ON A TWO-POINT BOUNDARY VALUE PROBLEM
FOR SECOND-ORDER DIFFERENTIAL INCLUSIONS
ON RIEMANNIAN MANIFOLDS

YURI E. GLIKLIKH AND ANDREI V. OBUKHOVSKII

Received 27 August 2002

We consider second-order differential inclusions on a Riemannian manifold with
lower semicontinuous right-hand sides. Several existence theorems for solutions
of two-point boundary value problem are proved to be interpreted as control-
lability of special mechanical systems with control on nonlinear configuration
spaces. As an application, a statement of controllability under extreme values of
controlling force is obtained.

1. Introduction and motivation

The main object of research in this paper is a mechanical system with set-valued
force given in geometrically invariant terms. This language allows us to con-
sider, from unique mathematical point of view, a broad class of real mechanical
systems including those on curved nonlinear configuration spaces, forces with
control, and so forth. First we introduce some basic notions in order to set up
the problem. Details in geometry of manifolds can be found, for example, in
[1, 4, 5], in set-valued analysis—for example, in [2, 6, 7]. Some definitions, used
here, can be also found in Section 2.

Let M be a Riemannian manifold. Recall that, this means that in any tangent
space Ty, M, the scalar product (-, ), is given and (-, -),, is smooth in m € M.
The total family of those scalar products is called a Riemannian metric. We will
omit the index m in notation of the form when it does not yield a confusion.
The norm in the tangent space, generated by the above scalar product, will be
denoted by the usual symbol || - I|.

We interpret M as the configuration space of a mechanical system. Tangent
vectors to M are interpreted as velocities. The function X : TM — TM, X (X) =
(1/2){X,X) on the phase space TM (the tangent bundle to M) is the kinetic
energy of mechanical system. The (nonautonomous) force field a(t,m, X) is a
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1-form on M that at any configuration m € M may depend on time t € R and
velocity X € T,,,M.

We assume the Riemannian manifold M to be complete. The mechanical
meaning of this assumption is that a free particle on the configuration space
M does not go to infinity in finite time. The Riemannian metric enables us to
identify differential 1-forms and vector fields on M, and henceforth, we regard
the force field as a vector field, also depending on time and velocity. Denote by
7: TM — M the natural projection, that is, (T, M) = m for any tangent space
T,uM. Thus, the vector force field can be considered asa map a: R X TM — TM
such that ra(t,m,X) =mforall t € R and (m,X) € TM.

The equation of motion for the system is Newton’s second law in the follow-
ing geometric form:

am(r) = a(t, m(t), m(t)), (1.1)
where D/dt is the covariant derivative of Levi-Civitd connection on M and « is
the vector force field (see above).

Consider a mechanical system with control. Then at any point (m, X) of phase
space and time instant t, the set F(t,m,X) C T,,M of all values of the force de-
termined by all possible values of controlling parameter is given. Thus, the tra-
jectory of such a system satisfies the following differential inclusion:

%m(r) € F(t,m(t),m(t)) (1.2)

that is a set-valued version of Newton’s law (1.1).

Definition 1.1. A C'-curve m(t), such that its derivative is absolutely continuous
and inclusion (1.2) holds for m(t) almost everywhere (a.e.), is called a solution
of inclusion (1.2).

In this paper, we investigate the two-point boundary value problem for (1.2),
that is, the existence of a solution m(t) such that for given points mg, m; € M
and time instants ty, t; the relations m(ty) = mg and m; = m; hold. If such a
trajectory exists, there exists also a curve in the domain of controlling parameter
such that using this (time-dependent) control, we can derive the trajectory to m,
at f; from my at ty. This means the controllability of the system for given iy, t,
and my, t;.

It should be pointed out that the two-point boundary value problem on
curved (nonlinear) configuration spaces (unlike that on flat linear spaces) may
not be solvable even for single-valued bounded smooth forces. We can mention,
for example, examples of systems on two-dimensional sphere from [5] where
some or all couples of antipodal points cannot be joint by a trajectory of the
system.
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We show (see Theorem 3.1) that a point m, is accessible from i, at least
within small enough time interval if m; and my are not conjugate at least along
one geodesic curve on M (notice that antipodal points on two-dimensional
sphere are conjugate along all geodesics joining them). We deal with bounded
lower semicontinuous (Isc) (or almost Isc, see Definitions 2.4 and 3.7) set-valued
forces F(t, m, X) not necessarily having convex images.

