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CONTROL SYSTEMS WHEN THE OPTIMAL
STATIONARY POINT IS NOT UNIQUE

MUSA A. MAMEDOV

Received 21 August 2002

We study the turnpike property for the nonconvex optimal control problems
described by the differential inclusion % € a(x). We study the infinite horizon
problem of maximizing the functional fOT u(x(t))dt as T grows to infinity. The
turnpike theorem is proved for the case when a turnpike set consists of several
optimal stationary points.

1. Introduction

Let x € R” and let Q € R” be a given compact set. Denote by IT.(IR”) the set of
all compact subsets of R". We consider the following problem:

x € a(x), x(0) = 1, (1.1)

T
Jr(x()) = jo u(x())dt — max. (12)

Here, x° € Q is an assigned initial point. The multivalued mapping a: Q —
IT.(R") has compact images and is continuous in the Hausdorff metric. We also
assume that at every point x € Q) the set a(x) is uniformly locally connected (see
[2]). The function u: Q — R! is a given continuous function.

In this paper, we study the turnpike property for problem (1.1) and (1.2). The
term of turnpike property was first coined by Samuelson (see [17]) where it is
shown that an efficient expanding economy would spend most of the time in the
vicinity of a balanced equilibrium path. This property was further investigated
by Radner [14], McKenzie [12], Makarov and Rubinov [7], and others for op-
timal trajectories of a von Neuman-Gale model with discrete time. In all these
studies, the turnpike property was established under some convexity assump-
tions.
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632 A turnpike theorem for continuous-time control systems

In [11, 13], the turnpike property was defined using the notion of statistical
convergence (see [3]) and it was proved that all optimal trajectories have the
same unique statistical cluster point (which is also a statistical limit point). In
these works, the turnpike property is proved when the graph of the mapping a
is not a convex set.

The turnpike property for continuous-time control systems was studied by
Rockafellar [15, 16], Cass and Shell [1], Scheinkman [6, 18], and others where,
besides convexity assumptions, some additional conditions are imposed on the
Hamiltonian. To prove turnpike theorem without these kind of additional con-
ditions became a very important problem. This problem was further investigated
by Zaslavski [19, 21], Mamedov [8, 9, 10], and others.

In [10], problem (1.1) and (1.2) is considered without convexity assumptions
and the turnpike property is established assuming that the optimal stationary
point is unique. In this paper, we consider the case when a turnpike set consists
of several optimal stationary points.

Definition 1.1. An absolutely continuous function x(-) is called a trajectory (so-
lution) to system (1.1) on the interval [0, T] if x(0) = x° and almost everywhere
on the interval [0, T'] the inclusion x(¢) € a(x(t)) is satisfied.

We denote the set of trajectories defined on the interval [0,T] by X7 and we
let

Ji = sup Jr(x(+)). (1.3)
x(-)eXT

Since x(t) € Q and the set Q is bounded, the trajectories of system (1.1) are
uniformly bounded, that is, there exists a number L < +o0 such that

[lx(H)|| <L, Vte[o,T], x(-) € Xy, T>0. (1.4)

On the other hand, since the mapping a is continuous, then there is a number
K < 400 such that

||[x(t)|| <K foralmostall t € [0,T], Vx(-) € X7, T >0. (1.5)

Note that in this paper we focus our attention on the turnpike property of
optimal trajectories. So we did not study the existence of bounded trajectories
defined on [0, oo]. This problem for different control problems has been studied
by Leizarowitz [4, 5], Zaslavsky [19, 20], and others.

Definition 1.2. The trajectory x(-) is called optimal if J(x(-)) = J; and is called
&-optimal (& > 0) if

J(x(1) = J7 =& (1.6)

Definition 1.3. The point x is called a stationary point if 0 € a(x).
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Stationary points play an important role in the study of asymptotical behavior
of optimal trajectories. We denote the set of stationary points by M:

M={xeQ:0€ax)}. (1.7)

We assume that the set M is nonempty. Since the mapping a(x) is continuous,
then the set M is also closed. Therefore M is a compact set.

