

A REMARK ON THE APPROXIMATE FIXED-POINT PROPERTY

TADEUSZ KUCZUMOW

Received 30 November 2001

We give an example of an unbounded, convex, and closed set C in the Hilbert space l^2 with the following two properties: (i) C has the approximate fixed-point property for nonexpansive mappings, (ii) C is not contained in a block for every orthogonal basis in l^2 .

1. Introduction

In [6], Goebel and the author observed that some unbounded sets in Hilbert spaces have the approximate fixed-point property for nonexpansive mappings. Namely, they proved that every closed convex set C , which is contained in a block, has the approximate fixed-point property for nonexpansive mappings (AFPP). This result was extended by Ray [14] to all linearly bounded subsets of l_p , $1 < p < \infty$. Next, he proved that a closed convex subset C of a real Hilbert space has the fixed-point property for nonexpansive mappings if and only if it is bounded [15]. The first result of Ray [14] was generalized by Reich [16] (for other results of this type see [1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 17, 19]). Reich [16] proved the following remarkable theorem: a closed, convex subset of a reflexive Banach space has the AFPP if and only if it is linearly bounded. Next, Shafrir [18] introduced the notion of a directionally bounded set. Using this concept, he proved two important theorems [18].

(1) A convex subset C of a Banach space X has the AFPP if and only if C is directionally bounded.

(2) For a Banach space X , the following two conditions are equivalent: (i) X is reflexive; (ii) every closed, convex, and linearly bounded subset C of X is directionally bounded.

Therefore, the following statements are equivalent: (a) X is reflexive; (b) a closed, convex subset C of X has the AFPP if and only if C is linearly bounded. This result is strictly connected with the above-mentioned Reich theorem [16].

Now, it is worth to note that, recently, there is a return to study the AFPP First, Espínola and Kirk [3] published a paper about the AFPP in the product spaces. They proved that the product space $D = (M \times C)_\infty$ has the AFPP for nonexpansive mappings whenever M is a metric space which has the AFPP for such mappings and C is a bounded, convex subset of a Banach space. Next, Wiśnicki wrote a paper about a common approximate fixed-point sequence for two commuting nonexpansive mappings (see [20] for details). Therefore, the author decided to publish an example of a set which is closely related to the AFPP. Namely, it is obvious that every blockable set in l^2 is linearly bounded, but there are linearly bounded sets in l^2 which are not contained in any block with respect to an arbitrary basis. This was mentioned in [6] but never published. The aim of this paper is to show the construction of such a set.

2. Preliminaries

Throughout this paper, l^2 is real, $\langle \cdot, \cdot \rangle$ denotes the scalar product in l^2 , and $\{e_n\}$ is the standard basis in l^2 .

For any nonempty set $K \subset l^2$, the closed convex hull of K is denoted by $\text{conv } K$.

Let C be a nonempty subset of a Banach space X . A mapping $T : C \rightarrow C$ is said to be nonexpansive if for each $x, y \in C$,

$$\|T(x) - T(y)\| \leq \|x - y\|. \quad (2.1)$$

A convex subset C of a Banach space X has the approximate fixed-point property (AFPP) if each nonexpansive $T : C \rightarrow C$ satisfies

$$\inf \{\|x - T(x)\| : x \in C\} = 0. \quad (2.2)$$

It is obvious that bounded convex sets always have the AFPP.

A set $K \subset l^2$ is said to be a block in the orthogonal basis $\{\tilde{e}_n\}$ if K is of the form

$$K = \{x \in l^2 : |\langle x, \tilde{e}_n \rangle| \leq M_n, n = 1, 2, \dots\}, \quad (2.3)$$

where $\{M_n\}$ is a sequence of positive reals.

The set $C \subset l^2$ is called a block set if there exists a block $K \subset l^2$ such that C is a subset of K .

A subset C of a Banach space X is linearly bounded if C has bounded intersections with all lines in X .

