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For the higher-order abstract differential equation u™ (t) = Au(t) + f(t), t € R,
we give a new definition of mild solutions. We then characterize the regular ad-
missibility of a translation-invariant subspace .l of BUC(R, E) with respect to
the above-mentioned equation in terms of solvability of the operator equation
AX — X%" = C. As applications, periodicity and almost periodicity of mild so-
lutions are also proved.

1. Introduction

The qualitative theory of mild solutions on the whole line of the differential
equation of type

u'(t) = Au(t)+ f(t), teR, (1.1)

where A is a closed operator on a Banach space E, has been of increasing interest
in the last decades. If A is a bounded operator on E, mild solutions of (1.1),
which are the same as the classical solutions, are defined by

t
u(®) =) + | ACIf(ds teR. (12)
In [4], Dalec’kii and Krein made a systematic study on the asymptotic behavior
of solutions of the form (1.2). For unbounded operator A, where the situation
changes dramatically, the first question is, which solutions of (1.1) are consid-
ered as mild solutions? If A is the generator of a Cy-semigroup T(t), t = 0, it is
logical to define mild solutions of (1.1) by

u(t) =T(t—s)u(s)+ Jt T(t—1)f(r)dr, t=s. (1.3)
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866  Mild solutions of differential equations

With this definition in hand, many authors investigated the qualitative behavior
of (1.3) in different ways (see [10, 12, 13, 14, 17] and references therein). The
second-order differential equation u’'(¢) = Au(t) + f(t), where A is the genera-
tor of a cosine family (C(¢)), and for which mild solutions are defined by

u(t) = C(t—s)u(s) +S(t—s)u'(s) + ItS(t —7)f(7)dr, (1.4)

has been also studied in [3, 8, 18].

Recently, Arendt and Batty [1], Schweiker [20], and Schiiler and Phéng [19]
studied the first- and second-order differential equations, in which A is not
the generator of a Cy-semigroup or of a cosine family, respectively. Although
their definitions of mild solutions are slightly different, they all showed that the
existence and uniqueness of mild solutions, which belong to a subspace Jl of
BUC(IR, E), are closely related to the solvability of the operator equation of the
form

AX — X9 = =4, (1.5)

where 9 is the differential operator in Jil and §; is the Dirac operator defined by
do(f) = f(0).

Inspired by this rapid development, in this paper, we consider the higher-
order differential equation

u™(t) = Au(t) + (1), (1.6)

where A is a closed linear operator on E and f is a continuous function from R
to E. First, we give a general definition of mild solutions to (1.6). This definition
is an extension of that introduced in [1], where n = 1, n = 2, and A generally
is neither the generator of a Cy-semigroup nor of a cosine family, respectively.
Several properties of mild solutions are then shown in Section 2.

In Section 3, we consider the conditions for the solvability of operator equa-
tion AX — XB = C, in particular, when B = 9", where 9 is the differential oper-
ator on a function space and C = — 3.

Assume that L is a closed, translation-invariant subspace of BUC(R, E). The
subspace Jl is said to be regularly admissible with respect to (1.6) if for every
f €L, (1.6) has a unique mild solution u € JL. In Section 4, we characterize
the regular admissibility of Jl in terms of solvability of the operator equation.
Namely, we show that the subspace .l is regularly admissible if and only if the
operator equation of the form

AX = X9" = =4, (1.7)
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has a unique bounded solution. As applications, in Section 5 we show that if the
admissible subspace . is the space of 1-periodic functions, then

sup| [k ((2kiy" - 4)~'|| < 0 (1.8)
keZ

is a necessary condition, that each mild solution on .l belongs to C"(R,E),
where 0 < m < n. Finally, we prove that, under some classical condition, if 0(A)
N (iR)" is countable, then each bounded mild solution of the higher-order equa-
tion is almost periodic provided f is almost periodic. This result, shown by a
short proof, generalizes [1, Theorem 4.5].

2. Mild solutions of higher-order differential equations

First, we fix some notations. By C") (R, E) we denote the space of continuous
functions with continuous derivatives «’, 1", ..., u™ and by BUC(RR, E) the space
of bounded, uniformly continuous functions with values in E. The operator I :

C(R,E) — C(R,E) is defined by If(t) := [y f(s)ds and I" f := I(I""' ).