Definition 1.4. The point x* € M is called an optimal stationary point if

u(x*) =u* 2 maxu(x). (1.8)
XEM
We denote the set of optimal stationary point by M. Since the function u is
continuous, then this set is not empty. In Turnpike theory, it is usually assumed
that the optimal stationary point x* is unique. In this paper, we consider non-
convex problem (1.1) and (1.2) (i.e., the function u is not strictly concave and
the graph of the mapping a is not convex) and therefore the optimal stationary
point may be not unique.
We assume that the set M, consists of m different points x{, x5, ..., x5; that
is,

xfeM, u(xf)=u* Vi ulx)<u* ifxe M\ {xf,....x5}.  (1.9)

Consider an example for which this assumption holds.

Example 1.5. Assume that the set M is convex and
u(x) = max{ui(x):i€ {1,2,....,1}}, x€Q, (1.10)

where the functions u; are continuous and strictly concave. For every i, there
exists a unique point x; € M for which

A
ui(x}) =u = %%qui(x). (1.11)

Clearly, the function u is continuous and u* = max{u; :i € {1,2,...,1}}. We
also note that the function u may be not concave. In this example the num-
ber m and the points x{,x5,...,x}; in (1.9) can be chosen out of the points x]
(ie{1,2,...,1}) for which u(x}) = u*.

2. Main conditions and Turnpike theorem

The turnpike theorem will be proved under two main conditions, Conditions 2.1
and 2.2. The first condition is about the existence of “good” trajectories starting
from the initial state x°. The second is the main condition which provides the
turnpike property.
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Condition 2.1. There exists b < +o0 such that, for every T > 0, there is a trajectory
x(-) € Xr satisfying the inequality

Jr(x(+)) = u*T —b. (2.1)

Note that the satisfaction of this condition depends in an essential way on the
initial point x°, and in a certain sense it can be considered as a condition for the
existence of trajectories converging to some points x;, i = 1,2,...,m. Thus, for
example, if there exists a trajectory that hits some optimal stationary point x;* in
finite time, then Condition 2.1 is satisfied.

Set

B={xeQ:ulx)=u*}. (2.2)
We fix p € R", p # 0, and define a support function

c(x) = max py. (2.3)
yea(x)

Here, the notation py means the scalar product of the vectors p and y. By |¢| we
denote the absolute value of c.
We also define the function

u(x) —u*  u(y)—u*

X)) = + 2.4
PN =Tl T ) (24
Condition 2.2. There exists a vector p € R" such that
(H1) c(x)<O0forallx e Band x # x,i=1,2,...,m;
(H2) there exist points %; € Q such that
pxi=px’, (%) >0, Vi=12..,m; (2.5)
(H3) for all points x, y, for which
px=py, c(x) <0, c(y) >0, (2.6)
the inequality ¢(x, y) < 0 is satisfied; and also if
xx — x; forsomei=1,2,...,m,
w—1y, ¥y #x'i=12..m, (2.7)

DXk = PYks c(xx) <0, c(yx) >0,

then limsup,._ , ¢(xx, yk) <O0.

Note that if Condition 2.2 is satisfied for any vector p, then it is also satisfied
for all Ap, (A > 0). That is why we assume that [|p|| = 1.
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Condition (H1) means that derivatives of system (1.1) are directed to one side
with respect to p; that is, if x € B and x # x*, i = 1,2,...,m, then py < 0 for all
y € a(x). Itisalso clear that py < Oforall y € a(x) and c(x) =0,i = 1,2,...,m.

The main condition here is (H3). It can be considered as a relation between
the mapping a and the function u which provides the turnpike property. In [8]
it is shown that conditions (H1) and (H3) hold if the graph of the mapping a
is a convex set (in R” X R™) and the function u is strictly concave. On the other
hand, an example given in [10] shows that Condition 2.2 may hold for mappings
a having nonconvex graphs and for functions u that are not strictly concave (in
this example the function u is convex).

The main sense of the turnpike property is that optimal trajectories can stay
just during a restricted time interval on the outside of the e-neighborhood of the
turnpike set M,p. When the set M, consists of several different points, it is inter-
esting to study a state transition of the trajectories from one optimal stationary
point to another. We introduce the following definition. Take any number § >0
and let S5(x) stands for the closed §-neighborhood of the point x.

