quad (3.7)$$

Consider the following elliptic problem with Dirichlet boundary condition:

$$\begin{aligned} u &\in W_0^1 L_M(\Omega), \quad g(x, u, \nabla u) \in L^1(\Omega), \quad g(x, u, \nabla u)u \in L^1(\Omega), \\ \langle A(u), v \rangle + \int_{\Omega} g(x, u, \nabla u)v \, dx &= \langle f, v \rangle \\ \text{for all } v &\in W_0^1 L_M(\Omega) \cap L^{\infty}(\Omega) \text{ and for } v = u. \end{aligned} \quad (3.8)$$

We will prove the following existence theorem.

THEOREM 3.1. *Assume that (3.2), (3.3), (3.4), (3.5), (3.6), and (3.7) hold true. Then there exists at least one solution u of (3.8).*

Remark 3.2. Note that conditions (3.4) and (3.6) can be replaced by the following ones:

$$\begin{aligned} \alpha M\left(\frac{|\xi|}{\lambda}\right) &\leq a(x, s, \xi)\xi, \\ |g(x, s, \xi)| &\leq b(|s|)\left(c'(x) + M\left(\frac{|\xi|}{\lambda'}\right)\right), \end{aligned} \quad (3.9)$$

with $\lambda' \geq \lambda > 0$.

Remark 3.3. The Euler equation of the integral

$$\int_{\Omega} \left(a(u) \int_0^{|\nabla u|} \frac{M(t)}{t} dt \right) dx - \langle f, u \rangle \quad (3.10)$$

is

$$-\sum_{i=1}^N \frac{\partial}{\partial x_i} \left(a(u) \frac{M(|\nabla u|)}{|\nabla u|^2} \frac{\partial u}{\partial x_i} \right) + a'(u) \int_0^{|\nabla u|} \frac{M(t)}{t} dt = f, \quad (3.11)$$

where $a(s)$ is a smooth function satisfying $a'(s)s \geq 0$. Note that

$$a'(u) \int_0^{|\nabla u|} \frac{M(t)}{t} dt \quad (3.12)$$

satisfies the growth condition (3.6) and then [Theorem 3.1](#) can be applied to Dirichlet problems related to (3.11).

Proof of Theorem 3.1

Step 1 (a priori estimates). Consider the sequence of approximate problems

$$\begin{aligned} u_n &\in W_0^1 L_M(\Omega), \\ \langle A(u_n), v \rangle + \int_{\Omega} g_n(x, u_n, \nabla u_n) v dx &= \langle f, v \rangle \quad \forall v \in W_0^1 L_M(\Omega), \end{aligned} \quad (3.13)$$

where

$$g_n(x, s, \xi) = T_n(g(x, s, \xi)) \quad (3.14)$$

and where for $k > 0$, T_k is the usual truncation at height k defined by $T_k(s) = \max(-k, \min(k, s))$ for all $s \in \mathbb{R}$.

Note that $g_n(x, s, \xi)s \geq 0$, $|g_n(x, s, \xi)| \leq |g(x, s, \xi)|$, and $|g_n(x, s, \xi)| \leq n$. Since g_n is bounded for any fixed $n > 0$, there exists at least one solution u_n of (3.13) (see [13, Propositions 1 and 5]).

Using in (3.13) the test function u_n , we get

$$\int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n dx \leq \langle f, u_n \rangle. \quad (3.15)$$

Consequently, one has that (u_n) is bounded in $W_0^1 L_M(\Omega)$. By [13, Proposition 5] (see [13, Remark 8]), $(a(x, u_n, \nabla u_n))_n$ is bounded in $(L_{\overline{M}}(\Omega))^N$,

$$\int_{\Omega} g_n(x, u_n, \nabla u_n) u_n dx \leq C, \quad (3.16)$$

where C is a real constant which does not depend on n .