Definition 2.1. (a) We say that u: R — E is a classical solution of (1.6) if u €
D(A), u € C"(R,E), and (1.6) is satisfied.

(b) A continuous function u(t) € C(R, E) is called a mild solution of (1.6) if
I™y(t) € D(A) for all t € R and there exist # points vo, v1,..., v, in E such that

n—1

-3 %vi+AI”u(t)+I”f(t) (2.1)
i=0 -

forallt e R.

Remark 2.2. Using the standard argument, we can prove the following state-
ments:
(1) if a mild solution u is m-times differentiable, 0 < m < n, then v;, i =
0,1,...,m, are the initial values, that is, #(0) = v, ’(0) = v1, ..., and u(™(0)=
Vs
(ii) if n = 1 and A is the generator of a Cy-semigroup T'(¢), then a continuous
function u : R — E is a mild solution of (1.6) if and only if it has the form

u(t)=T(t—s)u J T(t—r)f(r)dr; (2.2)

(iii) similarly, if n = 2 and A is a generator of a cosine family (C(¢)) on E, any
continuously differentiable function u on E of the form

u(t) = C(t = s)u(s) + S(t — s)u JSt—r)f dr, (2.3)

where (S(t)) is the associated sine family, is a mild solution of (1.6);
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(iv) if u is a bounded mild solution of (1.6) corresponding to a bounded
inhomogeneity f and ¢ € L!(RR, E), then u * ¢ is a mild solution of (1.6)
corresponding to f * ¢.

Directly from their definitions, we can collect some properties of mild solutions

of (1.6).

LemMMA 2.3. Let u be a mild solution of the higher-order differentiable equation
(1.6). If

(i) uis in C"(R,E); or

(ii) u(t) € D(A) forallt € R and Au(-) € C(R,E),
then u is a classical solution.

Proof. (i) Since u is a mild solution, we have

AI'u(t) = Z v, I"f(1) (2.4)

The right-hand side of (2.4) is n-time differentiable so is the left-hand side.
Hence,

1 t+h 1 t+h t
limA—J I"u(s)ds = lim — ( J I”*lu(s)ds—AJ I”*lu(s)ds)
=0 hlJ; 0

e ) (2.5)
= S (Ar@)
exists. Since
1 t+h
lim - J " u(s)ds = 1" u(r) (2.6)
h—0 h t
and A is closed, we obtain that I 'u(t) € D(A) and
%(Alnu(t)) = AI" 'u(t). (2.7)
By taking the derivative on both sides of (2.4), we obtain
n—2 l”
AN = ()= D Tvin — I (1) (2.8)

0

forallt € R. Repeating this procedure (n— 1) times, we obtain that u is n-times
differentiable and u™ (¢) = Au(t) + f(t), that is, u is a classical solution.

(ii) If u(t) € D(A) forall t € R and Au(-) € C(R,E), then AI"u(t) = I"Au(t).
Taking the nth derivative of the right-hand side of

n—1

u(t)zZ:—v, LI AUt + T (1), (2.9)
0
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we have that u is n-times continuously differentiable and u™(t) = Au(t) + f(t),
that is, u is a classical solution. |

In what follows we consider the spectrum of mild solutions of (1.6). For a
bounded function u € L*(R, E), the Carleman transform 1 of u is defined by

J eMutyd,  Re(d) >0,
0

4 = (2.10)

0
—f eMu(dt, Re(A) <0.

It is clear that 4 is holomorphic on C \ iR. A point ¢ € R is called a regular point
if & has a holomorphic extension in a neighborhood of iy. The spectrum of u is
defined as follows:

sp(u) = {y € R: yis not regular}. (2.11)

The following lemma, whose proof can be found in [7, 15], will be needed later.
LeMMA 2.4. Let f, g be in BUC(R, E) and ¢ € L' (R, E). Then

(i) sp(f) is closed and sp(f) = @ if and only if f = 0;
(ii) sp(f +&) Csp(f) Usp(g);
(iii) sp(f * ¢) C sp(f) N supp F, where F¢ is the Fourier transform of ¢.