Definition 2.3. Say that on the interval [f},1,] a trajectory x(f) makes a state
transition from x;* to x;k (i#j)ifx(t)) € Ss(x]), x(t2) € Sa(xj’-“), and

x(t) & Ss(x), Vte(t,t), k=1,...,m. (2.8)

For a given number & >0 and a given &-optimal trajectory x(-) € Xr, we
denote by N7(6,&,x(+)) the number of disjoint intervals [t;,£,] on which the
trajectory x(-) makes a state transition from x;* to x;' (i # j, i,j =1,2,...,m).
We call N7(6, &, x(-)) a number of state transitions.

Clearly in Definition 2.3 a small number § should be used. We take

6simin{||xi*—x;‘||:i#j, Lj=12,...,m}. (2.9)

Now we formulate the main result of the present paper.

THEOREM 2.4. Suppose that Conditions 2.1 and 2.2 are satisfied and there are m
different optimal stationary points x;". Then

(1) there exists C < +oo such that
T
J [u(x(t) — u*]dt < C (2.10)
0

for every T > 0 and every trajectory x(-) € Xr;
(2) for every € >0, there exists K. ¢ < +0co such that

meas {t € [0, T]: ||x(t) = xf|| > &..., ||x(t) = x}|| > e} < K.¢ (2.11)

forevery T >0 and every &-optimal trajectory x(+) € Xr;
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(3) for every & >0 and & > 0 (satisfying (2.9)), there exists a number Ns¢ < 400
such that

N1 (8,&x(+)) < Nog (2.12)

forevery T >0 and every &-optimal trajectory x(-) € Xr;
(4) if x(-) is an optimal trajectory and x(t;) = x(t,) = x;* for somei=1,2,...,
m, then x(t) = x;* forall t € [t;,1,].

The proof of this theorem is given in Section 4. In Section 3, we present pre-
liminary results.
3. Preliminary results

3.1. LetxeBandx # x,i=1,2,...,m, that is x € B \ Mop. By the condition
(H2) we have c(x) < 0. Since the function c(x) is continuous, there is a number
& >0 such that ¢(x") < 0 for all x € V. (x) N Q. We define the set @ as follows:

D = d[ Usemay, Ve ()] N Q. (3.1)

It is not difficult to show that the following conditions hold:

(a) x € intD for all x € B\ Mop;
(b) c(x) <0forall x € D\ Mop;
() DNM* =My, and B C D.

Here,
M*={xeQ:c(x) =0} (3.2)

and we recall that B = {x € Q: u(x) > u*}. Clearly M C M*.

LemMA 3.1. For every € > 0, there exists ve > 0 such that
u(x) <u* -, (3.3)

foreveryx € Q, x ¢ intY, and ||x — x| > ¢,..., |x— x| > &

Proof. Assume on the contrary that for any € > 0, there exists a sequence x; such
that x; & intD, |lxx — x|l > e (i=1,...,m), and u(xx) — u* as k — oo. Since the
sequence xi is bounded, it has a limit point, say x'. Clearly x" # x;* (i =1,...,m),
x" ¢ int%, and also u(x") = u*, which implies x" € RB. This contradicts property
(a) of the set 9. O

LemMA 3.2. For every € >0, there exists . > 0 such that

c(x)< -1, VxeD, lx—xf|| = &....|[x —x}|| = e (3.4)
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Proof. Assume on the contrary that for any € > 0, there exists a sequence xx such
that xx € D, [lxx — x| = e (i=1,...,m), and c(x¢) — 0. Let x" be a limit point of
the sequence xx. Then x’ € ¥, x" # x* (i=1,...,m), and ¢(x") = 0. This contra-
dicts property (b) of the set . O

3.2. Given the interval [p,, p1] C (=0, +0c0), we define two classes of subsets of
the time interval [0, T]. We denote these classes by T![p,, p1] and T2[pa, p1].