Passing to a subsequence, if necessary, we can assume that

$$\begin{aligned} u_n &\rightharpoonup u \text{ weakly in } W_0^1 L_M(\Omega) \text{ for } \sigma(\Pi L_M, \Pi E_{\overline{M}}), \text{ strongly in } E_M(\Omega), \text{ and a.e. in } \Omega; \\ a(x, u_n, \nabla u_n) &\rightharpoonup h \text{ and } a(x, T_k(u_n), \nabla T_k(u_n)) \rightharpoonup h_k \text{ weakly in } (L_{\overline{M}}(\Omega))^N \\ &\text{for } \sigma(\Pi L_{\overline{M}}, \Pi E_M) \text{ for some } h \text{ and } h_k \in (L_{\overline{M}}(\Omega))^N. \end{aligned} \quad (3.17)$$

Step 2 (almost everywhere convergence of the gradients). Fix $k > 0$ and let $\varphi(t) = t e^{\sigma t^2}$, $\sigma > 0$. It is well known that when $\sigma \geq (b(k)/2\alpha)^2$, one has

$$\varphi'(t) - \frac{b(k)}{\alpha} |\varphi(t)| \geq \frac{1}{2} \quad \forall t \in \mathbb{R}. \quad (3.18)$$

Take a sequence $(v_j) \subset \mathcal{D}(\Omega)$ which converges to u for the modular convergence in $W_0^1 L_M(\Omega)$ (cf. [11]) and set $\theta_n^j = T_k(u_n) - T_k(v_j)$, $\theta^j = T_k(u) - T_k(v_j)$, and $z_n^j = \varphi(\theta_n^j)$.

Using in (3.13) the test function z_n^j , we get

$$\langle A(u_n), z_n^j \rangle + \int_{\Omega} g_n(x, u_n, \nabla u_n) z_n^j dx = \langle f, z_n^j \rangle. \quad (3.19)$$

Denote by $\varepsilon_i(n, j)$ ($i = 0, 1, 2, \dots$) various sequences of real numbers which tend to 0 when n and $j \rightarrow \infty$, that is,

$$\lim_{j \rightarrow \infty} \lim_{n \rightarrow \infty} \varepsilon_i(n, j) = 0. \quad (3.20)$$

In view of (3.17), we have $z_n^j \rightharpoonup \varphi(\theta^j)$ weakly in $W_0^1 L_M(\Omega)$ for $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ as $n \rightarrow \infty$ and then $\langle f, z_n^j \rangle \rightarrow \langle f, \varphi(\theta^j) \rangle$ as $n \rightarrow \infty$. Using, now, the modular convergence of (v_j) , we get $\langle f, \varphi(\theta^j) \rangle \rightarrow 0$ as $j \rightarrow \infty$ so that

$$\langle f, z_n^j \rangle = \varepsilon_0(n, j). \quad (3.21)$$

Since $g_n(x, u_n, \nabla u_n) z_n^j \geq 0$ on the subset $\{x \in \Omega : |u_n| > k\}$, we have

$$\langle A(u_n), z_n^j \rangle + \int_{\{|u_n| \leq k\}} g_n(x, u_n, \nabla u_n) z_n^j dx \leq \varepsilon_0(n, j). \quad (3.22)$$

The first term on the left-hand side of (3.22) reads as

$$\begin{aligned}
\langle A(u_n), z_n^j \rangle &= \int_{\{|u_n| \leq k\}} a(x, u_n, \nabla u_n) [\nabla T_k(u_n) - \nabla T_k(v_j)] \varphi'(\theta_n^j) dx \\
&\quad - \int_{\{|u_n| > k\}} a(x, u_n, \nabla u_n) \nabla T_k(v_j) \varphi'(\theta_n^j) dx \\
&= \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) [\nabla T_k(u_n) - \nabla T_k(v_j)] \varphi'(\theta_n^j) dx \\
&\quad - \int_{\{|u_n| > k\}} a(x, u_n, \nabla u_n) \nabla T_k(v_j) \varphi'(\theta_n^j) dx
\end{aligned} \tag{3.23}$$

