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We prove the simplicity and isolation of the first eigenvalue for the problem
Apu = |ulP~u in a bounded smooth domain Q ¢ RV, with a nonlinear boundary
condition given by |Vu|P~29u/dv = A|u|P~u on the boundary of the domain.

1. Introduction

In this paper, we study the first eigenvalue for the following problem:

Apu=ulPu in Q,
(1.1)
|Vu|1’_2% =AMulP2u  on oQ.

Here Q is a bounded domain in RN with smooth boundary, A,u =
div(|[VulP=2Vu) is the p-Laplacian, and 9/dv is the outer normal derivative. In
the linear case, that is for p = 2, this eigenvalue problem is known as the Steklov
problem (see [3]).

Problems of the form (1.1) appear in a natural way when one considers the
Sobolev trace inequality. In fact, the immersion W (Q) < L?(9Q) is compact,
hence there exists a constant A; such that

v
A Pllullie o < lullwira). (1.2)

The extremals (functions where the constant is attained) are solutions of (1.1).
This Sobolev trace constant A; can be characterized as

A= inf {j |Vu|P+|u|de,f |u|P:1}, (1.3)
) Q 0Q

uewhbr(Q
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and is the first eigenvalue of (1.1) in the sense that A; <A for any other eigen-
value A.

In [13] it is proved that, there exists a sequence of eigenvalues A,, of (1.1) such
that A,, — +oo as n — +oo. This is done using standard variational arguments
together with the Sobolev trace immersion that provide the necessary compact-
ness. Indeed, for solutions of (1.1) we can understand critical points of the asso-
ciated energy functional

1 1 A
% =— YVulP + — p_Z P, 1.4
W Pjol ul +P.[Q|u| I’J‘aow| (14)

This functional ¥ is well defined and C! in W?(Q) and the usual min-max
techniques can be applied (see [13]). Also see [14] for similar results for the
p-Laplacian with Dirichlet boundary conditions.

We prove the following result.

TueoreM 1.1. The first eigenvalue A, is isolated and simple.

We remark that this theorem says that the extremals of the Sobolev trace in-
equality are unique up to multiplication by a real number. In the special case
of a ball, Q = B(0,R), our result implies that the first eigenfunction is radial. In
fact, if u; (x) is an eigenfunction associated to A; and R(x) is any rotation, then
u1(R(x)) is also an eigenfunction, by our result we have that u;(x) = u;(R(x)).
We conclude that u; must be radial. Also from our results it follows that any
other eigenvalue has nonradial eigenfunctions as they have to change sign on
the boundary (see Lemma 2.4).

The study of the eigenvalue problem when the nonlinear term is placed in the
equation, that is, when one considers a quasilinear problem of the form —A,u =
Au|P~2u with Dirichlet boundary conditions, has received considerable attention
(cf. [1, 2, 15, 14, 17], etc.).

However, nonlinear boundary conditions have only been considered in recent
years. For the Laplace operator with nonlinear boundary conditions (cf. [5, 6, 8,
16, 19]). For elliptic systems with nonlinear boundary conditions (see [11, 12]).
For previous work for the p-Laplacian with nonlinear boundary conditions of
different type see [7, 13, 18]. Also, one is led to nonlinear boundary conditions in
the study of conformal deformations on Riemannian manifolds with boundary
(cf. [4, 9, 10]).

2. Proof of the main result

In this section, we prove that the first eigenvalue A, is isolated and simple. To
clarify the exposition, we will divide the proof in several lemmas.

LemMA 2.1. Let uy be an eigenfunction with eigenvalue A1, then uy does not change
sign on Q. Moreover, if uy is C%, it does not vanish on Q.
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Proof. We have that [u] is also a minimizer of (1.3). By the maximum principle
(see [20]) we have that |u;| > 0 in Q. Assume that u; is regular and that there ex-
ists xo € 0Q such that u; (x) = 0, by the Hopf lemma (see [20]) we have that the
normal derivative has strict sign, (d|u;|/9v)(xo) < 0, but the boundary condition
imposes (9]u;|/9v)(xo) = 0, a contradiction which proves that |u;| > 0 in Q. The
result follows. O

Now we state an auxiliary lemma,

LEMMA 2.2. (a) Let p > 2, then for all §,& € RN

&7 2 &)+ pl& [P (8L & - &) + Cp) & - & 2.1)

(b) Let p < 2, then for all &,& € RN

- & - &
& 2|8 +pl& (G- 8) +Cp) s (22)
2 1 1 1,62 =Gl (|fz|+|fl|)2p
where C(p) is a constant depending only on p.
Proof. See [17]. O

LemMa 2.3. The first eigenvalue A, is simple. Let u, v be two eigenfunctions associ-
ated with Ay, then there exists ¢ such that u = cv.