Definition 3.3. The set = C [0, T] belongs to the class T![pa, p1] if the following
conditions hold:

(a) the set 77 can be presented as a union of two sets, 7 = 71; U 71, such that
x(t) € int%, Vtem, x(t) ¢ intY, VteE m; (3.5)

(b) the set 717 consists of at most countable number of intervals A, with end-
points ¥ < t5, such that
(i) the intervals (px(t’f),px(t’f)), k=1,2,..., are disjoint (clearly in this
case, the intervals A2 = (t5,£5) are also disjoint);
(i) [px(t5), px(t5)] C [pa, p1] forallk =1,2,....
Definition 3.4. The set w C [0, T] belongs to the class T?[p,, p1] if the following
conditions hold:

(a) x(t) ¢ intD, for all t € w;
(b) the set w contains at most countable number of intervals [slg, s]f] such that
the intervals ( px(slzc ), px(slf )), k =1,2,..., are nonempty and disjoint, and

p1—pa =2 [px(s}) — px(s5)]. (3.6)
k

Note that the inclusion x(¢) € int% means that u(x(t)) > u* whereas the con-
dition x(t) ¢ int% implies u(x(t)) < u*.

LEMMA 3.5. Assume that x(-) € Xr is a continuously differentiable function, w (=
m Um) € T pa, p1], and w € T?[pa, p1]. Then,

J u(x(t))dt < u™ - meas(m U w) — I

W*—Mﬂﬂﬂﬂ—[&%ﬂﬂﬂa
Q E

(3.7)

where

(A) QUE=wuUm={tenUw:x(t) ¢ intD};
(b) for every € >0, there exists a number 8¢ > 0 such that

8%(x) = 8., Vx, for which ||x —x}||=e(i=1,...,m); (3.8)
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(¢) for every § > 0, there exists a number K(8) < oo such that
meas[(mUw)NZs| <K(5) -meas[(QUE) N Zs], (3.9)

here Zs = {t € [0, T] : |px(t) — p/| =6, i=1,...,m} and p} = px},i=1,...,m.

The proof of this lemma is similar to the proof of [10, Lemma 5.4], so we do
not give it. We also present the next two lemmas without proofs. Their proofs
can be done in a similar way to the proofs of [10, Lemmas 6.6 and 6.7].

LEMMA 3.6. Assume that x(-) € Xr is a continuously differentiable function. Then,
the interval [0, T] can be divided into subintervals such that

[0,T] = U, (m, Uw,) U(FLUF,UF;) UE, (3.10)

JT ux(t)di =S Lﬂuwn w(x())dt + J

0 n FiUF,UF;

u(x(t))dt+J w(x(8)dt. (3.11)
E

Here, we have
(1) m, € T'p2, pL] and w, € T*[p2, pll, n=1,2,...;
(2) for eachi € {1,2,3}, the set F; € T[p}’, p;] for some interval [p;’, p;] and

x(t) €int%, VieF,UF,UF;, (3.12)
pi—pl <C<+oo, i=123; (3.13)

(3) the set E such that
x(t) ¢ int%, VteEE; (3.14)
(4) for every § >0, there is a number C(8) such that
meas|[(F; UF, UF;) NnZs| < C(6), (3.15)
where
Zs=1{te [0, T]: |px(t)—pf| =08, i=1,...,m} (3.16)

and the number C(8) < 400 does not depend on the trajectory x(-), on T, and on
the intervals of (3.10).

LEmMA 3.7. Assume that x(-) € Xt is a continuously differentiable function and
the sets F; (i = 1,2,3) are defined in Lemma 3.6. Then, there is a number L < +oo
such that

J [u(x(t) — u]dt < L, (3.17)
FiUF,UF;

where the number L does not depend on the trajectory x(+), on T, and on the inter-
vals in (3.10).
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4. Proof of Theorem 2.4

From Condition 2.1, it follows that, for every T > 0, there is a trajectory x7(-) €
Xr, for which

J u(xr(t))dt = u™T —b. (4.1)
[0,T]
(1) First we consider the case when x(¢) is a continuously differentiable function.

In this case we can use the results obtained in Section 3.
From Lemmas 3.6 and 3.7, we have

() dt J ))dt J 0)dt
J[O,T] ) <z n,,uw,, " (x( ))
+L+u*-meas(FiUF, UF;).

Then from Lemma 3.5, we obtain (see, also, (3.10))

I[o,T] ulx(n)dt < %: (u* meas (71, U wy)

- J [u* —u(x(t))]dt - L 52 (x(t))dt)

+J u(x(t))dt+L+u* - meas (F; UF, UF;)
E

=u* (Zmeas (. U wy,) + meas (F; UF, UF;) +measE>
n

- J [u* —u(x(t))]dt - j 82(x(1))dt +L
Q A

= u*meas[0, T] — JQ [u* —u(x(t))]dt - L 8% (x(t))dt+ L.
(4.3)

Therefore,

j [u(x(t)) — u*]dt < —j [u* u(x(t))]dt—I S (x(t)dt+L.  (4.4)

[0,7] Q A
Here, Q = (U,Q,) UE and A = U,E,. Taking into account (4.1), we have
J w(x(6))dt - j w(er(8))dt < — j [u* — u(x(t)]dt
[0,T] [0,T] Q (4.5)

- J 82 (x())dt+L+b,

A

that is,

T (x()) = Jr (e () = —jQ ("~ ulx() - | & (x0)de+Lvb. (46
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Here,
Q = ( Un Qn) UE, A= UnEn) (4-7)

and the following conditions hold:

(a) (see Lemma 3.5(a), (3.12) and (3.14))
QUA={te[0,T]:x(t) ¢ intD}; (4.8)
(b) (see (3.10))
[0, T] = Uy (710 U @n) U (Fy UF> UF3) UE; (4.9)

(c) for every § > 0, there exist K(§) < +c0 and C(J) < +oco such that (see
Lemma 3.5(c) and (3.15))

meas|[ (7, Uw,) NZs] < K(8)meas[(Q, UE,) N Zs],

4.10
meas|[(F; UF, UF;) N Zs] < C(6); (4.10)
we recall that Zs = {t € [0, T] : |px(t) — p/| = 6, i=1,2,...,m};
(d) for every & > 0, there exist §; > 0 such that (see Lemma 3.5(b))
8% (x) =0, Vx, llx—x*||=e i=12..,m (4.11)

The first assertion of the theorem follows from (4.4), (4.8), and (4.11) for the
case under consideration (i.e., x(-) is continuously differentiable). We show the
second assertion.

Let ¢ >0 and & > 0 be given numbers and let x(-) be a continuously differen-
tiable £-optimal trajectory. We denote

Xe={te[0,T]:||x(t)—xf||=e i=12,...,m}. (4.12)

First we show that there is a number Kg,g < +oo (which does not depend on T >
0) such that the following inequality holds

meas[(QUA) N %] < K. (4.13)
Assume that (4.13) is not true. In this case, there exist sequences Ty — o and
Kéff — o0, and sequences of trajectories {x*(-)} (every x*(-) is a £-optimal tra-

jectory in the interval [0, Tx]) and {xr,(-)} (satisfying (4.1) for every T = Ty)
such that

meas [ (QF U AF) n%F] = Kelff ask — oo, (4.14)
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From Lemma 3.1 and (4.11), we have

uwt —u(xk(t)) = v, ifte QuXk,

82 (xk(r)) = 82 ift € ANk, (4.15)
Denote v = min{v,, 82} > 0. From (4.6), it follows that
Jr, (£*(+)) = Jr (x1,,(-)) < L+b — vymeas[ (Q* U AF) n&F]. (4.16)
Therefore, for sufficient large numbers k, we have
Jr (x*()) < T (em () = 28 < Ji, = 28, (4.17)

which means that x*(¢) is not a &-optimal trajectory. This is a contradiction.
Thus (4.13) is true.
Now, we show that, for every § > 0, there is a number K g) g <+too such that

meas Zs < Ky ;. (4.18)
From (4.9) and (4.10), we have

measZy = Zmeas[(ﬂn Uwy) NZs|
n

+meas|[(Fy UF, UF;) N Zs| + meas (EN Zs)

< ZK(é)meas[(Qn UE,) NZs|+C(8) +meas (EN Zs) (4.19)

<K(&)meas[([ U (QuUE,)]NZs)U(ENZs)]+C(d)
= K(8)meas[(QUA) N Zs] +C(9).

Here K(8) = max{1,K(8)}.
Since Zs C &5, then taking into account (4.13) we obtain (4.18), where

K}; = K(8)Ksg +C(9). (4.20)
We denote

x0, = {t €10, T :||x(t) — xF|| > % i= 12m} (4.21)

Clearly, 2, is an open set and therefore it can be presented as a union of at
most countable number of open intervals 7x. Out of these intervals, we chose
the intervals 7, k = 1,2,..., which have nonempty intersections with &,. Then
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we have
Xe C Ukt C XY, (4.22)

Since a derivative of the function x(#) is bounded, it is not difficult to see that
there is a number o, > 0 such that

measT, > 0., Vk. (4.23)

But the interval [0, T'] is bounded and therefore the number of intervals 7 is
finite too. Let k = 1,2,3,..., Nr(¢). We divide every interval 74 into two parts:

7 = {t € 71 x(t) € int D}, 1 = {t € 7 : x(t) & intD}. (4.24)
From (4.8) and (4.22), we obtain
Uk C(QUA)N XY, (4.25)
and therefore from (4.13) it follows that
meas (Ux 77) < Kooyt (4.26)
Now we apply Lemma 3.2. We have
px(t) < —nepn,  t € UkT]. (4.27)
Denote pj = sup,,, px(t) and pj = infyeq, px(t). It is clear that

pi-pi<C k=123, ,Nr(e), (4.28)
|px(t)| <K, V¢t (4.29)

Here, the numbers C and K do not depend on T >0, x(+), &, and . We divide
the interval 7% into three parts:

1, = {t €11 px(t) <0}, ‘lj]? = {te 7 : px(t) =0}, (430)
70 = {t € 71 px(t) >0}.

Then we have

1

pi—pi=

Lk PX(t)dt' - ‘ J PJ'C(t)dt+Lk+ pa’c(t)dt‘. (4.31)

We denote a = — [, px(t)dt and § = [, px(t)dt. Clearly & >0, 8 >0, and

1o —a+f ifa<p, (432)
PemPe=14 5 ifazp. ‘
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From (4.29), we obtain
0<pf < Kmeast}. (4.33)
On the other hand, T}i C 1, and therefore from (4.27) we have
& > 1y MeasT, > 12 MeasT,. (4.34)

Consider the following two cases.
(1) If « = B, then from (4.32), (4.33), and (4.34) we obtain

C=>pi—pi=a—p=>n,meast; — Kmeast;. (4.35)

Since 7} C ¢, then from (4.26) it follows that meast; < K/, ¢. Therefore, from
(4.35), we have

measT; < C;E, (4.36)

where C,; = (C+K - Kepn£)/Mera-
(2) If a < B, then from (4.33) and (4.34) we obtain

Nepmeast; < Kmeast{ < K - Ky, (4.37)
or
meas 7} < C, (4.38)

where Céjf =K - Kep,e/Mepa-
Thus from (4.36) and (4.38) we obtain

meas 7} < Cop = max {C_;, C¢}, k=1,2,...,Nr(e), (4.39)
and then
meas (Ui 74) < Nr(e)Cep. (4.40)

Now we show that, for every € > 0 and & > 0, there is a number Ké’ g <too such
that

meas (U 73) < K/;. (4.41)

&

Assume that (4.41) is not true. Then from (4.40), it follows that N7(¢) — oo as
T — oo. Consider the intervals 7 for which the following conditions hold:

1
measT; > 20 meast} < Ameast}, (4.42)



644 A turnpike theorem for continuous-time control systems

where A is any fixed number. Since Ny (e) — oo, then from (4.23) and (4.26) it
follows that the number of intervals 7 satisfying (4.42) infinitely increases as
T — oo,

On the other hand, the number of intervals i, for which the conditions & < 8
and

meast} >Ameast}, A= 17;({2, (4.43)

hold, is finite. Therefore, the number of intervals 1y, for which the conditions
a < f3 and (4.42) hold, infinitely increases as T — . We denote the number
of such intervals by Nt and for the sake of definiteness assume that these are
intervals 74, k = 1,2,...,Nr.

We set A = #,/2/2K for every 7x. Then from (4.35) and (4.42), we have

1
Pi — Pt = Nepmeast, — K- ZI/(% meast; = 2 Mz meas T (4.44)

Taking into account (4.23), we obtain
pi—pi=e, k=12,.,Nr, (4.45)
where
e = %qg/zas >0, Ny — o0 as T — . (4.46)

Let 8 (1/8)e.. From (4.45), it follows that, for every 7, there exists an inter-
val A 2 [s 1, st] C 1 such that
|px(t) = pf| =0, Vi=12...,m tEN,
px(sy) = sup px(t), px(st) = tierlAfk px(t), px(s) — px(sp) =6

teA

- (447)

From (4.29), we have

‘ J P J | pi(t) | dt < J | pi(t) | dt < K- meas Ar.
(st [sh-s7] Ay
(4.48)
Then meas Ax = §/K > 0. Clearly, Ay C Zs and therefore
Nrp (S
measZg > meas Ui\zlAk = Z measAy > Nt X (4.49)
k=1
This means that measZs — o as T — oo, which contradicts (4.18).
Thus (4.41) is true. Then taking into account (4.26), we obtain
meas Ui T = Z (meast] + meast?) < Ko + Ks,,f' (4.50)

k
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Therefore, from (4.22), it follows that
meas¥, = meas Utk < Kgp, (4.51)

where K¢ = Kep e + Ks"s.

Thus we have proved that the second assertion of the theorem is true for the
case when x(-) is a continuously differentiable function.

(2) Now we take any trajectory x(-) to system (1.1). It is known that (see, for
example, [2]) for a given number § > 0 (we take § < &/2), there exists a continu-
ously differentiable trajectory X(-), to system (1.1), such that

[lx(t) —x(t)|| <6, Vte[0,T]. (4.52)
Since the function u is continuous, then there is #(8) > 0 such that
u(x(t)) = u(x(t)) —5(8), Viel0,T]. (4.53)

Therefore,
J w(E(0)dt = J w(x(0))dt — Tn(®). (4.54)
[0,T] [0,T]

Let £ > 0 be a given number. For every T >0, we choose a number ¢ such that

Tn(8) < &. Then,
j w(x(8))dt < J w(x(0)dt + Tn(d) < J w(Z(0)dt+E  (4.55)
[0,T] [0,T] [0,T]
that is,

J [u(x(t))—u*]dtsj [u(%(6) — u*|dt+E. (4.56)
[0,T]

(0,T]

Since the function x(-) is continuously differentiable, then the second integral
in this inequality is bounded (see the first part of the proof), and therefore the
first assertion of Theorem 2.4 is proved.

Now, we prove the second assertion of Theorem 2.4. We will use (4.55). Take
a number ¢ >0 and assume that x(-) is a £-optimal trajectory; that is,

Jr(x(+) =] =& (4.57)
From (4.55), we have
Jr(x(-)) = Jr(x(+)) =& =Jf - 2¢&. (4.58)

Thus X(-) is a continuously differentiable 2¢-optimal trajectory. That is why (see
the first part of the proof) for the numbers &/2 > 0 and 2& > 0, there is K¢ < +00
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such that

meas{t €0, T]:||x(t) —xf|| = %, i= 1,2,...,m} <K (4.59)
If |x(t') — x|l > & for any t’, then

12 = x| = [le(e) =" || = [Ix(¢) = 2()]| = e =6 = % (4.60)

Therefore,

{te o, T]:||x(t) —xF|| =& i=1,2,...,m}

. (4.61)
c {te (0. 7)< |50 ~xf | = 5, i = 1zm}

which implies that the proof of the second assertion of the theorem is completed;
that is,

meas {f € [0, T]: ||x(t) —x*|| =& i=1,2,...,m} < K. (4.62)

(3) Now, we prove the third assertion of Theorem 2.4.

We take any numbers € >0 and § > 0 (satisfying (2.9)). Consider a &-optimal
trajectory x(+) € X7, T >0, and let N = N7(3,&,x(+)) be a number of state tran-
sitions. By Definition 2.3, there are intervals [t{, 7], n = 1, N, for which

x(t]) € Ss(xy) forsomen; € {1,2,...,m}, j =12,

4.63
x(t) & Ss(xf), Vte(thty),i=1,...,m. (4.63)

Then there exist intervals A, C [t], 5], n=1,2,...,N, such that
llx(t) —x*|| =6, VteA,n=12,...,N,i=12..,m (4.64)

Since ||%(#)]] < K < o (see (1.5)), there is a number # > 0 such that measA, > 5
forallm =1,2,...,N. Therefore,

N
Nn < Z measA, = measU,A,
n=1
4.65
<meas{t€ [0, T]:||x(t) —xF|| =6, i=1,....,m} (4.65)
< Kse.