and then

$$\begin{aligned}
\langle A(u_n), z_n^j \rangle &= \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s)] \\
&\quad \times [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] \varphi'(\theta_n^j) dx \\
&\quad + \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] \varphi'(\theta_n^j) dx \\
&\quad - \int_{\Omega \setminus \Omega_j^s} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \varphi'(\theta_n^j) dx \\
&\quad - \int_{\{|u_n| > k\}} a(x, u_n, \nabla u_n) \nabla T_k(v_j) \varphi'(\theta_n^j) dx,
\end{aligned} \tag{3.24}$$

where χ_j^s denotes the characteristic function of the subset

$$\Omega_j^s = \{x \in \Omega : |\nabla T_k(v_j)| \leq s\}. \tag{3.25}$$

We will pass to the limit in n and in j for s fixed in the last three terms of the right-hand side of (3.24).

Starting with the fourth term, observe that, since

$$|\nabla T_k(v_j) \chi_{\{|u_n| > k\}} \varphi'(\theta_n^j)| \leq \varphi'(2k) |\nabla T_k(v_j)| \leq \varphi'(2k) \|\nabla v_j\|_{\infty} = a_j \in \mathbb{R}, \tag{3.26}$$

we have

$$\nabla T_k(v_j) \chi_{\{|u_n| > k\}} \varphi'(\theta_n^j) \rightharpoonup \nabla T_k(v_j) \chi_{\{|u| \geq k\}} \varphi'(\theta^j) \text{ strongly in } (E_M(\Omega))^N \quad \text{as } n \rightarrow \infty, \tag{3.27}$$

and hence

$$\int_{\{|u_n| > k\}} a(x, u_n, \nabla u_n) \nabla T_k(v_j) \varphi'(\theta_n^j) dx \rightharpoonup \int_{\{|u| \geq k\}} h \nabla T_k(v_j) \varphi'(\theta^j) dx \quad \text{as } n \rightarrow \infty. \tag{3.28}$$

Observe that

$$|\nabla T_k(v_j) \chi_{\{|u| \geq k\}} \varphi'(\theta^j)| \leq \varphi'(2k) |\nabla T_k(v_j)| \leq \varphi'(2k) \|\nabla v_j\|; \tag{3.29}$$

then, by using the modular convergence of $|\nabla v_j|$ in $L_M(\Omega)$ and Vitali's theorem, we get

$$\nabla T_k(v_j) \chi_{\{|u| \geq k\}} \varphi'(\theta^j) \rightarrow 0 \quad (3.30)$$

for the modular convergence in $(L_M(\Omega))^N$, and thus

$$\int_{\{|u| \geq k\}} h \nabla T_k(v_j) \varphi'(\theta^j) dx \rightarrow 0 \quad \text{as } j \rightarrow \infty. \quad (3.31)$$

We have then proved that

$$\int_{\{|u_n| > k\}} a(x, u_n, \nabla u_n) \nabla T_k(v_j) \varphi'(\theta_n^j) dx = \varepsilon_1(n, j). \quad (3.32)$$

The second term on the right-hand side of (3.24) tends to (by letting $n \rightarrow \infty$)

$$\int_{\Omega} a(x, T_k(u), \nabla T_k(v_j) \chi_j^s) [\nabla T_k(u) - \nabla T_k(v_j) \chi_j^s] \varphi'(\theta^j) dx \quad (3.33)$$

since $a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) \varphi'(\theta_n^j) \rightarrow a(x, T_k(u), \nabla T_k(v_j) \chi_j^s) \varphi'(\theta^j)$ strongly in $(E_{\bar{M}}(\Omega))^N$ as $n \rightarrow \infty$ by [3, Lemma 2.3], while $\nabla T_k(u_n) \rightharpoonup \nabla T_k(u)$ weakly in $(L_M(\Omega))^N$ by (3.17).