The following lemma is the first result about the spectrum of mild solutions
of (1.6).

LemMA 2.5. Let f be a bounded continuous function and let u be a bounded mild
solution of (1.6). Then

sp(u) < {u € R: (ip)" € a(A)} Usp(f). (2.12)

Proof. Ttis easy to see that Tu(d) = (1/V)#(A), hence I"u(A) = (1/AM)a(N). Taking
the Carleman transform on both sides of (2.1), we have

i) = Q) + %ﬂAﬁ(A) n Ai oo, (2.13)

where

Q)= [ e (

From (2.13) we obtain

-1 ti n—1 ”
> Ev,») dt = T (2.14)

i=0 i=0

(A" =A)a(d) =A"Q(A) +f()t) (2.15)
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for A ¢ iR. Hence, for A" € o(A) we have
a(l) = (A" = 4) " (A"Q) + F (). (2.16)

Note that A”Q(A) is a holomorphic function in terms of A. It implies thatif y € R
is a regular point of f and (iu)" € o(A), then & has holomorphic extension in a
neighborhood of iy, that is, u is a regular point of u. Hence, we have the inclusive
relation. O

From Lemma 2.5, we directly have the following corollary.

COROLLARY 2.6. If u is a bounded mild solution of (1.6) corresponding to f =0,
then sp(u) < {p e R: (iu)" € 0(A)}.

CoroLLARY 2.7. If (iIR)" N a(A) = &, then (1.6) has at most one bounded mild
solution.

3. The equation AX — XD" =C

Let A and B be closed, generally unbounded, linear operators on Banach spaces E
and F with dense domains D(A) and D(B), respectively, and let C be a bounded
linear operator from E to F. A bounded operator X : F — E is called a solution of
the operator equation

AX-XB=C (3.1)

if for every f € D(B) we have X f € D(A) and AXf — XBf = Cf. Equation
(3.1) has been considered by many authors. It was first studied intensively for
bounded operators by Dalec’kii and Krein [4], Rosenblum [16]. For unbounded
case, (3.1) was studied in [2, 11, 12, 13], when A and B are generators of Cy-
semigroups, and in [17, 19] when A and B are closed operators. We cite here
some main results which will be used in the sequel.

TaeoreM 3.1. (i) Let A and B be generators of Cy-semigroups on E and F, one of
which is analytic such that 0(A) N o(B) = &. Then for every bounded operator C,
(3.1) has a unique bounded solution (see [11, Theorem 15]).

(ii) Let A be a closed operator and let B be a bounded operator such that o(A) N
0(B) = &. Then for every bounded operator C, (3.1) has a unique bounded solution
X which has the following integral form:

X = L,J (A= A)1CL - B)'dL, (3.2)
2mi Jr

where I is a closed Cauchy contour around o(B) and is separated from o(A) (see
[17, Theorem 3.1]).

(iii) If (3.1) has a unique bounded solution for every bounded operator C, then
0(A)No(B) = D (see [2, Theorem 2.1]).
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We now consider the situation when F = JL, a translation-invariant subspace
of BUC(R,E), and B = %7, the restriction of %" to JM, where % := d/dt on
BUC(R, E). It is well known that o(%) = iR and ¢(9") = (c(D))".

Let now JMy := {f € M : sp(f) C [—ik,ik]}, k = 1. Then the following
properties hold (see [5, 19]):

(i) My are translation-invariant subspaces,
(i) My C Mps1,
(iii) 9 4, is bounded.

We first need the following lemma which was proved in [19].

LeMMmaA 3.2. Let Dy and 9Dy, be as above, then
(D) = Ui, 0(Dag,)- (3.3)

From Lemma 3.2 we obtain the following lemma.
LemMma 3.3. For any positive integer n = 1, the following equality holds:
o (D) = Ui o (D). (3.4)
Proof. We show that
o (D) € Ui o (Dh,). (3.5)
Note that o(2") = (iR)", hence o(9)) € (IR)". Assume that (il)" € o(D"),
A € R. Then there is a sequence of vectors (fi)x C Jl such that fy € D(D7)),

| fxll = 1, and

lim [|(GA)" =) fil| = 0. (3.6)

