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This paper is concerned with existence results for inequality problems of type
FO(u;v) + ¥ (u3v) = 0, for all v € X, where X is a Banach space, F: X — R is
locally Lipschitz, and ¥ : X — (—co + 0] is proper, convex, and lower semicon-
tinuous. Here F° stands for the generalized directional derivative of F and ¥’
denotes the directional derivative of W. The applications we consider focus on
the variational-hemivariational inequalities involving the p-Laplacian operator.

1. Introduction

The paper deals with nonlinear inequality problems of type
Folusv—u)+h(v) —h(u) =0, VvecC (1.1)

where FO stands for the generalized directional derivative of a locally Lipschitz
functional F (in the sense of Clarke [5]), & is a convex, lower semicontinuous
(in short, Ls.c.), and proper function, and C is a nonempty, closed, and convex
subset of a Banach space X. It is clear that in problem (1.1) we can put h+I¢
in place of h, where I¢ denotes the indicator function of the set C, to give the
formulation with v arbitrary in X. However, we keep the statement (1.1) for
allowing various possible choices separately on the data  and C.

The type of problem stated in (1.1) fits in the framework of the nonsmooth
critical point theory developed by Motreanu and Panagiotopoulos [9], which is
constructed for the nonsmooth functionals having the form

O=V+F (1.2)
with ¥ convex, Ls.c., and proper, and F locally Lipschitz. Namely, a solution of
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602  Existence results for inequality problems

(1.1) means, in fact, a critical point of the associated nonsmooth functional (1.2)
with¥ = h+Ic.

The existence results in the present paper extend different theorems in the
smooth and nonsmooth variational analyses (see, for comparison, Ambrosetti
and Rabinowitz [2], Chang [4], Dinca et al. [8], Motreanu and Panagiotopoulos
[9], Rabinowitz [10], and Szulkin [11]). In this respect, we solve problems of

type
Folus;v) + WV (wiv) =0, VvelX, (1.3)

where W stands for the directional derivative of a convex, proper, ls.c. func-
tional ¥. Consequently, we are able to handle the abstract hemivariational in-
equality problem

Fo(wv —u) + (do(u),v—u) =0, VveC, (1.4)

where ¢ is a convex, Gateaux differentiable functional and dg is its differential.
In particular, this contains the differential inclusion problem

de(u) € o(—F)(u) (1.5)

which we considered in our previous paper [8].

The rest of the paper is organized as follows. In Section 2, we briefly recall sev-
eral elements of nonsmooth critical point theory developed by Motreanu and
Panagiotopoulos [9]. In Section 3, we study some general inequality problems
in relation with the nonsmooth critical point theory. Section 4 presents applica-
tions for different discontinuous boundary value problems with p-Laplacian.

2. Notions and preliminary results

Let X be a real Banach space and X* its dual. The generalized directional deriv-
ative of a locally Lipschitz function F: X — R at u € X in the direction v € X is
defined by

F°(u;v) = limsup Flw+tv) = F(w) F(W).

w—u, N0 t

(2.1)

The generalized gradient (in the sense of Clarke [5]) of F at u € X is defined
to be the subset of X* given by

OF(u) = {n € X* : F(wsv) = (,v), Vv € X}, (2.2)

where (-, -) stands for the duality pairing between X* and X.

Let ¥: X — (—o0,+00] be a proper (i.e., D(¥) := {u € X : ¥(u) < +o} + &),
convex, and Ls.c. function and let F : X — R be locally Lipschitz.

We define the functional ® : X — (—co,+c0] by ® = ¥ +F.



George Dincd etal. 603

Definition 2.1 Motreanu and Panagiotopoulos [9]. An element u € X is called
critical point of the functional @ if this inequality holds

Flusv—u)+¥Y»)—¥Y(u) =0, VveX (2.3)

Definition 2.2 Motreanu and Panagiotopoulos [9]. The functional @ is said to
satisfy the Palais-Smale condition if every sequence {u,} C X for which ®(u,) is
bounded and

Fo>upsv —up) +¥(v) =V (un) = —&i||v—ual, VveX, (2.4)
for a sequence {¢,} C R* with ¢, — 0, contains a strongly convergent subse-
quence in X.