Since $\nabla T_k(v_j) \chi_j^s \rightarrow \nabla T_k(u) \chi^s$ strongly in $(E_M(\Omega))^N$ as $j \rightarrow \infty$, where χ^s denotes the characteristic function of $\Omega_s = \{x \in \Omega : |\nabla T_k(u)| \leq s\}$, it is easy to see that

$$\int_{\Omega} a(x, T_k(u), \nabla T_k(v_j) \chi_j^s) [\nabla T_k(u) - \nabla T_k(v_j) \chi_j^s] \varphi'(\theta^j) dx \rightarrow 0 \quad \text{as } j \rightarrow \infty, \quad (3.34)$$

and thus

$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] \varphi'(\theta_n^j) dx = \varepsilon_2(n, j). \quad (3.35)$$

Concerning the third term on the right-hand side of (3.24), we have

$$-\int_{\Omega \setminus \Omega_j^s} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \varphi'(\theta_n^j) dx \rightarrow -\int_{\Omega \setminus \Omega_s} h_k \nabla T_k(v_j) \varphi'(\theta^j) dx \quad (3.36)$$

as $n \rightarrow \infty$ by using the fact that $\nabla T_k(v_j)$ belongs to $(E_M(\Omega))^N$.

In view of the modular convergence of (∇v_j) in $(L_M(\Omega))^N$, we have

$$-\int_{\Omega \setminus \Omega_j^s} h_k \nabla T_k(v_j) \varphi'(\theta^j) dx \rightarrow -\int_{\Omega \setminus \Omega_s} h_k \nabla T_k(u) dx \quad \text{as } j \rightarrow \infty \quad (3.37)$$

and thus

$$-\int_{\Omega \setminus \Omega_j^s} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \varphi'(\theta_n^j) dx = \varepsilon_3(n, j) - \int_{\Omega \setminus \Omega_s} h_k \nabla T_k(u) dx. \quad (3.38)$$

Combining now (3.32), (3.35), and (3.38), we obtain

$$\begin{aligned} \langle A(u_n), z_n^j \rangle &= \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s)] \\ &\quad \times [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] \varphi'(\theta_n^j) dx - \int_{\Omega \setminus \Omega_s} h_k \nabla T_k(u) dx + \varepsilon_4(n, j). \end{aligned} \quad (3.39)$$

We now turn to the second term on the left-hand side of (3.22). We have

$$\begin{aligned} &\left| \int_{\{|u_n| \leq k\}} g_n(x, u_n, \nabla u_n) z_n^j dx \right| \\ &= \left| \int_{\{|u_n| \leq k\}} g_n(x, T_k(u_n), \nabla T_k(u_n)) z_n^j dx \right| \\ &\leq \int_{\Omega} b(k) c'(x) |\varphi(\theta_n^j)| dx + b(k) \int_{\Omega} M(|\nabla T_k(u_n)|) |\varphi(\theta_n^j)| dx \\ &\leq \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) |\nabla T_k(u_n)| |\varphi(\theta_n^j)| dx + \varepsilon_5(n, j). \end{aligned} \quad (3.40)$$

The first term of the right-hand side of this inequality reads as

$$\begin{aligned} &\frac{b(k)}{\alpha} \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s)] \\ &\quad \times [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] |\varphi(\theta_n^j)| dx \\ &+ \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] |\varphi(\theta_n^j)| dx \\ &- \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \chi_j^s |\varphi(\theta_n^j)| dx \end{aligned} \quad (3.41)$$

and, as above, it is easy to see that

$$\frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] |\varphi(\theta_n^j)| dx = \varepsilon_6(n, j) \quad (3.42)$$

and that

$$-\frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \chi_j^s |\varphi(\theta_n^j)| dx = \varepsilon_7(n, j) \quad (3.43)$$

so that

$$\begin{aligned} &\left| \int_{\{|u_n| \leq k\}} g_n(x, u_n, \nabla u_n) z_n^j dx \right| \\ &\leq \frac{b(k)}{\alpha} \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s)] \\ &\quad \times [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] |\varphi(\theta_n^j)| dx + \varepsilon_8(n, j). \end{aligned} \quad (3.44)$$

Combining this inequality with (3.22) and (3.39), we obtain

$$\begin{aligned} & \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s)] [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] \\ & \times \left[\varphi'(\theta_n^j) - \frac{b(k)}{\alpha} |\varphi(\theta_n^j)| \right] dx \leq \varepsilon_9(n, j) + \int_{\Omega \setminus \Omega_s} h_k \nabla T_k(u) dx. \end{aligned} \quad (3.45)$$

Consequently,

$$\begin{aligned} & \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s)] [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] dx \\ & \leq 2\varepsilon_9(n, j) + 2 \int_{\Omega \setminus \Omega_s} h_k \nabla T_k(u) dx. \end{aligned} \quad (3.46)$$

On the other hand,

$$\begin{aligned} & \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u) \chi^s)] [\nabla T_k(u_n) - \nabla T_k(u) \chi^s] dx \\ & = \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s)] [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] dx \\ & \quad + \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) [\nabla T_k(v_j) \chi_j^s - \nabla T_k(u) \chi^s] dx \\ & \quad - \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u) \chi^s) [\nabla T_k(u_n) - \nabla T_k(u) \chi^s] dx \\ & \quad + \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] dx. \end{aligned} \quad (3.47)$$

We will pass to the limit in n and in j in the last three terms on the right-hand side of the above equality. Similar tools as in (3.24) and (3.41) give

$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) [\nabla T_k(v_j) \chi_j^s - \nabla T_k(u) \chi^s] dx = \varepsilon_{10}(n, j), \quad (3.48)$$

$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u) \chi^s) [\nabla T_k(u_n) - \nabla T_k(u) \chi^s] dx = \varepsilon_{11}(n, j), \quad (3.49)$$

$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] dx = \varepsilon_{12}(n, j) \quad (3.50)$$

which imply that

$$\begin{aligned} & \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u) \chi^s)] [\nabla T_k(u_n) - \nabla T_k(u) \chi^s] dx \\ & = \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s)] [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] dx \\ & \quad + \varepsilon_{13}(n, j). \end{aligned} \quad (3.51)$$

For $r \leq s$, one has

$$\begin{aligned}
0 &\leq \int_{\Omega_r} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u))] [\nabla T_k(u_n) - \nabla T_k(u)] dx \\
&\leq \int_{\Omega_s} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u))] [\nabla T_k(u_n) - \nabla T_k(u)] dx \\
&= \int_{\Omega_s} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u) \chi^s)] [\nabla T_k(u_n) - \nabla T_k(u) \chi^s] dx \\
&\leq \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u) \chi^s)] [\nabla T_k(u_n) - \nabla T_k(u) \chi^s] dx \\
&= \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s)] [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] dx \\
&\quad + \varepsilon_{13}(n, j) \\
&\leq \varepsilon_{14}(n, j) + 2 \int_{\Omega \setminus \Omega_s} h_k \nabla T_k(u) dx.
\end{aligned} \tag{3.52}$$

This implies that, by passing at first to the limit sup over n and next over j ,

$$\begin{aligned}
0 &\leq \limsup_{n \rightarrow \infty} \int_{\Omega_r} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u))] [\nabla T_k(u_n) - \nabla T_k(u)] dx \\
&\leq 2 \int_{\Omega \setminus \Omega_s} h_k \nabla T_k(u) dx.
\end{aligned} \tag{3.53}$$

Using the fact that $h_k \nabla T_k(u) \in L^1(\Omega)$ and letting $s \rightarrow \infty$, we get

$$\int_{\Omega_r} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u))] [\nabla T_k(u_n) - \nabla T_k(u)] dx \rightarrow 0 \tag{3.54}$$

as $n \rightarrow \infty$.

As in [3], we deduce that there exists a subsequence still denoted by u_n such that

$$\nabla u_n \rightarrow \nabla u \quad \text{a.e. in } \Omega, \tag{3.55}$$

which implies that

$$a(x, u_n, \nabla u_n) \rightharpoonup a(x, u, \nabla u) \text{ weakly in } (L_{\overline{M}}(\Omega))^N \quad \text{for } \sigma(\Pi L_{\overline{M}}, \Pi E_M). \tag{3.56}$$

Step 3 (modular convergence of the truncations). Going back to (3.46), we can write

$$\begin{aligned}
\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx &\leq \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \chi_j^s dx \\
&\quad + \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) \\
&\quad \times [\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s] dx \\
&\quad + 2\varepsilon_9(n, j) + 2 \int_{\Omega \setminus \Omega_s} h_k \nabla T_k(u) dx,
\end{aligned} \tag{3.57}$$

which implies, by using (3.50),

$$\begin{aligned} & \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx \\ & \leq \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \chi_j^s dx + \varepsilon_{15}(n, j) + 2 \int_{\Omega \setminus \Omega_s} h_k \nabla T_k(u) dx. \end{aligned} \quad (3.58)$$

Passing to the limit sup over n in both sides of this inequality yields

$$\begin{aligned} & \limsup_{n \rightarrow \infty} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx \\ & \leq \int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(v_j) \chi_j^s dx + \lim_{n \rightarrow \infty} \varepsilon_{15}(n, j) + 2 \int_{\Omega \setminus \Omega_s} h_k \nabla T_k(u) dx, \end{aligned} \quad (3.59)$$

in which we can pass to the limit in j to obtain

$$\begin{aligned} & \limsup_{n \rightarrow \infty} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx \\ & \leq \int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u) \chi^s dx + 2 \int_{\Omega \setminus \Omega_s} h_k \nabla T_k(u) dx \end{aligned} \quad (3.60)$$

which gives, by letting $s \rightarrow \infty$,

$$\limsup_{n \rightarrow \infty} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx \leq \int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u) dx. \quad (3.61)$$

On the other hand, we have, by using Fatou's lemma,

$$\int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u) dx \leq \liminf_{n \rightarrow \infty} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx, \quad (3.62)$$

which implies that

$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx \longrightarrow \int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u) dx \quad \text{as } n \longrightarrow \infty, \quad (3.63)$$

and by using [4, Lemma 2.4], we conclude that

$$a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) \longrightarrow a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u) \quad \text{in } L^1(\Omega). \quad (3.64)$$

This implies, by using (3.4), that

$$T_k(u_n) \longrightarrow T_k(u) \quad \text{in } W_0^1 L_M(\Omega) \quad (3.65)$$

for the modular convergence.

Step 4 (equi-integrability of the nonlinearities and passage to the limit). We will prove that $g_n(x, u_n, \nabla u_n) \rightarrow g(x, u, \nabla u)$ strongly in $L^1(\Omega)$ by using Vitali's theorem.

Since $g_n(x, u_n, \nabla u_n) \rightarrow g(x, u, \nabla u)$ a.e. in Ω , thanks to (3.55), it suffices to prove that $g_n(x, u_n, \nabla u_n)$ are uniformly equi-integrable in Ω . Let $E \subset \Omega$ be a measurable subset of Ω . We have, for any $m > 0$,

$$\begin{aligned} \int_E |g_n(x, u_n, \nabla u_n)| dx &= \int_{E \cap \{|u_n| \leq m\}} |g_n(x, u_n, \nabla u_n)| dx + \int_{E \cap \{|u_n| > m\}} |g_n(x, u_n, \nabla u_n)| dx \\ &\leq b(m) \int_E a(x, T_m(u_n), \nabla T_m(u_n)) \nabla T_m(u_n) dx \\ &\quad + b(m) \int_E c'(x) dx + \frac{1}{m} \int_{\Omega} g_n(x, u_n, \nabla u_n) u_n dx. \end{aligned} \quad (3.66)$$

Standard arguments allow to deduce, using the strong convergence (3.64), that there exists $\mu > 0$ such that

$$|E| < \mu \implies \int_E |g_n(x, u_n, \nabla u_n)| dx \leq \varepsilon, \quad \forall n, \quad (3.67)$$

which shows that $g_n(x, u_n, \nabla u_n)$ are uniformly equi-integrable in Ω as required.

In order to pass to the limit, we have, by going back to approximate equations (3.13),

$$\int_{\Omega} a(x, u_n, \nabla u_n) \nabla w dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) w dx = \langle f, w \rangle \quad (3.68)$$

for all $w \in \mathcal{D}(\Omega)$, in which, we can easily pass to the limit as $n \rightarrow \infty$ to get

$$\int_{\Omega} a(x, u, \nabla u) \nabla w dx + \int_{\Omega} g(x, u, \nabla u) w dx = \langle f, w \rangle. \quad (3.69)$$

Let now $v \in W_0^1 L_M(\Omega) \cap L^\infty(\Omega)$. There exists $(w_j) \subset \mathcal{D}(\Omega)$ such that $\|w_j\|_{\infty, \Omega} \leq (N+1)\|v\|_{\infty, \Omega}$ for all $j \in \mathbb{N}$ and

$$w_j \rightharpoonup v \quad (3.70)$$

for the modular convergence in $W_0^1 L_M(\Omega)$. Taking $w = w_j$ in (3.69) and letting $j \rightarrow \infty$ yields

$$\int_{\Omega} a(x, u, \nabla u) \nabla v dx + \int_{\Omega} g(x, u, \nabla u) v dx = \langle f, v \rangle. \quad (3.71)$$

By choosing $v = T_k(u)$ in the last equality, we get

$$\int_{\Omega} a(x, u, \nabla u) \nabla T_k(u) dx + \int_{\Omega} g(x, u, \nabla u) T_k(u) dx = \langle f, T_k(u) \rangle. \quad (3.72)$$

From (3.16), we deduce by Fatou's lemma that $g(x, u, \nabla u)u \in L^1(\Omega)$ and since $|g(x, u, \nabla u)T_k(u)| \leq g(x, u, \nabla u)u$ and $T_k(u) \rightarrow u$ in $W_0^1 L_M(\Omega)$ for the modular convergence and

a.e. in Ω as $k \rightarrow \infty$, it is easy to pass to the limit in both sides of (3.72) (by using Lebesgue theorem) to obtain

$$\int_{\Omega} a(x, u, \nabla u) \nabla u \, dx + \int_{\Omega} g(x, u, \nabla u) u \, dx = \langle f, u \rangle. \quad (3.73)$$

This completes the proof of [Theorem 3.1](#). \square

Remark 3.4. If we replace, as in [5], (3.2) by the general growth condition

$$|a(x, s, \xi)| \leq \bar{b}(|s|) (c(x) + \bar{M}^{-1} M(\gamma |\xi|)), \quad (3.74)$$

where $\gamma > 0$, $c \in E_{\bar{M}}(\Omega)$, and $\bar{b} : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is a continuous nondecreasing function, we prove the existence of solutions for the following problem:

$$\begin{aligned} u \in W_0^1 L_M(\Omega), \quad g(x, u, \nabla u) \in L^1(\Omega), \quad g(x, u, \nabla u) u \in L^1(\Omega), \\ \langle A(u), T_k(u - v) \rangle + \int_{\Omega} g(x, u, \nabla u) T_k(u - v) \, dx \leq \langle f, T_k(u - v) \rangle \\ \forall v \in W_0^1 L_M(\Omega) \cap L^{\infty}(\Omega). \end{aligned} \quad (3.75)$$

Indeed, we consider the following approximate problems:

$$\begin{aligned} u_n \in W_0^1 L_M(\Omega), \\ -\operatorname{div} a(x, T_n(u_n), \nabla u_n) + g_n(x, u_n, \nabla u_n) = f \quad \text{in } \Omega, \end{aligned} \quad (3.76)$$

and we conclude by adapting the same steps.