Let A1, As,..., A, be the n complex roots of the equation x™ = (i)". Then we have
(" ]‘[ (Aj = D) fi (3.7)

We show that there is at least one A; belonging to the spectrum of % 4. Assume
contrarily that all A; belong to o(% ), then

1_[ Aj=Da) (A" =D) fr — 0 ask — oo, (3.8)

which is contradictory to || fi |l = 1. Hence, there is a A; which belongs to o(%.u).
By Lemma 3.2, there is a number k such that id; € o(D ). Since Dy, is
bounded, (i)" = (i;)" € o(@,), and hence the inclusion (3.5) follows. Since
the inverse of (3.5) is obvious, the lemma is proved. O
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From Lemmas 3.2 and 3.3 we have the following lemma.

LEmMa 3.4. For any positive integer n = 1 the following equality holds:
o(@) =N :Aea(@u)l (3.9)
We now return to the operator equation
AX - X% =8, (3.10)
where 8! is the restriction of the Dirac operator to .l. Assume that
c(A)n{A":dea(Dy)} = @. (3.11)
Then, by Lemma 3.4, it is equivalent to
o(A)na(9Y) =@. (3.12)
Therefore, for k = 1,2,..., we have
o(A)no (D) = D. (3.13)
By Theorem 3.1, the operator equation
AX - X3 =& (3.14)

has a unique bounded solution X} which is of the form

_ _L _ —1 M, _ n -1

where Iy is a contour around o(%, ) and is separated from o(A). Moreover, the
uniqueness of Xj implies

XelM; =X, forl<k. (3.16)

We state a result about the existence and uniqueness of bounded solutions of
(3.10), whose proof is similar to that of [19, Theorem 7] (for n = 2) and is omit-
ted.

THEOREM 3.5. Assume that condition (3.11) holds. Then the operator equation
(3.10) has a unique bounded solution if and only if

sup [[Xg|| < oo, (3.17)

n=1

where Xy are defined by (3.15).
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4. Admissible subspaces

Let Jl be a closed translation-invariant subspace of BUC(R, E), which is regu-
larly admissible with respect to (1.6). Define the linear operator G on Jil such
that for each f € [, Gf is the unique mild solution of (1.6) in Jl, we have the
following lemma.

LemMma 4.1. The operator G is a linear, bounded operator on JL.

Proof. We define operator G : Jl — i ® E" by

Gf:: (u,Vo,Vb---)anl)’ (4.1)

where u is the unique mild solution of (1.6) corresponding to f and vo,vy,...,
vp—1 are contained in the mild solution

n—1

u(t) = 3. Syt AI'() + I F (1), (4.2)
.l

We will show that G is closed. Let (fi)ken S Al with limy i = f and Gfi =
(Uks Voks -+ > Vi—1,k) With limg_. Gfk = (U, V05..., Vn_1), that is, limy_. . ux = u and
limg o vjk = v for j = 0,1,...,n— 1. Then we have limy . I"ux (t) = I"u(t) and,
by (4.2),

n—1 ;

Al"u(t) = ur(t) — Z %Vi,k =I"fi(t)
o !

s (4.3)
tl
— u(t) — % Evk—l”f(t) ask — oo,
Since A is closed we obtain that I"u(t) € D(A) and
n—1 ti
AI"u(t) = u(t) — Z EVi —I"f(1). (4.4)

0

That means that G f = (u,v0,v1,...,v4—1). Hence, G is closed and thus bounded.
Since G = G o P, where P : Al ® E" — .l is the projection on the first coordinate
and thus is a bounded operator, we obtain that G is bounded. O

The operator G is called the solution operator of (1.6) and is commuting with
the translation and hence is commuting with the differential operator, as the
following lemma shows.