3. The construction

Let $\{k_n\}_{n=2}^{\infty}$ and $\{l_n\}_{n=2}^{\infty}$ be two sequences of positive reals such that

$$\sum_{n=2}^{\infty} \frac{k_n}{l_n} < +\infty, \quad \lim_n k_n = +\infty. \quad (3.1)$$

For example, we may take $k_n = n$ and $l_n = n^3$ for $n = 2, 3, \dots$. Next, we set

$$a_n = k_n e_1 + l_n e_n, \quad b_n = -k_n e_1 + l_n e_n, \quad (3.2)$$

for $n = 2, 3, \dots$, and finally,

$$C = \text{conv} \{x \in l^2 : \exists n \geq 2 (x = a_n \vee x = b_n)\}. \quad (3.3)$$

THEOREM 3.1. *If*

$$x = \sum_{n=1}^{\infty} c_n e_n = c_1 e_1 + \sum_{n=2}^{\infty} d_n l_n e_n = c_1 e_1 + \bar{x} \quad (3.4)$$

is an element of the set C , then

$$d_n \geq 0 \quad (3.5)$$

for $n = 2, 3, \dots$,

$$\sum_{n=2}^{\infty} d_n \leq 1, \quad (3.6)$$

and there exist sequences $\{\alpha_n\}_{n=2}^{\infty}$ and $\{\beta_n\}_{n=2}^{\infty}$ such that

$$c_1 = \sum_{n=2}^{\infty} (\alpha_n k_n - \beta_n k_n), \quad \alpha_n, \beta_n \geq 0, \quad \alpha_n + \beta_n = d_n, \quad (3.7)$$

for $n = 2, 3, \dots$. Additionally, there exists a positive constant $M_{\bar{x}}$ such that

$$0 \leq (\alpha_n + \beta_n) k_n = d_n k_n \leq M_{\bar{x}} \frac{k_n}{l_n} \quad (3.8)$$

for $n = 2, 3, \dots$.

Proof. Set

$$\bar{x} = \sum_{n=2}^{\infty} c_n e_n = \sum_{n=2}^{\infty} d_n l_n e_n. \quad (3.9)$$

Observe that, there exists a sequence $\{x_j\}_{j=1}^{\infty}$ such that

$$x = \lim_j x_j \quad (3.10)$$

with

$$\begin{aligned} x_j &= \sum_{n=2}^{\infty} (\alpha_{nj} a_n + \beta_{nj} b_n) \\ &= \sum_{n=2}^{\infty} (\alpha_{nj} k_n - \beta_{nj} l_n) e_1 + \sum_{n=2}^{\infty} (\alpha_{nj} l_n + \beta_{nj} l_n) e_n \\ &= \sum_{n=2}^{\infty} (\alpha_{nj} k_n - \beta_{nj} l_n) e_1 + \bar{x}_j \in C, \end{aligned} \quad (3.11)$$

where

$$\bar{x}_j = \sum_{n=2}^{\infty} (\alpha_{nj} l_n + \beta_{nj} l_n) e_n, \quad \alpha_{nj}, \beta_{nj} \geq 0, \quad \sum_{n=2}^{\infty} (\alpha_{nj} + \beta_{nj}) = 1. \quad (3.12)$$

Without loss of generality, we can assume that $\{\alpha_{nj}\}_{j=1}^{\infty}$ and $\{\beta_{nj}\}_{j=1}^{\infty}$ tend to α_n and β_n , respectively, for $n = 2, 3, \dots$. Hence, we have

$$c_1 = \sum_{n=2}^m (\alpha_n k_n - \beta_n k_n) + \lim_j \sum_{n=m+1}^{\infty} (\alpha_{nj} k_n - \beta_{nj} k_n) \quad (3.13)$$

for each $m \geq 2$. On the other hand,

$$\bar{x} = \lim_j \bar{x}_j = \lim_j \sum_{n=2}^{\infty} (\alpha_{nj} l_n + \beta_{nj} l_n) e_n \quad (3.14)$$

and, therefore, there exists a constant $0 < M_{\bar{x}} < +\infty$ such that

$$\alpha_{nj} l_n + \beta_{nj} l_n \leq M_{\bar{x}} \quad (3.15)$$

for all $n \geq 2$ and $j \in \mathbb{N}$. This implies that

$$\begin{aligned} 0 &\leq \alpha_{nj} k_n + \beta_{nj} k_n = (\alpha_{nj} l_n + \beta_{nj} l_n) \frac{k_n}{l_n} \leq M_{\bar{x}} \frac{k_n}{l_n}, \\ 0 &\leq (\alpha_n + \beta_n) k_n = d_n k_n \leq M_{\bar{x}} \frac{k_n}{l_n}, \end{aligned} \quad (3.16)$$

