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We give an example of an unbounded, convex, and closed set C in the Hilbert
space l2 with the following two properties: (i) C has the approximate fixed-point
property for nonexpansive mappings, (ii) C is not contained in a block for every
orthogonal basis in l2.

1. Introduction

In [6], Goebel and the author observed that some unbounded sets in Hilbert
spaces have the approximate fixed-point property for nonexpansive mappings.
Namely, they proved that every closed convex set C, which is contained in a
block, has the approximate fixed-point property for nonexpansive mappings
(AFPP). This result was extended by Ray [14] to all linearly bounded subsets
of lp, 1 < p <∞. Next, he proved that a closed convex subset C of a real Hilbert
space has the fixed-point property for nonexpansive mappings if and only if it
is bounded [15]. The first result of Ray [14] was generalized by Reich [16] (for
other results of this type see [1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 17, 19]). Reich [16]
proved the following remarkable theorem: a closed, convex subset of a reflexive
Banach space has the AFPP if and only if it is linearly bounded. Next, Shafrir
[18] introduced the notion of a directionally bounded set. Using this concept,
he proved two important theorems [18].

(1) A convex subset C of a Banach space X has the AFPP if and only if C is
directionally bounded.

(2) For a Banach space X, the following two conditions are equivalent: (i) X
is reflexive; (ii) every closed, convex, and linearly bounded subset C of X is di-
rectionally bounded.

Therefore, the following statements are equivalent: (a) X is reflexive; (b) a
closed, convex subset C of X has the AFPP if and only if C is linearly bounded.
This result is strictly connected with the above-mentioned Reich theorem [16].
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Now, it is worth to note that, recently, there is a return to study the AFPP First,
Espı́nola and Kirk [3] published a paper about the AFPP in the product spaces.
They proved that the product space D = (M×C)∞ has the AFPP for nonexpan-
sive mappings whenever M is a metric space which has the AFPP for such map-
pings and C is a bounded, convex subset of a Banach space. Next, Wiśnicki wrote
a paper about a common approximate fixed-point sequence for two commuting
nonexpansive mappings (see [20] for details). Therefore, the author decided to
publish an example of a set which is closely related to the AFPP Namely, it is
obvious that every blockable set in l2 is linearly bounded, but there are linearly
bounded sets in l2 which are not contained in any block with respect to an ar-
bitrary basis. This was mentioned in [6] but never published. The aim of this
paper is to show the construction of such a set.

2. Preliminaries

Throughout this paper, l2 is real, 〈·,·〉 denotes the scalar product in l2, and {en}
is the standard basis in l2.

For any nonempty set K ⊂ l2, the closed convex hull of K is denoted by
convK .

Let C be a nonempty subset of a Banach space X . A mapping T : C→ C is said
to be nonexpansive if for each x, y ∈ C,

∥∥T(x)−T(y)
∥∥≤ ‖x− y‖. (2.1)

A convex subset C of a Banach space X has the approximate fixed-point prop-
erty (AFPP) if each nonexpansive T : C→ C satisfies

inf
{∥∥x−T(x)

∥∥ : x ∈ C
}= 0. (2.2)

It is obvious that bounded convex sets always have the AFPP.
A set K ⊂ l2 is said to be a block in the orthogonal basis {ẽn} if K is of the

form

K = {x ∈ l2 :
∣∣〈x, ẽn〉∣∣≤Mn, n= 1,2, . . .

}
, (2.3)

where {Mn} is a sequence of positive reals.
The set C ⊂ l2 is called a block set if there exists a block K ⊂ l2 such that C is

a subset of K .
A subset C of a Banach space X is linearly bounded if C has bounded inter-

sections with all lines in X .
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3. The construction

Let {kn}∞n=2 and {ln}∞n=2 be two sequences of positive reals such that

∞∑
n=2

kn
ln

< +∞, lim
n
kn = +∞. (3.1)

For example, we may take kn = n and ln = n3 for n= 2,3, . . . . Next, we set

an = kne1 + lnen, bn =−kne1 + lnen, (3.2)

for n= 2,3, . . . , and finally,

C = conv
{
x ∈ l2 : ∃n≥ 2

(
x = an∨ x = bn

)}
. (3.3)

Theorem 3.1. If

x =
∞∑
n=1

cnen = c1e1 +
∞∑
n=2

dnlnen = c1e1 + x̄ (3.4)

is an element of the set C, then

dn ≥ 0 (3.5)

for n= 2,3, . . . ,

∞∑
n=2

dn ≤ 1, (3.6)

and there exist sequences {αn}∞n=2 and {βn}∞n=2 such that

c1 =
∞∑
n=2

(
αnkn−βnkn

)
, αn,βn ≥ 0, αn +βn = dn, (3.7)

for n= 2,3, . . . . Additionally, there exists a positive constant Mx̄ such that

0≤ (αn +βn
)
kn = dnkn ≤Mx̄

kn
ln

(3.8)

for n= 2,3, . . . .

Proof. Set

x̄ =
∞∑
n=2

cnen =
∞∑
n=2

dnlnen. (3.9)
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Observe that, there exists a sequence {xj}∞j=1 such that

x = lim
j
x j (3.10)

with

xj =
∞∑
n=2

(
αnjan +βnjbn

)

=
∞∑
n=2

(
αnjkn−βnjkn

)
e1 +

∞∑
n=2

(
αnj ln +βnj ln

)
en

=
∞∑
n=2

(
αnjkn−βnjkn

)
e1 + x̄ j ∈ C,

(3.11)

where

x̄ j =
∞∑
n=2

(
αnj ln +βnj ln

)
en, αnj ,βnj ≥ 0,

∞∑
n=2

(
αnj +βnj

)= 1. (3.12)

Without loss of generality, we can assume that {αnj}∞j=1 and {βnj}∞j=1 tend to αn
and βn, respectively, for n= 2,3, . . . . Hence, we have

c1 =
m∑
n=2

(
αnkn−βnkn

)
+ lim

j

∞∑
n=m+1

(
αnjkn−βnjkn

)
(3.13)

for each m≥ 2. On the other hand,

x̄ = lim
j
x̄ j = lim

j

∞∑
n=2

(
αnj ln +βnj ln

)
en (3.14)

and, therefore, there exists a constant 0 <Mx̄ < +∞ such that

αnj ln +βnj ln ≤Mx̄ (3.15)

for all n≥ 2 and j ∈N. This implies that

0≤ αnjkn +βnjkn =
(
αnj ln +βnj ln

)kn
ln
≤Mx̄

kn
ln
,

0≤ (αn +βn
)
kn = dnkn ≤Mx̄

kn
ln
,

(3.16)

for all j, n, and finally,

sup
j

∣∣∣∣∣
∞∑

n=m+1

(
αnjkn−βnjkn

)∣∣∣∣∣≤ sup
j

∞∑
n=m+1

(
αnjkn +βnjkn

)

≤
∞∑

n=m+1

Mx̄
kn
ln
=Mx̄

∞∑
n=m+1

kn
ln

m→∞−−−→,0.

(3.17)
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Combining (3.13) with (3.17), we conclude that

c1 =
∞∑
n=2

(
αnkn−βnkn

)
. (3.18)

This completes the proof. �

Theorem 3.2. The set C is linearly bounded but is not a block set in any orthogonal
basis in l2.

Proof. First, we show that C is not a block set in any orthogonal basis,

{
ẽi
}∞
i=1 =

{ ∞∑
n=1

cinen

}∞
i=1

(3.19)

in l2. Indeed, there exists i0 such that ci01 �= 0. Since we have

max
(∣∣〈an, ẽi0〉∣∣,∣∣〈bn, ẽi0〉∣∣)= kn

∣∣ci01
∣∣+ ln

∣∣ci0n∣∣ (3.20)

for every n≥ 2, these two facts imply that

sup
{∣∣〈x, ẽi0〉∣∣ : x ∈ C

}= +∞. (3.21)

Therefore, C is not a block set in {ẽi}∞i=1.
Now, we prove that the set C is linearly bounded. We begin with the following

simple observation:

sup
{∣∣〈x,en〉∣∣ : x ∈ C

}≤ ln (3.22)

for n= 2,3, . . . . Next, if x ∈ C is of the form

x =
∞∑
n=1

cnen = c1e1 +
∞∑
n=2

dnlnen = c1e1 + x̄, (3.23)

then, by Theorem 3.1, we see that

dn ≥ 0 (3.24)

for n= 2,3, . . . ,

∞∑
n=2

dn ≤ 1, (3.25)
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and there exist sequences {αn}∞n=2 and {βn}∞n=2 such that

c1 =
∞∑
n=2

(
αnkn−βnkn

)
, αn,βn ≥ 0, αn +βn = dn, (3.26)

for n= 2,3, . . . . Additionally, there exists a positive constant Mx̄ such that

0≤ (αn +βn
)
kn = dnkn ≤Mx̄

kn
ln

(3.27)

for n= 2,3, . . . . Hence, we obtain

∣∣c1
∣∣=

∣∣∣∣∣
∞∑
n=2

(
αnkn−βnkn

)∣∣∣∣∣≤
∞∑
n=2

(
αn +βn

)
kn ≤Mx̄

∞∑
n=2

kn
ln
. (3.28)

Then, it follows from (3.22) and (3.28) that an intersection of C with any line
{y + tv : t ∈ R}, where y,v ∈ l2 and v �= 0, is either empty or bounded which
completes the proof. �
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