Proof. By Lemma 2.1, we can assume that u, v are positive in (). We perform the
following calculations assuming that u, v are strictly positive in (), to obtain our
result we can consider u + ¢ and v+ € and let ¢ — 0 at the end as in [17]. There-
fore, we can take 17, = (uf —v?)/uP~! and 1, = (v? — uP)/vP~! as test functions in
the weak form of (1.1) satisfied by u and v, respectively. We have

P
f |V ulP 2vw< 7 >

[ () - [ (),
J‘ |Vy|P~ 2VvV< > >
R e )

Adding both equations we get

p _ P p _ 4P
ozf |Vu|P’2VuV<u>+J‘ |VV|P’2VVV<u>. (2.4)
Q ub- Q vl
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Using

ub —yP yp-1 vP
V<F>—Vu—PFVV+(p—I)JVu, (2.5)

we obtain that the first term of (2.4) is

P _ P
j |Vu|p72VuV<u 1/ >
a ub-

Vul? L VulP2vyv 1 v’ Vul|P
= - — + -1)—
[ wur—p[ Tz [ p-ni7ivY

(2.6)
=I |V InulPuf —pJ’ VP|VInulP~2(Vinu, Vinv)uy
o Q

+J‘ (p—1)|VInuPv?.
Q

We also have an analogous expression for the second term of (2.4). Using both
expressions we get that (2.4) becomes

0= IQ (uf =vP) (|VInulf - |VInv|?)
—prvP(|Vlnu|P_2<Vlnu,Vlnv—Vlnu)) (2.7)
—pJ‘Q u?(|VInv|P2(VInv, Vinu-Vinv)).
Taking & = VInu and & = VInv and using Lemma 2.2 we get, for p > 2,
02J’QC(p)|Vlnu—Vlnv|P(u1’+vp). (2.8)

Hence,

0=|VInu-Vlinv|. (2.9)
This implies that u = kv, as we wanted to prove. For p < 2, we use the second
part of Lemma 2.2 as above. O

Now we turn our attention to the proof of the isolation of the first eigenvalue,
in order to prove this we need the following nodal result.

LEMMA 2.4. Let w be an eigenfunction corresponding to A # Ay, then w changes
sign on 0, that is, w*|aq # 0 and w™|yq # 0. Moreover, there exists a constant C
such that

loaf|>Cr P, |oqT| > CAF, (2.10)
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where 0Q =0QN {w >0}, 00 =0QN{w<0},f=(N-1)/(p-1)ifl<p<N
and 3 =2if p > N. Here |A| denotes the (N — 1)-dimensional measure of a subset A
of the boundary.

Proof. Assume that w does not change sign in (), then we can assume that w > 0
in Q using ideas similar to those of Lemma 2.1. Let u; be a positive eigenfunc-
tion associated to ;. Making similar computations as the ones performed in the
proof of Lemma 2.3 we arrive at

(AI—A)I (uf—wp)sz |Vinw - Vinu |? (uf +wF) > 0. (2.11)
20 Q
Therefore, if we take kw instead of w we get that, for every k > 0, we have

(uf —kPwP) <0, (2.12)
0Q

which is a contradiction if we take

(],)<(1,)

Therefore, w changes sign in Q) and by the maximum principle, [20], also w
changes sign in 0Q.
We use w™ as test function in the weak form of (1.1) satisfied by w to obtain

f |vW-|P+f w|” =) w|”. (2.14)
Q Q 30N (w<0)

Hence,

/e
- - V]
I i <2 1)l 219

If 1 < p <N wechoosea=(N-1)/(N-p)and f=(N-1)/(p—-1). Now we use
the trace theorem to get that there exists a constant C such that

[l

Treaey < CIW sy (2.16)

If p> N, we choose a =8 =2 and we argue as before using that W#(Q) <
L?*£(9Q). A similar argument works for w. O

LEMMA 2.5. Let ¢ € WEP(Q)', then there exists a unique weak solution u €
WLP(Q) of

—Apu+ulPu=¢. (2.17)

Moreover, the operator A, : ¢ +— u is continuous.
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Proof. See [13]. O
With these lemmas we can prove the isolation of 1.

LeMMaA 2.6. The first eigenvalue A, is isolated, that is, there exists a > Ay such that
A1 is the unique eigenvalue in [0, a].

Proof. From the characterization of A;, it is easy to see that A; < A for every
eigenvalue A. Assume that \; is not isolated, then there exists a sequence A; with
Ak > A1, Ak N\ A1. Let wy be an eigenfunction associated to A, we can assume that
lwkllwre(q) = 1. Therefore, we can extract a subsequence (that we still denote
by wi) such that wx — u; in LP(9Q)). Define ¢y € (W-#(Q))’ as

b (1) = Mg LQ |we| P> wiu (2.18)
and ¢ € (W2(Q)) by
d(u) =21 LQ |1 |P72u1u. (2.19)

From the L?(0Q)) convergence of wy to u; we get that ¢ converges to ¢ in
(W'P())". Using the continuity of A, given by Lemma 2.5 we get that the se-
quence wy converge strongly in W'?(Q). Therefore, passing to the limit in the
weak form of (1.1) we get that u; is an eigenfunction with eigenvalue A,. By
Lemma 2.1 we can assume that u; > 0 on Q. By Egorov’s theorem we can find
a subset A, of 0Q) such that |A,| < € and wx — u; > 0 uniformly in 0Q \ A,. This
contradicts the fact that, by (2.10), we have, for every k

|00;] = 00N {wi < 0} > ANV, (2.20)

This completes the proof. O
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