for all j, n , and finally,

$$\begin{aligned} \sup_j \left| \sum_{n=m+1}^{\infty} (\alpha_{nj} k_n - \beta_{nj} k_n) \right| &\leq \sup_j \sum_{n=m+1}^{\infty} (\alpha_{nj} k_n + \beta_{nj} k_n) \\ &\leq \sum_{n=m+1}^{\infty} M_{\bar{x}} \frac{k_n}{l_n} = M_{\bar{x}} \sum_{n=m+1}^{\infty} \frac{k_n}{l_n} \xrightarrow{m \rightarrow \infty} 0. \end{aligned} \quad (3.17)$$

Combining (3.13) with (3.17), we conclude that

$$c_1 = \sum_{n=2}^{\infty} (\alpha_n k_n - \beta_n k_n). \quad (3.18)$$

This completes the proof. \square

THEOREM 3.2. *The set C is linearly bounded but is not a block set in any orthogonal basis in l^2 .*

Proof. First, we show that C is not a block set in any orthogonal basis,

$$\{\tilde{e}_i\}_{i=1}^{\infty} = \left\{ \sum_{n=1}^{\infty} c_{in} e_n \right\}_{i=1}^{\infty} \quad (3.19)$$

in l^2 . Indeed, there exists i_0 such that $c_{i_0 1} \neq 0$. Since we have

$$\max(|\langle a_n, \tilde{e}_{i_0} \rangle|, |\langle b_n, \tilde{e}_{i_0} \rangle|) = k_n |c_{i_0 1}| + l_n |c_{i_0 n}| \quad (3.20)$$

for every $n \geq 2$, these two facts imply that

$$\sup \{ |\langle x, \tilde{e}_{i_0} \rangle| : x \in C \} = +\infty. \quad (3.21)$$

Therefore, C is not a block set in $\{\tilde{e}_i\}_{i=1}^{\infty}$.

Now, we prove that the set C is linearly bounded. We begin with the following simple observation:

$$\sup \{ |\langle x, e_n \rangle| : x \in C \} \leq l_n \quad (3.22)$$

for $n = 2, 3, \dots$. Next, if $x \in C$ is of the form

$$x = \sum_{n=1}^{\infty} c_n e_n = c_1 e_1 + \sum_{n=2}^{\infty} d_n l_n e_n = c_1 e_1 + \bar{x}, \quad (3.23)$$

then, by [Theorem 3.1](#), we see that

$$d_n \geq 0 \quad (3.24)$$

for $n = 2, 3, \dots$,

$$\sum_{n=2}^{\infty} d_n \leq 1, \quad (3.25)$$

and there exist sequences $\{\alpha_n\}_{n=2}^{\infty}$ and $\{\beta_n\}_{n=2}^{\infty}$ such that

$$c_1 = \sum_{n=2}^{\infty} (\alpha_n k_n - \beta_n k_n), \quad \alpha_n, \beta_n \geq 0, \quad \alpha_n + \beta_n = d_n, \quad (3.26)$$

for $n = 2, 3, \dots$. Additionally, there exists a positive constant $M_{\bar{x}}$ such that

$$0 \leq (\alpha_n + \beta_n) k_n = d_n k_n \leq M_{\bar{x}} \frac{k_n}{l_n} \quad (3.27)$$

for $n = 2, 3, \dots$. Hence, we obtain

$$|c_1| = \left| \sum_{n=2}^{\infty} (\alpha_n k_n - \beta_n k_n) \right| \leq \sum_{n=2}^{\infty} (\alpha_n + \beta_n) k_n \leq M_{\bar{x}} \sum_{n=2}^{\infty} \frac{k_n}{l_n}. \quad (3.28)$$