The third assertion of the theorem is proved if we take N5z = K¢/ < 0.
(4) Now, we prove the fourth assertion of Theorem 2.4.
Let x(-) be an optimal trajectory and x(f;) = x(t,) = x* 2 x; for some i €
{1,2,...,m}. Consider a trajectory x*(-) defined by the formula
t) ifte|0,t]uUlt, T,
x*(t):{x” ifre (06U, T]

4.66
x* ifte [tl,tz]. ( )
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Assume that the third assertion of Theorem 2.4 is not true; that is, there is a
point ¢’ € (ty,t;) such that [|x(¢') —x*|| = ¢ > 0.

Consider the function x(-). In [2], it is proved that there is a sequence of con-
tinuously differentiable trajectories x,(-), t € [t;, T], which is uniformly conver-
gent to x(+), on [t;, T], and x,,(t;) = x(t;) = x*. That is, for every § > 0, there is
a number Nj such that

max ||x,(t) —x(t)|| <8, Vn=Ns. (4.67)
te(t,T)

On the other hand, for every § > 0, there is a number #(§) > 0 such that 7(§) — 0
as § — 0 and

lu(x(t)) —u(x, ()| <58 Vte[n, Tl (4.68)
Then we have

J u(x(t))dtsj w(xn(1))di + T (8). (4.69)
[t,T] [t1,T]

Take a sequence of points t" € (t',t;) such that t" — t, as n — oo. Clearly, in this
case x,(t") — x*. We apply Lemma 3.6 for the interval [¢,, "] and obtain

L (1)) dt = zj x(O)de+ | ula(0)de+ | uln(o)d
t,t"] ﬂkka Er

(4.70)
Here, x(t) € int® for all t € F", and F" € T![px, ("), p*] if px,(t") < p* (p* =
pxi°).

Since x, (") — x* and px,, (") — p*, then for every t € F" we have u(x,(t)) —
u* as n — oo, Therefore,

anzjn[u(xn(t))—u*]dt~0 asn — oo, (4.71)
We also note that from x,,(t) & int%, t € E", it follows that
Ln u(x,(t))dt < u™ measE". (4.72)
Now, we use Lemma 3.5 and obtain

ZJ o u(x,(t))dt = u™ meas| Ux (7 U w}f) ]
ke (4.73)
-] s | S o)
Uk Qg

UkE;:
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We take a number 8 < ¢/2. Then there is a number 8 > 0 such that

meas | Ux (QF VE})] = B. (4.74)

Then, there is a number > 0, for which

Zjn u(x,(1))dt < u* meas| Ug (mf Uw})] - B. (4.75)
L Uy

Therefore, from (4.70), we have

J u(x,(t))dt < u*{meas[ Uy (7] U w})] + measF" + measE"} +a, — f8
[t1,17]

(4.76)
or
L ) de = (0" = 1)+, B (4.77)
t,t"
From (4.68), we obtain
j w(xn())dt < J w(x())dt + Tn(d) = J w(x* (1) dt + Tn(d).
[t2,T] [2,T] [, T]
(4.78)
Thus, from (4.69), (4.77), and (4.78), we have
J w(x())dt < J w(xn(1))dt + T (5)
[t,T] [t1,T]
_ J u(x,,(t))dt+J w(xn()) dt
[t1,t"] [tn,t,]
; JM] w(xn(1))dt + Tn(5) 7o
<u*(t"—t) +u* (L, —t")
; JM] w(x* () dt + & — B+ Ay +2T7(5)
_ L O ©)di+ @y~ f+ Ay +2TH().
ty,
Here,

Ap = J [u(x,(t)) —u*]dt — 0 asn— oo, (4.80)
[tn6]
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because of t* — t,. We choose the numbers ¢ > 0 and # such that the following
inequality holds:

tp + A+ 2T1(8) < B. (4.81)
In this case, we have
j w(x(6))dt < J u(x* (8))dt (4.82)
[t1,T] [t,T]
and therefore
J w(x(8))dt < J w(x* (1)) dt, (4.83)
[0,T] [0,T]

which means that x(-) is not optimal. This is a contradiction.
Then Theorem 2.4 is proved.
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