This is important for applications because of the following example of set-
valued forces of the above-mentioned sort. Consider a set-valued bounded and
Hausdorff continuous force A(t,m,X) with convex closed images. Then (see
Lemma 3.5) the set-valued force ExtA(t, m, X), sending (f,m, X) into the set of
extreme points of A(f,m, X), is Isc. Obviously, under the above assumptions on
A(t,m, X), the force ExtA(t,m,X) is bounded and may not have convex im-
ages. The solvability of the two-point boundary value problem with the force
ExtA(t,m,X) (see Theorem 3.6) means controllability of the system with force
A(t,m, X) for given points under extreme values of controlling force. This fact
cannot be covered by previous existence theorems for upper semicontinuous
forces with convex images (see, e.g., [5]).

The structure of this paper is as follows. In Section 2, we construct some spe-
cial operators of integral type, based on the use of Riemannian parallel transla-
tion, and the so-called velocity hodograph equation that form a geometric ma-
chinery for investigating the problem. In this section, we also present some facts
from set-valued analysis, applied below. Section 3 is devoted to proving the solv-
ability results for the above problem.

2. Description of the involved machinery

Let M be a complete Riemannian manifold. Consider my € M, I = [0,]] C R,
andletv:I — T,,M be a continuous curve.

THEOREM 2.1 (see [3, 5]). There exists a unique C'-curve y: I — M such that
y(0) = mg and the tangent vector y(t) is parallel to the vector v(t) € T,y,M for
everytel.

Indeed, the curve y is represented as y(t ~1(f, v(t)dr) where § is Cartan’s
development and 67! is its inverse map developlng C1 -curves from T,, M into
M (see, e.g., [1] for details).

In what follows, we denote by #v(-) the curve y constructed as above begin-
ning with v.

Consider the Banach space C°(I, T),, M) of continuous maps from I to Ty, M
and the Banach manifold C'(I, M) of C!-smooth maps from I to M. As follows
from Theorem 2.1, the operator & : C°(I, T,,, M) — C'(I, M) is well posed. If M
is a Euclidean space, then v is the primitive of v.

The mapping & is a homeomorphism between C°(I, T,,,, M) and its image
Ch, (I, M) in C'(I, M), where the manifold C}, (I, M) consists of all C'-curves y
with p(0) =
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Let m(t), where t € I and m(0) = my, be a C'-curve in M and let a(¢, m, X)
be a single-valued force field. Denote by Ta(t, m(t),71(t)) the curve in T, M
such that the vector T'a(t, m(t), m(t)) is parallel to a(t,m(t),r(t)) along m(-)
for every t (i.e., Ta(t, m(t),r(t)) is obtained by parallel translation of vectors
a(t,m(t), m(t)) along y(-) at T,,,, M).

Specity a vector C in Tj,9)M and consider the integral equation

m(t) = 9’(](: Ta(z, m(z), in(r))dr + c) 2.1)

on I = [0,/]. It is shown in [3] (see also [4, 5]) that (2.1) is the integral form of
the second Newton law (1.1), that is, its solution is the trajectory of mechanical
system with force « having the initial conditions y(0) = m, and y(0) = C.

Let m(t), t € I, be a trajectory of the mechanical system, that is, a solution of
(2.1).

Definition 2.2. The velocity hodograph of the trajectory m(t) is the curve v: I —
Ton0)M such that v(t) is parallel to ria(t) along m(-).

It is not hard to see that the velocity hodograph of a solution of (2.1) satisfies
the equation

W(t) = Lt m(u Pu(r), %yv(r)) dr+C (2.2)

It is obvious that if v is a solution of (2.2), then ¥v is a solution of (2.1), that is,
a trajectory of the mechanical system. Below we will reduce the inclusion (1.2)
to a certain integral relation similar to the velocity hodograph equation.

THEOREM 2.3. Let a point my € M be not conjugate with mg along some geodesic
of the Levi-Civitd connection on M. Then for any geodesic a(t), (a(0) = my, a(l) =
my ) along which my and m, are not conjugate, and for any number k > 0, there
exist a number L(mo, my, k, a) > 0 such that for 0 < t; < L(mg, my, k, a) and for any
curve u(t) € Uy C C°([0,t], TpuyM) (where Uy is the ball of radius k), there exists,
in a certain bounded neighbourhood of the vector t; ' a(0) € T,,, M, a unique vector
Cu € Tyu,M continuously dependent on u such that S(u+ C,)(t,) = m.