Then, it follows from (3.22) and (3.28) that an intersection of C with any line $\{y + tv : t \in \mathbb{R}\}$, where $y, v \in l^2$ and $v \neq 0$, is either empty or bounded which completes the proof. \square

References

- [1] A. Canetti, G. Marino, and P. Pietramala, *Fixed point theorems for multivalued mappings in Banach spaces*, Nonlinear Anal. **17** (1991), no. 1, 11–20.
- [2] A. Carbone and G. Marino, *Fixed points and almost fixed points of nonexpansive maps in Banach spaces*, Riv. Mat. Univ. Parma (4) **13** (1987), 385–393.
- [3] R. Espínola and W. A. Kirk, *Fixed points and approximate fixed points in product spaces*, Taiwanese J. Math. **5** (2001), no. 2, 405–416.
- [4] K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990.
- [5] ———, *Classical theory of nonexpansive mappings*, Handbook of Metric Fixed Point Theory (W. A. Kirk and B. Sims, eds.), Kluwer Academic Publishers, Dordrecht, 2001, pp. 49–91.
- [6] K. Goebel and T. Kuczumow, *A contribution to the theory of nonexpansive mappings*, Bull. Calcutta Math. Soc. **70** (1978), no. 6, 355–357.
- [7] K. Goebel and S. Reich, *Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, New York, 1984.
- [8] W. A. Kirk, *Fixed point theory for nonexpansive mappings*, Fixed Point Theory (Sherbrooke, Que., 1980), Lecture Notes in Math., vol. 886, Springer, Berlin, 1981, pp. 484–505.
- [9] W. A. Kirk and W. O. Ray, *Fixed-point theorems for mappings defined on unbounded sets in Banach spaces*, Studia Math. **64** (1979), no. 2, 127–138.
- [10] G. Marino, *Fixed points for multivalued mappings defined on unbounded sets in Banach spaces*, J. Math. Anal. Appl. **157** (1991), no. 2, 555–567.
- [11] G. Marino and P. Pietramala, *Fixed points and almost fixed points for mappings defined on unbounded sets in Banach spaces*, Atti Sem. Mat. Fis. Univ. Modena **40** (1992), no. 1, 1–9.

- [12] J. L. Nelson, K. L. Singh, and J. H. M. Whitfield, *Normal structures and nonexpansive mappings in Banach spaces*, Nonlinear Analysis, World Scientific Publishing, Singapore, 1987, pp. 433–492.
- [13] S. Park, *Best approximations and fixed points of nonexpansive maps in Hilbert spaces*, Numer. Funct. Anal. Optim. **18** (1997), no. 5–6, 649–657.
- [14] W. O. Ray, *Nonexpansive mappings on unbounded convex domains*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. **26** (1978), no. 3, 241–245.
- [15] ———, *The fixed point property and unbounded sets in Hilbert space*, Trans. Amer. Math. Soc. **258** (1980), no. 2, 531–537.
- [16] S. Reich, *The almost fixed point property for nonexpansive mappings*, Proc. Amer. Math. Soc. **88** (1983), no. 1, 44–46.
- [17] J. Schu, *A fixed point theorem for nonexpansive mappings on star-shaped domains*, Z. Anal. Anwendungen **10** (1991), no. 4, 417–431.
- [18] I. Shafrir, *The approximate fixed point property in Banach and hyperbolic spaces*, Israel J. Math. **71** (1990), no. 2, 211–223.
- [19] T. E. Williamson, *A geometric approach to fixed points of non-self-mappings $T : D \rightarrow X$* , Fixed Points and Nonexpansive Mappings (Cincinnati, Ohio, 1982), Contemp. Math., vol. 18, American Mathematical Society, Rhode Island, 1983, pp. 247–253.
- [20] A. Wiśnicki, *On a problem of common approximate fixed points*, preprint, 2001.

Tadeusz Kuczumow: Instytut Matematyki, Uniwersytet M. Curie-Skłodowskiej (UMCS), 20-031 Lublin, Poland; Instytut Matematyki PWSZ, 20-120 Chełm, Poland

E-mail address: tadek@golem.umcs.lublin.pl

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	March 1, 2009
First Round of Reviews	June 1, 2009
Publication Date	September 1, 2009

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru