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We study a sequence of generalized projections in a reflexive, smooth, and strictly
convex Banach space. Our result shows that Mosco convergence of their ranges
implies their pointwise convergence to the generalized projection onto the limit
set. Moreover, using this result, we obtain strong and weak convergence of resol-
vents for a sequence of maximal monotone operators.

1. Introduction

Let C be a nonempty closed convex subset of a Hilbert space H. For an arbitrary
point x of H, consider the set {z € C: ||x — z|| = minyec [|x — yll}. It is known
that this set is always a singleton. Let P¢ be a mapping from H onto C satisfying

[|x — Pcx|| = min|lx — yll. (1.1)
yeC

Such a mapping Pc is called the metric projection. The metric projection has the
following important property: xo = Pcx if and only if (x — xo,x9 — y) = 0, for all
yeC.

If C is a nonempty closed convex subset of a Banach space E whose norm is
Gateaux differentiable, then the metric projection P has the following property:
Xo = Pcx if and only if

(J(x—x0),%—y) =0 VyeC, (1.2)

where J is a normalized duality mapping from E to E*. Likewise, if Q¢ is a surjec-
tive sunny nonexpansive retraction on a smooth Banach space E, then xy = Qcx
if and only if

(x=x0,J(x0—y)) =0 VyeC (1.3)
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Notice that Qc is identical with the metric projection if E is a Hilbert space.

Let {C,} be a sequence of nonempty closed convex subsets of E and suppose
that {C,} converges to Cj in a sense of Mosco [4]. In [7], Tsukada proved that
{Pc,} converges weakly to P, if E is reflexive and strictly convex. Moreover, if E
has the Kadec-Klee property, the convergence is in the strong topology. On the
other hand, Kimura and Takahashi [3] proved the following. Suppose that each
C, is a sunny nonexpansive retract, E is a reflexive Banach space with a uniformly
Gateaux differentiable norm, and every weakly compact convex subset of E has
the fixed-point property for nonexpansive mappings. If the duality mapping J is
weakly sequentially continuous, then Qc, converges strongly to Qc,.

One of the purposes of this paper is to obtain an analogous result for a gen-
eralized projection Il which was defined by Alber [1]. A weak convergence the-
orem is in Section 3 and a strong convergence theorem appears in Section 4.

In Section 5, we discuss sequences of maximal monotone operators. For a sin-
gle operator A with A~10 # @, it is known that, for every x* € E*, (J +1A)~'x*
converges strongly to 7{_,x* as A — co when E is smooth and E* has a Fréchet
differentiable norm [5]. The mapping 7z}, is defined by 7}, = ITy-19 o J 1. Us-
ing convergence theorems shown in Sections 3 and 4, we obtain a result which
replaces a single operator A with a sequence of operators {4, }.

2. Preliminaries

Let E be a real Banach space with its dual E*. We denote by J the normalized
duality mapping from E to E*. If E is smooth, reflexive, and strictly convex, ] is
a bijection. Let C be a nonempty closed convex subset of E. Define V: EX E — R
by

V(x,y) = x> =2(J(x), y) + l ylI% (2.1)

Suppose that E is smooth, reflexive, and strictly convex. Then, for arbitrarily
fixed x € E, there exists a unique point y, € C such that

V(x, yx) = min V(x, ). (2.2)
yeC

Following the notation of [1], we let IT¢(x) = yx and call I1¢ a generalized pro-
jection onto C. Notice that if E is a Hilbert space, then Il is identical with the
metric projection onto C.

The following is a well-known result. See, for example, [1, 5].