As an application of this result, we can treat the following model equations:

$$-\operatorname{div} \left((1 + |u|)^m \frac{\exp(|\nabla u|) - 1}{|\nabla u|^2} \nabla u \right) + u \cos^2 u \exp(|\nabla u|) = f, \quad m \geq 0. \quad (3.77)$$

Remark that the solutions of (3.77) belong to $L^{\infty}(\Omega)$ so that (3.77) holds in the distributional sense.

References

- [1] R. A. Adams, *Sobolev Spaces*, Academic Press, New York, 1975.
- [2] A. Benkirane, *Approximations de type Hedberg dans les espaces $W^m L \log L(\Omega)$ et applications [Hedberg-type approximations in the spaces $W^m L \log L(\Omega)$ and applications]*, Ann. Fac. Sci. Toulouse Math. (5) **11** (1990), no. 2, 67–78 (French).
- [3] A. Benkirane and A. Elmahi, *Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application*, Nonlinear Anal. **28** (1997), no. 11, 1769–1784.
- [4] ———, *An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces*, Nonlinear Anal. Ser. A: Theory Methods **36** (1999), no. 1, 11–24.
- [5] A. Benkirane, A. Elmahi, and D. Meskine, *An existence theorem for a class of elliptic problems in L^1* , Appl. Math. (Warsaw) **29** (2002), no. 4, 439–457.
- [6] A. Benkirane and J.-P. Gossez, *An approximation theorem in higher order Orlicz-Sobolev spaces and applications*, Studia Math. **92** (1989), no. 3, 231–255.

- [7] A. Bensoussan, L. Boccardo, and F. Murat, *On a nonlinear partial differential equation having natural growth terms and unbounded solution*, Ann. Inst. H. Poincaré Anal. Non Linéaire **5** (1988), no. 4, 347–364.
- [8] A. Elmahi, *Existence results for strongly nonlinear elliptic unilateral problems in Orlicz spaces*, to appear in Math-Recherche & Applications.
- [9] J.-P. Gossez, *Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients*, Trans. Amer. Math. Soc. **190** (1974), 163–205.
- [10] ———, *Surjectivity results for pseudo-monotone mappings in complementary systems*, J. Math. Anal. Appl. **53** (1976), no. 3, 484–494.
- [11] ———, *Some approximation properties in Orlicz-Sobolev spaces*, Studia Math. **74** (1982), no. 1, 17–24.
- [12] ———, *A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces*, Nonlinear Functional Analysis and Its Applications, Part 1 (Berkeley, Calif., 1983), Proc. Sympos. Pure Math., vol. 45, American Mathematical Society, Rhode Island, 1986, pp. 455–462.
- [13] J.-P. Gossez and V. Mustonen, *Variational inequalities in Orlicz-Sobolev spaces*, Nonlinear Anal. **11** (1987), no. 3, 379–392.
- [14] M. A. Krasnosel'skiĭ and Ja. B. Rutickiĭ, *Convex Functions and Orlicz Spaces*, P. Noordhoff, Groningen, 1961, translated from the first Russian edition by Leo F. Boron.
- [15] A. Kufner, O. John, and S. Fučík, *Function Spaces*, Academia, Prague, 1977.

A. Elmahi: Centre Pédagogique Régional, B.P. 49, Fès 30000, Morocco
 E-mail address: elmahi_abdelhak@yahoo.fr

D. Meskine: Département de Mathématiques et Informatique, Faculté des Sciences Dhar Mahraz, B.P. 1796, Atlas, Fès 30000, Morocco
 E-mail address: meskinedriss@hotmail.com

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/mpe/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	July 1, 2009
First Round of Reviews	October 1, 2009
Publication Date	January 1, 2010

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliatti Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br