LEmMA 4.2. Let A be a closed operator on E with nonempty resolvent set and let M
be an admissible subspace of BUC(R, E). Then the following conditions hold:

(1) Sn- G = G - Sy, where Sy, is the translation operator on J;
(1) Dy -G=G-Dy.
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Proof. (i) Let u = Gf be the unique mild solution of the higher-order differen-
tial equation (1.6). If u is a classical solution, then (Gf)™(t+h) = A(Gf)(t+
h)+ f(t+h), and hence Sy, - Gf = G- Sy, f. For the case that u is not a classical
solution, let A € p(A). Since

n—1 ;
R\, A)u(t) = Z t—'R A A)ui+AI'"R(A, A)u(t) +1"R(A, A) (1), (4.5)
0 1

it is easy to see that i1(t) = R(A, A)u(t) is the unique solution of (1.6) correspond-
ing to f =R(A,A)f. But ii(t) € D(A) for all ¢ € R. Hence, by Lemma 2.3(ii), &
is a classical solution. From the above result for a classical solution and the fact
that Sj, and R(A, A) commute, we have

ROLA)S,GS = SiR(LA)GS = S,GR(L, A)
= GS,R(L, A) f = GR(L, A)S, f = R\, A)GSy f, (4.6)

from which it follows that S,Gf = GSy f for all f € AL. Part (ii) is a direct con-
sequence of (i), and the lemma is proved. O

COROLLARY 4.3. Assume that A is a closed operator with nonempty resolvent set.
Let M be a regularly admissible subspace of BUC(RR, E) and let u be the unique mild
solution corresponding to f in M. If f € C*(R,E) such that f', f",..., f™ belong
to M, then u is a classical solution.

In what follows, we assume that J satisfies the following additional assump-
tion.

Assumption 4.4. For all C € L(A,E) and f € J, the function ®(t) = CS(t) f
belongs to JL.

The regular admissibility of a space is closely related to the solvability of oper-
ator equation (3.1). This relation was shown in [13], when n = 1, and in [19, 20],
when #n = 2. The following theorem is a generalization of those results.

THEOREM 4.5. Let A be a closed operator on E with nonempty resolvent set and let
M be a translation-invariant subspace in BUC(RR, E), which satisfies Assumption
4.4. Then the following statements are equivalent:

(1) M is a regularly admissible subspace;
(ii) the operator equation

AX -XD') = -8, (4.7)

has a unique solution;
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(iii) for every bounded operator C : M — E, the operator equation
AX-X9) =C (4.8)

has a unique solution.

Proof. (i)=(ii). Let G: M — Al be the bounded operator defined by Gf = u,
where u is the unique mild solution in /(. We define the operator X : Al — E by

Xf = (Gf)(0). (4.9)

Then X is a bounded operator. Now let f € 9';. By Lemma 4.2, u = Gf is a
classical solution of (1.6), that is,

(GAH™(1) = AGH(B) + f(1). (4.10)

Note that, by Lemma 4.2, (Gf)™ = Gf". Taking ¢ = 0 from (4.10) and using
this fact, we have AXf — X%"f = =8y f for f € 97, that is, X is a bounded
solution of (4.7).

To show the uniqueness, we assume that Xj is a solution of (4.7). Then for
every f € 9, the function u € J, defined by u(t) = X,S(¢) f, is a classical so-
lution of (1.6). Indeed,

UM () = XoeD"S(E) f = (AXo+60)S(t) f = Au(t) + f (1) (4.11)

for all + € R. We will show that u(t) = X,S(#) f is a mild solution of (1.6) for
every f € Jl. To this end, let f € M and (fi)ren € D(D) with limy fx = f.
Then Gf = limy G fi = limi XoS(+) fr = XoS(+)f. Hence, Gf = X,S(+) f, that is,
u=XoS(+) f is a mild solution of (1.6).

Assume now that X; and X, are two solutions of (4.7). Then, for every f €
M, u=(X; —X;)S(+) f is a mild solution of the higher-order equation "™ (t) =
Au(t). By the uniqueness of the mild solution we have u = 0, which implies X; =
X5.

(ii)=(iii). Let X be the unique solution of (4.7). Define the bounded op-
erator Y : Ml — E by Y f := X f, where f(t) = —CS(t)f. Let f € D($",), then
(@1 fI(t) = —CS(HD", f = D", f(t). Hence, we have

AYf=AXf=XD" f+8f =X(D" fy+Cf =YD f+Cf, (4.12)

thatis, Y is a bounded solution of (4.8).

The uniqueness of the solution of operator equation AX — X%’ = C follows
directly from the uniqueness of the solution of AX — X%" = —.