ProrosiTioN 2.1. Let C be a nonempty closed convex subset of a smooth Banach
space E and x € E. Then, xy = Icx if and only if

(J(x)=J(x0),x0—y) =0 VyeC (2.3)
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Using a generalized projection I, we define a mapping 7 from E* to E by
nE =TlcoJ L. (2.4)

From Proposition 2.1, we obtain that, for x* € E*, xo = néx* if and only if
(x*=J(x0),x0—y)=0 VyeC (2.5)

Let E be a Banach space and let C, C;, G5, ... be a sequence of weakly closed
subsets of E. We denote by s-Li, C, the set of limit points of {C,}, that is, x €
s-Li, C, if and only if there exists {x,} C E such that {x,} converges strongly to x
and that x,, € C, for all n € N. Similarly, we denote by w-Li, C, the set of cluster
points of {C,}; y € w-Li, C, if and only if there exists {y,,} such that {y,,}
converges weakly to y and that y,, € C,, for all i € N. Using these definitions, we
define the Mosco convergence [4] of {C,}. If Cy satisfies

s-LiC, = Cy = w-LsC,, (2.6)
n n
we say that {C,} is a Mosco convergent sequence to Cy and write
Co = M-lim C,. (2.7)
n—oo

Notice that the inclusion s-Li, C, C w-Ls, C, is always true. Therefore, to show
the existence of M-lim,_, C,, it is sufficient to prove w-Ls, C, C s-Li, C,. For
more details, see [2].

3. Weak convergence of a sequence of generalized projections

In this section, we prove a pointwise weak convergence theorem for a sequence of
generalized projections. The sequence of ranges of these projections is assumed
to converge in the sense of Mosco.

THEOREM 3.1. Let E be a smooth, reflexive, and strictly convex Banach space and C
a nonempty closed convex subset of E. Let Cy, Cy, Cs,... be nonempty closed convex
subsets of C. If Cy = M-lim,,_« C, exists and nonempty, then Cy is a closed convex
subset of C and, for each x € C, Il¢,(x) converges weakly to I1c, (x).

Proof. Tt is easy to prove that Cy is closed and convex if C, is a closed convex
subset of C for each n € N. Fix x € C. For the sake of simplicity, we write x,
instead of Il¢, (x) for n € N. Since Cy = M-lim,_... Cy,, we have, for each y € C,
there exists {y,} C E such that y, — y asn — co and that y, € C, foreachn € N.
From Proposition 2.1, we have

<](x)_](xn)’xn_)’n> = 0. (3.1)
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Hence, we obtain

0= ( (x)_](xn) xn_x>+<](x)_](xn))x_}/n>
= (laell = [[oeall)” + (Ul + eal ) 2 =yl

thus

(Iell = [leal)* = (el + el ) lle =yl (3.3)

Assume that {x,} is unbounded. Then there exists a subsequence {x,,} of {x,}
such that lim;_« ||y, ]| = co. From y, — y and (3.3), we get a contradiction.
Hence {x,} is bounded.
Since {x,} is bounded, there exists a subsequence, again denoted by {x,},
such that it converges weakly to xy € C. From the definition of Cy, we get xo € Cp.
Now, we prove that I, (x) = xo. From lower semicontinuity of the norm, we
have

liminf V (x,x,) = hmlnf (lell2 2(J(x), %) + ||x,,||2)

= |1xl1 = 2(J (x), x0) + ||xo | (3.4)
=V (x,x0).
On the other hand, we get
111’1111;1fV(x,x,,) < hmme(x,yn) =Vi(x,y), (3.5)
that is,
V(x,x0) = minV(x, y). (3.6)
yECQ

Hence we get I1¢, (x) = xo.

According to our consideration above, each sequence {x,} has, in turn, a sub-
sequence which converges weakly to the unique point I1¢, (x). Therefore, the se-
quence {x,} converges weakly to IT¢, (x). O

4. Strong convergence of a sequence of generalized projections

A Banach space E is said to have the Kadec-Klee property if a sequence {x,} of
E satisfying that w-lim, .« x, = x9 and lim,,—« [|x, [l = [lx0 || converges strongly
to xo. It is known that E* has a Fréchet differentiable norm if and only if E is
reflexive, strictly convex, and has the Kadec-Klee property; see, for example, [6].