For the proof of the next theorem, we refer the reader to [8, Proposition 2.1]
and [9, Corollary 3.2] (also see [8, Theorem 2.2]).

TueoreM 2.3. (i) Ifu € X is a local minimum for ®, then u is a critical point of ©.
(ii) If O satisfies the Palais-Smale condition and there exist a number p > 0 and
a point e € X with |lell > p such that

”irHlf D(v) > D(0) = D(e), (2.5)
vi=p

then @ has a nontrivial critical point.

Remark 2.4. Definitions 2.1 and 2.2 recover and unify the nonsmooth critical
point theories (and a fortiori the smooth critical point theory, see, e.g., Am-
brosetti and Rabinowitz [2] and Rabinowitz [10]) due to Chang [4] and Szulkin
[11]. Precisely, if ¥ = 0, Definitions 2.1 and 2.2 reduce to the corresponding defi-
nitions of Chang [4], while if F € C'(X, R), then Definitions 2.1 and 2.2 coincide
with those in Szulkin [11].

3. Critical points as solutions of inequality problems

Throughout this section, (X, || - [Ix) is a real reflexive Banach space, compactly
embedded in the real Banach space (Z, || - l|z). Let ¥ : Z — R be a locally Lips-
chitz function and let ¥ : X — (—oo0, +00] be convex, L.s.c., and proper.

We consider the inequality problem:

Find u € D(¥) such that (OJIX)O(u;v) +¥ (u;v) =0, Vvex (3.1)

where (F|x)? denotes the generalized directional derivative of the restriction
% |x while ¥’ (u;v) is the directional derivative of the convex function ¥ at u in
the direction v (which is known to exist). Note that if the Gateaux differential
d¥(u) of ¥ at u € D(¥) exists, then (d¥(u),v) =¥ (u;v), forallv € X.
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ProrosriTioN 3.1. Each solution of problem (3.1) solves the problem:

Find u € D(Y) such that F°(u;v) + V' (u3v) =0, VveX. (3.2)
If, in addition to our assumptions, X is densely embedded in Z, then problems (3.1)
and (3.2) are equivalent.

Proof. For u,v € X, the inequality below holds
(Flx) (wv) < F(uv), (3.3)

This becomes an equality if X is continuously and densely embedded in Z (see
[5, pages 46—47] and [9, pages 10-12]). O

Our approach for studying problem (3.1) is variational and relies on the use
of the functional

O=Y+F|x:X — (—o00,+0] (3.4)

which is clearly of the form required in the previous section with F = &|.
The next result points out the relationship between the critical points of the
functional ® in (3.4) and the solutions of problem (3.1).

ProrosritioN 3.2. (i) If u € X is a critical point of the functional ® in (3.4), that
is,

(Flx) (v — ) +¥(v) —¥(u) 20, VveX (3.5)

then u is a solution of problem (3.1).

(ii) Conversely, assume that u € X is a solution of problem (3.1). If either \V is
Gateaux differentiable at u or ¥ is continuous at u, then u is a critical point of @,
that is, relation (3.5) holds.

Proof. (i) As¥ is proper, (3.5) obviously implies that u € D(W¥). For an arbitrary
we X, wesetv=u+tw,t>0,in (3.5). Dividing by t and then letting ¢ — 0%,
we arrive at the conclusion that u solves problem (3.1).

(ii) Let u € D(V¥) be a solution of problem (3.1). If ¥ is Gateaux differentiable
at u, then

Y(v) —¥(u) = (d¥(u),v—u) =¥ (wv-—u), VveX (3.6)

which leads to (3.5).
If ¥ is continuous at u, then a standard result of convex analysis (see Barbu
and Precupanu [3, page 106]) allows to write

¥ (u;v) = max {(x*,v) : x* € 0¥(u)}, VveX. (3.7)

Using the definition of the subdifferential 0¥ (u), we obtain (3.5). O
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Remark 3.3. In view of Proposition 3.2(i), each result stating the existence of
critical points for @ in (3.4) asserts a fortiori existence of solutions to problem
(3.1).