(iii)= (i). We have shown above that if X is a bounded solution of (4.7), then
u(t) := XS(t) f is a mild solution of the higher-order equation (1.6). It remains
to show that this solution is unique. In order to do it, assume that u is a mild
solution of the homogeneous equation u™ (t) = Au(t), t € R. By Corollary 2.6,
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(isp(u))" < d(A). On the other hand, since u € M, isp(u) < d(D ), which im-
plies (isp(u))" < o(@",). By Theorem 3.1(iii), it follows from (iii) that 6(A) N
(9" = . Hence, sp(u) = &, so u = 0 and the theorem is proved. O

5. Applications

In this section, we will apply the results of Section 4 to the space of periodic and
of almost periodic functions. Let P(w) be the space of periodic functions from
R to E with the period w. For the sake of simplicity, we assume the period w = 1.
We begin with the case in which # = 2 and A is the generator of a cosine family
(C(t)). It is well known that

(1) A is the generator of an analytic Cy-semigroup given by

eix =

-f%c H)xdt, Re(z) >0; (5.1)

F

(2) 92 is the generator of a cosine family given by

Ct) = %(y(t) LS (—1) (5.2)

and hence is the generator of an (analytic) Cy-semigroup in P(1).
By Theorems 3.1(i) and 4.5, P(1) is regularly admissible if and only if 0(A) N
0(Dp1y) = @. On the other hand, 0(@3,)) = {(2kni)? :k € Z} = {-k*n? :k €
Z}. Hence, we have the following theorem.

THEOREM 5.1. Let A be the generator of a strongly continuous cosine family. Then
P(1) is regularly admissible with respect to u''(t) = Au(t) + f(t) if and only if
{—4k’n? ke Z} C o(A).

In general, however, the condition of the form ¢(A) N o(2’) = @ does not

imply the regular admissibility of subspace Jl. At least the operator A must sat-
isfy some conditions, as the following theorem shows.

THEOREM 5.2. Let A be a closed operator on a Banach space E with nonempty re-
solvent set and suppose that P(1) is regularly admissible with respect to the equation

um(t) = Au(t) + f(t), teR. (5.3)

Then
(1) (27mki)® € p(A) and sup,, || ((2mki)" — A) 71| < oo,
(2) if each mild solution on P(1) belongs to C"™ (R, E), 0 < m < n, then (27rki)"
€ 0(A) and sup,_y, |k™((2mki)" — A) 71| < co.

Proof. By assumption, P(1) is a regularly admissible function space, so, by
Theorem 4.5, the equation AX — X%}y, = C has a unique solution for every
bounded operator C. Hence, by Theorem 3.1(iii), 0(A) N a(P}p;)) = D. On the
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other hand, it is not hard to see that 6(9},)) = {(2kni)" : k € Z}. It follows that
o(A) N {(2kmi)" : k € Z} = & or, in other words, {(2kmi)" : k € Z} C p(A).

To prove (1), let G: P(1) — P(1) be the solution operator and take f(t) =
e?kitx,, xo € E, as a 1-periodic function. It is not too hard to check that G f(t) =
e?kmit . ((2kmi)" — A)~'xo is the (unique) mild solution of (5.3). Hence,

|(@kmiy = 4) x| | = IGFI < UG- IF I = G - [l | (5.4)

for all xy € E and k € Z. Hence, sup,; |((2kmi)" — A) 7| < [|Gl| < oo.

To prove (2) observe that since each mild solution on P(1) belongs to C") (R,
E), the composite operator DG is everywhere defined and closed. Hence, it is
a bounded operator. Thus,

D5, GF 1| = ||2km)™ (ki) — A) " xo| < (135, Gl - £

(5.5)
= 951Gl - [l

for all xy € E and k € Z. Hence, sup, |1k"((2kni)" — A)~ || < C- IIQZ);”(I)GII for
a certain constant C, and that completes the proof. O

The converse of Theorem 5.2 generally does not hold (see [6] for a counterex-
ample). However, we have the affirmative answer in certain special cases. If E is
a Hilbert space, n = 1, and A is the generator of a Cy-semigroup (T ())¢=0, we
have the following theorem whose proof of (b)=(a) can be found in [14].

THEOREM 5.3. Let A be the generator of a Cy-semigroup on a Hilbert space E. Then
the following conditions are equivalent:

(a) for each 1-periodic function f, the equation
u' (1) = Au(t) + f (1) (5.6)
has a unique 1-periodic mild solution;
(b) {2nki:k € Z} C p(A) and sup;,, |(2mki — A) 1| < co.

Also, if n =2, m =1, and A is the generator of a cosine family (C(¢)) on a
Hilbert space E, we have a positive answer. Namely, we have the following theo-
rem whose proof of the converse part (b)=(a) can be found in [8].

THEOREM 5.4. If A is the generator of a cosine family on a Hilbert space E, then the
following statements are equivalent:

(a) for each 1-periodic function f, the equation
u”’(t) = Au(t) + f(t) (5.7)

has a unique 1-periodic mild solution which belongs to C' (R, E);
(b) {—4n*k* 1k € Z} C p(A) and sup, Ilk(47%k> + A) 7| < oo.
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We now apply the results of Section 4 to AP(RR, E), the space of almost peri-
odic functions from R to E. As a preparation, we recall some basic concepts and
results about almost periodic functions. (For more details, readers are referred
to [1,9].) A point A € R is called a point of almost periodicity of the function u if
there is a neighborhood U of A such that for every ¢ € L'(R) with supp F¢ C U,
where ¢ is the Fourier transform of ¢, the function ¢ x u is almost periodic.
The complement in R of the set of points of almost periodicity of u is called the
almost periodic spectrum of f and is denoted by sp ,p(1).

We say that u € BUC(R, E) is totally ergodic if

: 1 ! —1ivs
%lf?oﬁj_f u(s)ds (5.8)

exists for all v € R. The following theorem can be found in [9] (parts (a) and
(b)) and [17] (part (¢)).

TueoreMm 5.5. Let u € BUC(R, E) such that sp ,p(u) is countable. Assume that

(a) E2 co;0r
(b) the range of u(t) is weakly relatively compact; or
(c) u is totally ergodic.

Then u is almost periodic.

We now return to our higher-order equation. Let I' be a compact set in R
and let Jl = X(T') be the subspace of BUC(RR,E) consisting of all functions f
with sp(f) C T. Itis easy to see that JIl satisfies Assumption 4.4. Moreover, % 4 is
bounded, 0(% ) = iI', and thus ¢(2’}) = (il')". Assume now that 0(A) N (i[')" =
&; then, by Theorem 3.1(ii), the equation AX — X9, = —J, has a unique so-
lution. By Theorem 4.5, M is regularly admissible and for any almost periodic
function f, the mild solution u(t) = XS(t) f is also almost periodic. Using these
facts, we have the following theorem.

THEOREM 5.6. For the equation
uM(t) = Au(t) + f(t), teR, (5.9)

assume that f is almost periodic and o(A) N (iR)" is countable. Let u € BUC(R,
E) be a mild solution of (5.9). Then u is almost periodic if one of the following
conditions is satisfied:

(a) E 2 co; or
(b) the range of u(t) is weakly relatively compact; or
(c) u is totally ergodic.

Proof. In view of Theorem 5.5, we only have to show that sp,(u) is countable.
Since 0(A) N (iR)" is countable, it suffices to prove that (isp,p(u))" C o (A).
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Let A be any point in R such that (id)"” € p(A); we will show that A & spp(u).
Since p(A) is an open set, there exists € > 0 such that (iT')" C p(A), whereT = [A —
€,A+€]. Since I is compact and d(A) N (iT)" = &, X(T) is regularly admissible
with respect to (5.9).

Let ¢ be a function in L'(R, E) with supp%¢ C I and define i := u * ¢ and
f:=fx¢. Then @t and f are in X(I') (Lemma 2.4(iii)) and f is an almost pe-
riodic function. Moreover, # is the unique mild solution of (5.9) corresponding
to f in X(T) (Remark 2.2). By the reasoning preceding this theorem, # is also
almost periodic. So, A is a point of almost periodicity of u, that is, A & sp,p(u),
and the theorem is proved. O
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