This statement is proved as [3, Theorem 1.3] and [5, Theorem 3.3].

We will also use some facts from multivalued theory. A set-valued map (or a
multimap) F from a metric space () into a metric space X is a map sending any
point w € Q to a nonempty subset F(w) C X.

Definition 2.4. A multimap F : Q — X is said to be Isc at wy € Q if for any ¢ > 0,
there exists § > 0 such that for any w belonging to §-neighbourhood of wy, the
set F(wo) is contained in the e-neighbourhood of F(w). The multimap F is called
Iscif it is Isc at any w € Q.
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Definition 2.5. A multimap F: Q — X is said to be upper semicontinuous at
wo € Q if for any ¢ > 0, there exists § > 0 such that for any w belonging to
d-neighbourhood of wy, the set F(w) is contained in the e-neighbourhood of
F(wp). The multimap F is called upper semicontinuous if it is upper semicon-
tinuous at any w € Q.

Definition 2.6. A multimap F : Q — X is called Hausdorff continuous if it is both
upper and lsc.

Definition 2.7. A selection f of the set-valued map F : Q — X is a single-valued
map f:Q — X such that f(w) € F(w) forall w € Q.

We will be interested in existence of continuous selections of set-valued maps.
Notice that if F is a Isc set-valued map of Banach spaces with closed convex
images, by famous Michael’s theorem, then it has a continuous selection; but it
is not the case if either F is not lsc or has not convex images.

Definition 2.8. Let E be a separable Banach space. A nonempty subset Jl C
L'([0,1];E) is said to be decomposable if for every f,g € M and each measur-
able subset 6 in [0, 1],

fexo+gexome €M, (2.3)
where y denotes the indicator of corresponding set.
See more details of this definition in [2, 6].

THEOREM 2.9 (Bressan and Colombo). Let (Q), d) be a separable metric space, let
X be a Banach space, and let (], A, u) be a measure space (i.e., sl is a o-algebra on
J and p is a measure on (J, )) such that p is nonatomic and u(J) = 1. Consider the
space Y = LY((J, 4, u), X) of integrable maps from (], A, u) into X. If a multimap
F: Q — Y is Isc with closed decomposable values, then F has a continuous selection.

This statement is proved, for example, as [2, Lemma 9.2].
Now, we turn back to differential inclusion (1.2). Consider the manifold M
as above.

Definition 2.10. A set-valued vector field F on M is a set-valued map F: M —
TM such that 7 o F = id, that is, 7(F(m)) = m for each m € M.

Definition 2.10 is a natural generalization of the standard definition of vector
field to set-valued case.

Obviously, F(t,m, X) in the right-hand side of (1.2) is a set-valued vector field
on M depending at each m € M on time ¢ and velocity X € T,,,M. Thus, it can
be presented asa map F: R X TM — TM such that nF(t,m,X) = mforallt € R
and (m,X) € TM.

Definition 2.11. We say that the above-mentioned set-valued vector field F(¢, m,
X) islIscifitis Isc jointly in (t,m, X) as a set-valued map F: R X TM — TM.
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3. The two-point boundary value problem

For the sake of simplicity here, we suppose that the set-valued vector field F(t,
m, X) is defined for t from a certain finite interval I = [0,]] C R.
Introduce the norm ||F (¢, m, X)|| by standard formula

|[F(tm,X)|[= sup Iyl (3.1)

yeF(t,m,X)

THEOREM 3.1. Let a point my € M be not conjugate with the point my € M along
some geodesic a(t) of the metric {,) and let the set-valued vector field F(t,m,X)
with closed images be Isc and uniformly bounded, that is, ||F(t,m,X)|| < k for a
certain k > 0 and for all t,m,X. There exists a number L(m,m,,a) such that for
any to, 0 < ty < L(mo, my, a), inclusion (1.2) has a solution m(t) such that m(0) =
mg and m(ty) = my.

Proof. Let I = [0,1]. Consider the set-valued vector field F(t, m(t), ri1(t)) defined
along the C'-curve m(t) = F(v(t)), v € C°(I, TyyM), and apply the parallel
translation along m(-) at the point my = m(0) to all the sets F(t, m(t), m(t)).
Then for any given v, we obtain the set-valued mapping of TF(¢,¥(v(-)),
(d/dt)¥(v(+))) from the segment I to T, M. O

LemMa 3.2. The set-valued mapping

d

FF(t,H’(v(-)), a9>(v(-))) (L, Ty M) X I — Ty M (3.2)

is Isc.

Proof. Since F(t, m, X) is Isc, the multimap F(t, (v(t)), (d/dt)F (v(t))) with val-
ues in TM is Isc in v as the operator & : C°(1, Ty, M) — C}, (I, M) is a home-
omorphism. Now applying the operator T, TF(t,¥(v(¢)), (d/dt)F(v(1))) is Isc
since I is continuous. O

For any given v, denote by

PFF(t,S(v(t)), %S(V(t))) _ ij(-) () e rF(t,S(v(t)), %S(v(t)))}
(3.3)

the set of all measurable selections of the set-valued mapping

l"F(t,S(v(-)), %S(v(-))) I — Ty M. (3.4)

Since the field F is bounded by k and the parallel translation preserves the norm
of vectors for all v, the curves belonging to PTF(t,S(v(t)), (d/dt)S(v(t))) are
also bounded by the same k, that is, they are integrable. Thus, the mapping
sending v € C°(I, T,,, M) to PTF(t,S(v(t)), (d/dt)S(v(t))) is a multimap from
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Co(I, TyyeM) to LY ((I, A, ), TynyM), where s is Borel o-algebra and u is the nor-
malized Lebesgue measure. We can easily show that this multimap is Isc and
that its values are decomposable. Thus from Theorem 2.9, it follows that it has a
continuous selection, denote this selection by pI'F(t, S(v(-)), (d/dt)S(v(-))).

Clearly, a sufficiently small ¢, > 0 satisfies the inequality ¢, < L(mo, my, kt,, a)
where L(mo, my, kty,a) is the number appearing in Theorem 2.3. We define the
number L(my, m1,a) as the supremum of #; such that t; < L(myg, my, kty, a).

Let ty < L(mo, m1, a). Without loss of generality, we can suppose that I = [0, ,].
Consider the single-valued map

B:C°([0,t0], TruyM) — C°([0,t0], Ty, M) (3.5)
defined by the formula
! d
By = | prE(sS0:()+C), 580 +C) ) ds, (3.6)
0

where C, is the vector from Theorem 2.3.
LemMa 3.3. The map B : C°(I, Ty,M) — C°(I, TnyM) is completely continuous.

Proof. By the construction for all v and ¢, the sets TF(t, ¥ (v(-)+C,), (d/dt)F (v(-)
+ C,)) are bounded in T,,,M by the universal constant k. Hence, all selections
PTFE(t,S(v(t) + C,), (d/dt)S(v(t) + C,)), in particular, all pT'F(¢,S(v(-) + C,),
(d/dt)S(v(-)+C,)), are bounded by the same constant. This means that all curves

Jtpl“F (s, P +GC), dis(v(-) ; Cv))ds eC(L,Ty,M)  (3.7)
0 S

are uniformly bounded and equicontinuous. Hence, B(C°(I, T,,,M)) is compact
in C(I, Ty, M).

By Theorem 2.9, B : C°(I, Tpy,M) — L*((I, 4, u), TyyM) is continuous. Since
C, continuously depends on v (see Theorem 2.3), this means that the vector

1
L IF (s, F(()+C), %S(v(-) i Cv))ds € Ty M (3.8)

is continuous in v € C°(I, T,,,, M). A very simple modification of the above ar-
guments show that for a specified t* € I, the map sending v(-) € C°(I, T,,, M)
to the restriction of pI'F(t, S(v(-) + C,), (d/dt)S(v(-) + C,)) on [0, t*] is continu-
ous as a map from C°(I, T,,,M) to L'(([0,t*], 4, ), T)u, M), hence we obtain that
the vector fot* PTE(s,F(v(+) +C,), (d/ds)S(v(+) + C,))ds is continuous jointly in
t and v for any specified t* € I.
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Thus for any ¢ >0, v € C°(I, Tyy,M), and t* € I, there exists § = (&, v,t*) >0
such that if ||v(-) — Vl(')||c°(1,Tm0M) <(1/2)6 and |t —t'| < (1/2)6,

[/ prr (s, Lt ) as

<e
Ty M

_ Jot pFF(s,S’(vl(.)), %S(Vl('))>d5

Since I is compact, for given v, we can find unique § = §(¢,v) for all ¢ € I. This
completes the proof of continuity of B : C°(I, T,,,, M) — C°(I, T,,, M). O

Denote by Uy, the ball in C°([0, ty], Ty, M) with radius kt, centered at the
origin. Since parallel translation preserves the norm of a vector, we can easily see
that B maps Uy, into itself and therefore it has a fixed point vy (-) in Uy, that is,
vo(+) = Bvo(-).

Taking into account (3.6), we can see that the equation v(-) = Bvy(+) is a
certain analogue of velocity hodograph equation (2.2). Thus, now we should
demonstrate that m(t) = S(vy(t) + Cy,) is the solution in question for (1.2). By
construction, m(0) = mg, m(ty) = my, m(t) is a C'-curve, and r(t) is absolutely
continuous. Since () is a fixed point of B,

Do(t) = pFF(t,S(vo(t) 1), %S(vo(t) ; cw,)) (3.10)

and from the definition of pT'F(t,S(vo(t) + Cy, ), (d/dt)S(vo(t) + Cy,)), it follows
that a.e.

Do) € FF(t,S(Vo(t) Gy, %S(vo(t) + Cv0)>. (3.11)

Taking into account the properties of covariant derivative and the defini-
tion of operator T, and after parallel translation of v(t) and T'F(t, S(vo(t) + Cy,),
(d/dt)S(vo(t) + Cy,)) along m(-) to the point m(t), we obtain (D/dt)r(t) and
F(t,m(t),m(t)), respectively. Thus, (D/dt)m(t) € F(t,m(t), ria(t)). This proves
Theorem 3.1.

Consider a set-valued bounded and Hausdorff continuous force A(t, m,X)
with convex closed images.

Definition 3.4. A point a in convex closed set A is called extreme if there does
not exist an open interval of straight line in A that includes a. The multimap
ExtA(t,m, X) is the set-valued map whose image at (¢, m, X) consists of extreme
points of A(t,m, X).

LemMma 3.5. For the set-valued force A(t,m,X) mentioned above, the multimap
ExtA(t,m, X) is Isc.
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Lemma 3.5 is a well-known fact of set-valued analysis. See, for example, [7,
Lemma 2.1.1] and [2, Proposition 6.2]. Notice that ExtA(t,m,X) is bounded
and definitely may not have convex images.

Consider a bounded Hausdorff continuous force field A(t, m, X) with convex
closed images on M as above. We say that a trajectory m(t) of the mechanical
system with force A(t, m, X) is governed by extreme values of controlling force if
a.e. (D/dt)m(t) belongs to ExtA(t, m(t), m(t)) (see Definition 3.4).

THEOREM 3.6. If m, is not conjugate to my along at least one geodesic, there exists
a trajectory of the mechanical system with force A(t, m, X), joining mo and m,, that
is governed by extreme values of the controlling force.

Proof. Consider the differential inclusion

%m(r) € BxtA(t, m(t), rin(t)). (3.12)

From boundedness of A(t, m, X), it follows that ExtA(¢, m, X) is bounded. Since,
by Lemma 3.5, Ext A (¢, m(t), m(t)) is Isc, Theorem 3.6 follows from Theorem 3.1.
O

Theorem 3.6 is a criterion for controllability under the extreme values of con-
trolling force.
Theorem 3.1 can be subjected to a certain generalization.

Definition 3.7. Let I = [0,1] C R. The set-valued force field F: I X TM — TM
is called almost Isc if there exists a countable sequence of disjoint compact sets
{In}, I, C I such that (i) the measure of I\ U, I, is equal to zero and (ii) the
restriction of F on each I,, X TM is Isc.

Now consider (1.2) where F is almost Isc and bounded.

CoroLLARY 3.8. The assertion of Theorem 3.1 remains true for F almost Isc and
bounded.

Corollary 3.8 follows from the fact that the set of measurable selections

PFF(t,S(v(t)), %S(v(t))) - {y:y(t) e FF(t,S(v(t)), %S(v(t)))} (3.13)

for almost Isc F is Isc (see details in [6]).

Remark 3.9. If M is a Euclidean linear space, any couple of points mg # m; are
not conjugate along the straight line joining them and we can easily see that
the number L(mqg, m, k,a) >0 from Theorem 2.3 is equal to « (see, e.g., [3, 5]
for details). Hence the number L(#1g, 1, a) from Theorem 3.1 is also equal to o,
and so Theorem 3.1 and Corollary 3.8 are valid for any couple of points mq # m;
and any 0 < £y < co.
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