TaEOREM 3.4. If O is coercive on X, that is,
D(u) — +oo  as|lullx — +oo, (3.8)

then © has a critical point.

Proof. The compact embedding of X into Z implies that &|x is weakly con-
tinuous. We infer that @ is sequentially weakly Ls.c. on X. Then, by standard
theory, ® is bounded from below and attains its infimum at some u € X. From
Theorem 2.3(i), u is a critical point of ®. |

Towards the application of Theorem 2.3(ii) to the functional ®, we have to
know when @ satisfies the Palais-Smale condition. The following lemma pro-
vides a useful sufficient condition that improves the usual results based on the
celebrated hypothesis (ps) in [2] or (p4) in [10].

LEMMA 3.5. Assume, in addition, that ¥ and F, entering the expression of @ in
(3.4), satisfy the following hypotheses:

(H1) D(¥) is a cone and there exist constants ag, a1, bg,b1 =0, « >0, and 0 > 1
such that

Y(u) — a¥ (usu) = agllully —a;, VYue DY), (3.9)

F(u) — a(FIx) (wsu) = ~bollul§ — b, Vue DY), (3.10)
ap>bo+a ifo=1, ap>by ifo>1; (3.11)

(H2) the following condition of (S+) type is satisfied: if {uy} is a sequence in D(V)

provided u, — u weakly in X and limsup,,_ (=¥ (un;u — u,)) <0, then
u, — u strongly in X.

Then the functional © satisfies the Palais-Smale condition in the sense of
Definition 2.2.

Proof. Let {u,} be a sequence in X for which there is a constant M > 0 with
|®(u,) | <M, Vn=>1, (3.12)

and inequality (2.4) holds for F = &|x and a sequence ¢, — 07. By (3.12), each

Uy is in D(¥). For t >0, set v = (1 + t)u, in (2.4) with F = F|x. Dividing by ¢

and then letting ¢ \ 0, one obtains that

Y (upsuy,) + (@Ix)o(un;un) > —gyllunlly, Vn=1 (3.13)
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Inequalities (3.12) and (3.13) ensure that for » sufficiently large, one has

M+ allug|ly = ¥ (tn) + F (un) + oen|unl |5

0 (3.14)
> W (u,) — ¥ (upstn) + [F(un) — a(Flx) (tnsun)].
Using (3.9) and (3.10), we find that
M+ alun|lx = (a0 — bo)||uall% — a1 — br. (3.15)

Then (3.11) and (3.15) show that {u,} is bounded in X. By the compactness of
the embedding of X into Z, the sequence {u,} contains a subsequence, again
denoted by {u,} such that

u, — u  weaklyin X, (3.16)
u, — u strongly in Z, (3.17)

for some u € X. Now put v = u, + t(u — uy), t >0, in (2.4) with F = &/|x. Similar
to (3.13), we derive that

W (st — uy) + (@IX)O(un;u— Un) = —enl|lu—unlly, Vnx=1 (3.18)
This implies
W (ups v — ) + FO(usu— up) = —enllu—unlly, Vn=1. (3.19)

As {u,} is bounded in X, we infer from (3.17) and the upper semicontinuity of
F that

liminfV¥' (u,;u —u,) = 0. (3.20)

n— 0

Taking into account (3.16) and (3.20), assumption (H2) completes the proof.
a

Remark 3.6. IfW’ (u; -) is homogeneous, for all u € D(¥), then (H2) becomes the
usual form of the (S.) condition: if {u,} is a sequence in D(¥) provided u,, — u
weakly in X and limsup,,_ , ¥’ (un; 4, — 1) <0, then u, — u strongly in X.

We can now state the following result.

THEOREM 3.7. Let ® be defined in (3.4) and assume Lemma 3.5(H1) and (H2)
together with the following hypotheses.
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(H3) There exists an element u € D(W¥) such that

ay+by < (ap — bo) lull%, (3.21)
O(u) <0. (3.22)

(H4) There exists a constant p > 0 such that

| 1”nf D(v) > D(0). (3.23)
vilx=p

Then @ has a nontrivial critical point u € X. In particular, problem (3.1) has a
nontrivial solution.

Proof. We apply Theorem 2.3(ii) to the functional @ in (3.4). Lemma 3.5 guar-
antees that @ satisfies the Palais-Smale condition. It remains to check that @
verifies condition (2.5) with [[e||x > p. To this end, we prove that one can choose
e = tu (with % entering (H3)) if t > 0 is sufficiently large.

First, note that % # 0. Indeed, from (3.9), (3.10), and (3.21), we have

O@) — a[¥ @wa) + (Flx) @) = 0, (3.24)

which leads to a contradiction with (3.22) if 7 = 0.

We observe that, due to the fact that = € D(W¥) and since D(V¥) is a cone,
the convex function s — W(s#) is locally Lipschitz on (0, +). A straightforward
computation shows that

05 (s Vo D(s1)) = 9, (s~ V¥V (sw) + s V*F |x (s10))
c —és_l/“_l\l’(sﬁ) sV, (W (sit))

+ (— és—l/a_lgz(su) +5—1/a(a(9«*|x)(sﬁ),a)), Vs>0,
(3.25)

where the notation o, stands for the generalized gradient with respect to s. For
an arbitrary ¢ > 1, Lebourg’s mean value theorem yields some 7 = 7(t) € (1,¢)
such that
VoD () — d(u) = E(t- 1), (3.26)
where & € 9,(s™*®(su)) |s,. This implies
V() - (@) € (1= DT (a7 (V(sm) |y — (7))

+ (= F(ra) + a(d(Flx) (), 711) ) ].
(3.27)
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Then, taking into account the convexity of s — ¥(si), the regularity property of
a convex function (see Clarke [5, pages 39—40]) and relations (3.9) and (3.10),
we get that

o (1) < /2 D(@) + itl/"‘(t D) Ve [ (W (2 1) — P (r70))
+ (= F(17) + a(F|x) (v 77)) |

1
< (@) + (= 1T [ = (a0~ bo) TG e+ b, Vi1

(3.28)
By (3.21) and because 7 > 1, we derive that
O(ta) < t*d(w), Vi>1. (3.29)
Then (3.29) and assumption (3.22) imply
tlﬂrio O(tu) = —oo. (3.30)
Now, by means of (3.30), we can choose ¢ > 0 sufficiently large to satisfy
tllallx > p, O(tu) < ©(0), (3.31)

for p > 0 entering (H4). If we compare (3.23) and (3.31), it is seen that the re-
quirement in (2.5) is achieved for e = fu. Theorem 2.3(ii) assures that ® in (3.4)
has a nontrivial critical point u € X. Furthermore, Remark 3.3 shows that u is a
(nontrivial) solution of problem (3.1). The proof of Theorem 3.7 is thus com-
plete. O

In the final part of this section, we are concerned with the case when
VY=Y¢:= (p+Ic, (3.32)

where C is a nonempty, closed, and convex subset of X, I denotes the indicator
function of C, and ¢ : X — R is a convex, Géiteaux differentiable functional. Note
that W¢ is convex, Ls.c., and proper and D(W¢) = C. Therefore, the functional

O=Yc+F|x, (3.33)

with & as at the beginning of this section, has the form required in (3.4).
Consider the following problem of variational-hemivariational inequality

type:

Find u € C such that (F|x)° (v — u) + (do(u),v—u) =0, VveC.
(3.34)
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Remark 3.8. (i) Taking into account that, for u € C,

(do(u),v) ifu+tve Cforsomete (0,1],

. (3.35)
+o0 otherwise,

Ye(uv) = {

a straightforward computation shows that problem (3.34) is equivalent to the
following problem of type (3.1):

Find u € D(¥¢) = C such that (@IX)O(u;v) +¥e(wsv) =0, VveX. (3.36)

(ii) If C is a nonempty, closed, and convex cone, then each solution of prob-
lem (3.34) solves also the problem:

Find u € C such that (@IX)O(u;v) +{de(u),v) =0, VveC (3.37)
ProrosritioN 3.9. Ifu € X is a critical point of ® in (3.33) and (3.32), then u is a

solution of problem (3.34).

Proof. Viewing Remark 3.8(i), the conclusion follows from Proposition 3.2(i).
a

TueoreM 3.10. If the functional ® in (3.33) and (3.32) is coercive on X, then
problem (3.34) has a solution.

Proof. Tt is a direct consequence of Theorem 3.4 and Proposition 3.9. O

THEOREM 3.11. For the defining ®© data entering (3.33) and (3.32), we assume the
following.

(H1") The set C is a nonempty, closed, and convex cone in X and there exist con-
stants dg, ay, bo, b1 = 0, a >0, and o > 1 such that one has (3.11),

o(u) —alde(u),u) = aollully —a1, YuecC (3.38)
F(u) - a(F|x) () = —bollulg — by, VueC. (3.39)

(H2") The following condition of (S+) type is satisfied: if {u,} is a sequence in C
provided u, — u weakly in X and limsup,,_ . (do(u,), u, — u) <0, then
u, — u strongly in X.

(H3") There exists an element u € C such that (3.21) holds with ay, a1, by, and by
from (H1") together with

F(u) + () <0. (3.40)
(H4") There exists a constant p > 0 such that

HVian (F(v)+ o)) >F(0)+¢(0). (3.41)
ved
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Then ® in (3.33) and (3.32) has a nontrivial critical point u € C. In particular,
problem (3.34) has a nontrivial solution.

Proof. Note that assumptions (H1"), (H2"), (H3"), and (H4") are just (H1), (H2),
(H3), and (H4), respectively, in the case where D(¥) = C is a closed convex cone
and V¥ is given by (3.32). Thus it suffices to apply Theorem 3.7 and Proposition
3.9 to the functional @ in (3.33) and (3.32). O

Remark 3.12. Tt is worth pointing out that if we take C = X, then problem (3.34)
becomes

Find u € X, such that do(u) € o( — F|x) (u). (3.42)

Thus, [8, Theorems 3.2 and 3.4] are immediate consequences of Theorems 3.10
and 3.11, respectively.

4. Applications to nonsmooth boundary value problems

In order to illustrate how the abstract results of Section 3 can be applied, we
consider a concrete problem of type (3.34). To this end, let Q be a bounded
domain in RN, N > 1, with Lipschitz-continuous boundary I' = 9Q) and let w C
Q be a measurable set. Given p € (1, ®), the Sobolev space W#(Q) is endowed
with its usual norm (see [1, page 44]).

We denote

Wo = {ve W"(Q):vIr =0},

{ve WI’P(Q):JQV=O}, (4.1)

W, = {v € W1 :v|r = constant}.

Wi

In the sequel, W will stand for any of the above (closed) subspaces Wy, W1, and
W, of WL2(Q). By the Poincaré-Wirtinger inequality, the functional

1/p
W3 v vl = (JQIVVIP> (4.2)
is a norm on W, equivalent to the induced norm from W'?(Q). The dual space
W* is considered endowed with the dual norm of || - [[1,p.
Now, we define the p-Laplacian operator —A, : W — W* by
(= ADpu,v) = J IVulP2VuVv, VYuveW. (4.3)
Q

Arguments similar to those in [7] show that the convex functional ¢ : W — R
defined by

1
o(u) = Enun‘l’,p, Vuew, (4.4)



George Dincd etal. 611

is continuously differentiable on W and its differential is — A, that is,
(do(u),v) = (= Apu,v), YuveW. (4.5)

Moreover, as dg is the duality mapping on W, corresponding to the gauge func-
tion ¢ — tP~! and because W is uniformly convex, dg satisfies condition (S,)
(see Remark 3.6).

If p* stands for the Sobolev critical exponent, that is,

Np .

—— ifp<N,

pr={N-p "F5 (46)
+00 ifp=N,

then, for any fixed q € (1, p*), by the Rellich-Kondrachov theorem, the embed-
ding W — L1(Q)) is compact (the space L1(Q)) is understood with its usual norm
- Tlog)-

Thqe results in Section 3 will be applied by taking X = W, Z = L1(Q2), and ¢
defined in (4.4).

Further, to complete the setting, let a function g: Q X R — R be measurable
and satisfy the growth condition

lg(x,s)| <cilslf'+¢, forae.xeQ, VseR, (4.7)
where ¢}, ¢; = 0 are constants. For a.e. x € Q and all s € R, we put

,s) = li infg(x, 1),
806 = I grjngster

g(x,s) = lim esssupg(x, t). (4.8)
0=0% |1—s<5
The following condition will be invoked below:
g and g are N-measurable (4.9)

(recall that a function h: Q X R — R is called N-measurable if h(-,u(-)): Q — R
is measurable whenever u : ) — R is measurable).
By (4.7), the primitive G: Q X R — R of function g:

G(x,s) = J glx, t)dt forae xeQ, VseR, (4.10)
0

satisfies

|G(x,s)| < %|s|q+czls| forae.xeQ, VseR. (4.11)
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Taking into account (4.11), we define the functional % : L1(Q)) — R by putting
Gu) = - | Glxw, VuelLiQ) (4.12)
Q

It is known (see, e.g., Chang [4]) that 4 is Lipschitz continuous on the bounded
subsets of L1(Q)). At this stage, we introduce the closed convex cone K in W:

K={ueW:u(x)=0forae x € w} (4.13)
and we formulate the problem:

Find u € K such that (]w) (v — u) + ( — Apu,v—u) =0, Vvek.
(4.14)

Thus, the functional framework in Section 3 is now accomplished by taking & =
% and C = K. Clearly, problem (4.14) is of the same type as (3.34). Before passing
on to obtaining existence results for problem (4.14), it should be noticed that the
nonsmooth functional ® = ®g : W — (—o0,+00], defined by

®K=(g|w+(p+IK (4.15)

with ¢ in (4.4), Ix the indicator function of the cone K in (4.13), has the form
required in (3.33) and (3.32).

We also need to invoke the following constant, depending on the cone K in
the Banach space W:

v,
/\1 ZALKZZ inf I; :ve K\ {0} ¢. (4.16)
Iviif,
Note that
-1/
Ivllop <Ay vl  Vvek (4.17)

THEOREM 4.1. Assume (4.7) together with
(i) limsup,_._, pG(x,s)/Is|P < Ay uniformly for a.e. x € Q\ w;
(ii) limsup,_, , pG(x,s)/sP < Ay uniformly for a.e. x € Q.
Then problem (4.14) has a solution.
Proof. By Theorem 3.10, it suffices to show that the functional ®x in (4.15) is

coercive on W.
From (i) and (ii), there are numbers ¢ € (0,A;) and sy > 0 such that

Al—s
p

Al—S

G(x,s) < [s|P forae.x€Q\w, Vs< —sp, (4.18)

G(x,s) < s fora.e.x€Q, Vs>s. (4.19)
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Using (4.11), we can find a positive constant k = k(sp) with
|G(x,s)| <k forae.xe€Q, Vse [ —sg,5] (4.20)
For u € K, we put
Q_:={xeQ:u<0}, Q,:=0\Q_. (4.21)

Notice that by (4.13) we have Q_ C Q \ w. Then by (4.18) and (4.20), it follows
that

J G(x,u) = J G(x,u) +J G(x,u)
Q- [u<—so] [—so=<u<0]

R (4.22)
R MR
ol
On the other hand, by (4.19) and (4.20), one sees that
G(x,u) = J G(x,u) + J G(x,u)
Q4 [u>s0] [0<u=<so]
R (4.23)
<TE [ ekial
p .
Combining (4.22) and (4.23), the following estimate holds:
/\1 —& P
G(x,u) <2k|Q] + HuHO,p, YueK. (4.24)
Q

Then, from (4.15), it follows that

1 P J' 1 P Al—e P
O (u) = —|lu —| Gx,u) = —|lully, - ully , —2k|Q|, YueW.
) =Sl | Geow = Slulf, = = ulf, - 2k10
(4.25)
By (4.17), we infer
(I)K(u)zp%llull‘ip—ZkIQI, Vuew, (4.26)
1
showing that
lim Ok (u) = +oo. (4.27)
luallp— o0 0

THEOREM 4.2. Assume (4.7), (4.9), and int(Q\ w) # D if W = Wy or W = W,
together with

(i) limsup,,., pG(x,s)/Is|P < Ay uniformly for a.e. x € Q\ w;
(ii) limsup,. , pG(x,s)/sP < Ay uniformly for a.e. x € Q;
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and there are numbers 0 > p and sy > 0 such that

(iii) 0 < 0G(x,s) < sg(x,s) fora.e. x € Q\ w, Vs < —s,
(iv) 0 < 0G(x,s) < sg(x,s) for a.e. x € Q, Vs = 5.

Then problem (4.14) has a nontrivial solution.

Proof. We will apply Theorem 3.11. Without loss of generality, we may suppose
in (4.7) that g € (p, p*). For u € K (see (4.13)), the sets Q_ and Q, will be
considered as being defined by (4.21), and recall that Q_ € O\ w.

First we check (H4"). By (i) and (ii), one can find numbers ¢ € (0,1;) and
do > 0 such that

G(x,s) < h—e Is|P fora.e.x € Q\w, Vse [ —¥80,0), (4.28)

G(x,s) < h—e Is|P fora.e.x€Q, Vse (0,8]. (4.29)

From (4.11), there exists a constant ¢ = ¢(§y) with
G(x,s) <cls|1 fora.e.x € Q, V|s| > . (4.30)

For an arbitrary u € K, by (4.28) and (4.30) we have

G(x,u) = J G(x,u) + J G(x,u)
Q- /\Q,_m[e—aogu] [u<—08y] (4-31)
< b J |u|P+cJ ).
p Q- Q-
Similarly, (4.29) and (4.30) imply
J G(x,u) = J G(x,u) +J G(x,u)
(o Qinlu<dy] [u>dp]
R (4.32)
sl—sj |u|P+cJ ).
p Q. Q,
Then, combining (4.31) and (4.32), we infer
[ Gl < 2 il + lull, (433)

Taking into account the continuity of the embedding W — L1(Q)), from (4.33)
and (4.17) we get, for a constant ¢, the relations

G(u) + plu) = jG<x,u>+—||u||1p_ gl el >0 s

=4(0) +¢(0)
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provided u € K and |[lull,, = p >0 is sufficiently small. Therefore, Theorem
3.11(H4') is satisfied.
To check hypothesis (H1"), we proceed as follows. From (iv), we have

G(x,s)
s

< %g(x, s) forae.xe ), Vs> s (4.35)

For a.e. x € (), the primitive G(x,s) as a function of s being continuous (even
locally Lipschitz), (4.35) implies

G(x, 5)
s

(x, s) fora.e.x e Q, Vs>s. (4.36)

CDI>—‘

Similarly, by (iii), we get

G(x,s) < %sg(x, s) forae.xeQ\w, Vs<—s. (4.37)

Recall that under the assumptions (4.7) and (4.9), for u € L1(Q2), the following
inclusion holds (see [4, Theorem 2.1]):

(=9 (u) C [glx,u),gxu)] forae xeQ. (4.38)

Then, from (4.20), (4.36), (4.37), (4.38), and (4.7), for an arbitrary u € K, we
obtain

Glx,u) = j Glx,u) +[ Glx,u) +J Glx,u)
[u<—so] [u>s0] [=so=<u=<so]
J ug(x,u)]+k|Q|
[u<—so] [u>s] —

J uw+J uw] +k|Q|
[u>s0]

J uw J uw] +k|Q|

Q [lul<so]

L} uwtko, Vwed(—G)u),

&@
Il
[}

IA IA

IA

DI~ CD\'—' CDl'—‘ CDI'—'

(4.39)

for a constant ko > 0. As 9(=%9)(u) = —0%(u), it follows that

Gu) > J uw—ko, Vwe dGw). (4.40)

.
0
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Taking the supremum over w € 09(u) in (4.40), we deduce
G(u) - %(‘QIW)O(u;u) >k, Vuek (4.41)

By virtue of (4.4) and (4.5), one has

1

1 1
plu) ~ 5 (dp(u) ) = (E — )l vuew (4.42)

From (4.41) and (4.42), it turns out that Theorem 3.11(H1’) is fulfilled with

a =0, og=p, b():O, bliko.
(4.43)

1
9)

o= -, ap =

0

=

To check condition Theorem 3.11(H3’), we first note that, on the basis of (i), (ii)
and arguing as in the proof of [7, Proposition 7], one has
G(x,t) > yl(x)te fora.e.x € Q, Vt> s, (4.44)
G(x,t) > yz(x)ltle fora.e.x € O\ w, Vi< —sp, (4.45)
where y1,y2 € L%(Q), y1(x) >0 for a.e. x € ), and y,(x) >0 fora.e. x € Q\ w.
Since, by assumption, int(Q \ w) # @ if W = W, or W = W, there is some & €

K such that |Q(u)] >0, where Q%) = {x € Q: % > sp}. For t > 1, using (4.20),
(4.44), (4.45), and the inclusion [tz < —sp] C Q \ w, we estimate —% as follows:

() = J

[tl2]>s0]

Glx, t7) + f Glx, t7)

[tlul<so]
ZJ Glx, 1) — k||
[tlul>so]

- [ G(x,ta)+j G, 1) — k|Q) (4.46)
[tu>so] [tu<—so]

>0y oyl |-k
Qu) [ttu<—so]
ztf’f n(E — K| Ql.

Q@)

Therefore,

- - 9 g P p
G(tu) + o(tu) < —t y1(x0)u” + Ellu”l,p'f'le', Vt=>1. (4.47)

Q@)

Taking into account 6 > p, it follows that Ok (1) — —o0 as t — +oo. This estab-
lishes (H3") with % replaced by t%, for some ¢ > 1 sufficiently large.
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Finally, hypothesis (H2") is also satisfied because, as we have already noted,

the duality mapping d¢ verifies condition (S ).
The application of Theorem 3.11 concludes the proof. O

Remark 4.3. If w = @, then K = W. Taking into account Remark 3.12, in this
case, problem (4.14) becomes

Find u € W such that — Apyu € 9( —9|w) (). (4.48)

This means that for u € W, it corresponds h € d(—%|w)(u) C (=9)(u) C
L7 (Q), with 1/q+1/q’ = 1, such that u satisfies the variational equality

J (IVulP?VuVv+hv) =0, VveWw. (4.49)
Q

Assuming (4.7) and (4.9), inclusion (4.38) and equality (4.49) show that each so-
lution of problem (4.48) for W = W, also solves the differential inclusion prob-
lem:

Findue W, = WS’P(Q) such that — Ayu € [g(x,u),g(x,u)] fora.e xe Q.
- (4.50)

In the case W = Wy, denoting by w = (1/|Q)]) [, w the mean value of any w €
L'(Q), relation (4.49) is expressed as follows:

JQ(IVuIP*2VuVW+h(w—W)) =0, Vwe Whr(Q), (4.51)
or, equivalently,

JQ[|VM|P_2VMVW+(]1—;1\)W) _0, VYweW'(Q).  (452)
Thus, if W = Wy, with u € W in (4.48), the following problem is solved:

Find u € Wy such that —A,u € [(g(x, u) —§T\u) glx,u)

- (4.53)
-8, u)] forae xe€Q.
A problem similar to (4.53) is solved when W = W, in (4.48).
COROLLARY 4.4 (see [8, Theorem 5.1]). Assume (4.7), (4.9), and
G(x, )
limsup % <AMw, wuniformly fora.e. x € Q. (4.54)

|s| —+o0

Then problem (4.50) has a solution.
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Proof. Theorem 4.1 applies with w = @. O

COROLLARY 4.5 (see [6, Theorem 3.6] and [8, Theorem 5.2]). Assume (4.7) and
(4.9) together with

pGl(x,s)

limsup BE

s—0

<Ayw, uniformly fora.e. x € Q. (4.55)

If there are numbers 6 > p and sy > 0 such that
0<0G(x,s) <sg(x,s) fora.e xeQ, Vsl = s, (4.56)

then problem (4.50) has a nontrivial solution.

Proof. We apply Theorem 4.2 with w = &. O
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