THEOREM 4.1. Let E be a smooth Banach space such that E* has a Fréchet differ-
entiable norm. Let C be a nonempty closed convex subset of E. Let Cy, Cy, Cs,... be
nonempty closed convex subsets of C. If Cy = M-lim, .., C,, exists and nonempty,
then for each x € C, Il¢, (x) converges strongly to I, (x).
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Proof. Fix x € C arbitrarily. We write x,, = I, (x) and xy = II¢, (x). By Theorem
3.1, we obtain w-lim,_ X, = Xo. Since E* has a Fréchet differentiable norm, E
has the Kadec-Klee property. Therefore, it is sufficient to prove that [|x, || — [lxo |l
as n — 0. Since xy € Cy, there exists a sequence {y,} C C such that y, — x; as
n — o and y, € C, for each n € N. It follows that

V(x,x0) < ligrling(x,xn) < limsup V (x, x,)

nee (4.1)
< lim V(x, yn) < V(x,x).

n—oo

Hence we obtain V (x, xp) = lim,— V(x,x,). Since {J(x),x,) converges to (J(x),
Xo), we get

lim [Je,[[ = [[xo] (4.2)

Using the Kadec-Klee property of E, we obtain that {x,} converges strongly to
X0 O

On the other hand, the following theorem shows that the pointwise strong
convergence of {II¢, (x)} implies the Mosco convergence of {C,} under certain
conditions.

THEOREM 4.2. Let E be a reflexive and strictly convex Banach space with a Fréchet
differentiable norm, and C a nonempty closed convex subset of E. Let Cy, Cy, Cs, ...
be nonempty closed convex subsets of C. Suppose that

2151010 ch (X) = HCO (X) VxeC. (43)
Then
Co = M-lim C,. (4.4)

Proof. For the sake of simplicity, we write II, instead of I1¢, for n € N U {0}. For
an arbitrary x € Cy, we have

x = Tlo(x) = lim TT (x) (4.5)

and IT,(x) € C, for all n € N. This means that x € s-Li, C,, and hence we have
Cy C s-Li, C,. Next, we show that w-Ls, C, C Cy. For any z € w-Ls, C,, there
exists {z;} such that {z;} converges weakly to z as i — co and that z; € C,, for
each i € N. Using Proposition 2.1, we have

(J(z) = J(IIi(2)),1i(2) — z;) = 0. (4.6)

Since E has a Fréchet differentiable norm, the duality mapping J is strongly con-
tinuous. Thus we get

(J(2) =] (Ig(2)), o (2) — 2) = 0. (4.7)
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By the strict convexity of E, J is strictly monotone. Hence z = Ily(z) € Cy. This
means that w-Ls, C, C Cy, and consequently, we obtain Cy = M-lim,.. C,. O

5. Convergence of resolvents for a sequence of maximal
monotone operators

In this section, we consider a set-valued mapping called monotone operator. A
set-valued mapping T from X into Y is denotedby T: X =23 Y.

Let E be a real Banach space. A set-valued mapping A : E = E* is called a
monotone operator if, for any x, y € E and x*, y* € E* with x* € Ax and y* €
Ay,

(x* —y*,x—y)=0. (5.1)

If a monotone operator A has no monotone extension, then A is said to be max-
imal monotone.

For a maximal monotone operator A and a real number A with 0 < A < o0, we
define a set-valued mapping /) : E* = E by

Ji:E* 5 x* — (J+AA) 'x* CE. (5.2)

It is known that J is a single-valued mapping if E is reflexive, smooth, and
strictly convex.
First we show the following lemma.

LemMa 5.1. Let E be a reflexive Banach space and C a nonempty closed convex
subset of E. Let {x,} be a sequence of E converging weakly to xy € C. For a sequence
{Cu} of nonempty closed convex subsets of E such that M-lim,,_... C, = C, it follows
that

C = M-limco({x,} UC,). (5.3)

n—oo

Proof. We write D, = co({x,} UC,) for all n € N. Fix y € w-Ls, D,.. Then there
exist {y; € Dy, }, {zi € Cy,}, and {a;} C [0, 1] such that

yi=aixy +(1-a)zs  w-limy; = y;

i—o00

w—limz,' =z € C; 1imoci =ap € [0,1].
i—00

1— 00

(5.4)
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Hence, we have y = apxo + (1 — ag)z9 € C and therefore w-Ls, D, C C. On the
other hand, it is obvious that

C C s-LiC, C s-LiD,,. (5.5)

Thus we have C = M-lim,,_ o D,, = M-lim,,_., co({x,} U C,). O

THEOREM 5.2. Let E be a reflexive, smooth, and strictly convex Banach space and
let {Ag, A1, Ay, ...} be a sequence of maximal monotone operators from E into E*.
Suppose that M-lim,,_. A;'0 = A;'0 # @ and that

w-LsA; ly¥ c A;'0 (5.6)

for any {y}} C E*, converging strongly to 0. For x* € E* and {A,} €]0, oo with
Ay — oo, define a single-valued mapping J), (x*) = (J + M,A,)"'x*. Then J), x*

converges weakly to my 1 x*.
0

Proof. For the sake of simplicity, we write x,, = J), x* for each n € N. Since J(x,,) +
AnAnxy D x*, there exists w; € A,x, such that

J(xn) +Aw) =x* VneN (5.7)

From the assumption, there exists a bounded sequence {u,} such thatu, € A;'0
for each n € N. Since A,, is monotone, we have

(J(xn) =T (t4n) X0 — up) = (x* — AWy —J (thn), Xn — thn)
= <x* _](“n)’xn_un> _/ln<W;,kan_un> (5.8)

< {x™ = J(un), xn — un).
Thus we get
a7 = 211l e+ eea [ = ™ =T @) [l [+l (5.9)

Suppose that {x,} is not bounded. Then there exists a subsequence {x,,} of {x,}
such that [|x,, || — co. It follows that

2
[l ]|

||‘x1’li|| 72””71,'” + ||xni||

< ||x*](u)||(1+ ”“"*‘”) (5.10)

[l

for a sufficiently large number i € N. As i — o0, we obtain +co < [[x* — J(u)|| <
+00, This is a contradiction. Hence we have that {x,} is bounded.

Fix an arbitrary subsequence {x,,} of {x,} converging weakly to xy. Since
J(xn,) + A, An X,  x*, we have

x*—](m))_

Xn, eA;}( 1 (5.11)
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Using (5.6), we get

xo = w-limx,, € M-lim A, 0. (5.12)
1— 00 n—o0o

Let C; = co({xy,} U A;}O) for each i € N. Then Lemma 5.1 implies that
Ap'0 = M-lim;_« A,;}0 = M-lim;_ C;. Now we fix i € N. For any v € C;, there
exist « € [0,1] and u € A;}O such that v = ax,, + (1 — a)u. Since A,, is mono-
tone, we obtain

<x* —J (%)

—0,xp, — u> > 0. (5.13)
An;

This implies that (x* — J(xy,), x,, — v) = 0. Hence, we have x,, = né‘lx*. Using
Theorem 3.1, we obtain w-lim;_c X, = ﬂ:(;lox*. Since {xy} is an arbitrary
weakly convergent subsequence of a bounded sequence {x,}, it follows that

. " *
W—%ljl;loxn =X (5.14)

This completes the proof. O

Assuming that E has the Kadec-Klee property, we obtain a strong convergence
theorem. The proof is almost the same as the previous one.

THEOREM 5.3. Let E be a smooth Banach space and suppose that E* has a Fréchet
differentiable norm. Let { Ao, A1, A, ...}, x*, {An}, 1)), } be the same as Theorem 5.2
and suppose that (5.6) holds. Then ]y, x* converges strongly to fr;falox*.

We can apply Theorems 5.2 and 5.3 to a single maximal monotone operator

A with A710 # @. Namely, for an arbitrary sequence {y;}} of E* converging to
0, it holds that

w-LsA~ly¥ c A10. (5.15)

Indeed, for x € w-Ls, A~! y, there exists a sequence {x;} such that x; € A™! Vo
for each i € N and that x; converges weakly to x. For any v € E and v* € E*
satisfying v* € Av, we have

(Vo —=v* %, —v) = 0. (5.16)
As i — oo, it follows that

0—v*,x—v) =0 (5.17)

and hence x € A~10.
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