COMMUTATORS IN REAL INTERPOLATION
WITH QUASI-POWER PARAMETERS
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The basic higher order commutator theorem is formulated for the real interpo-
lation methods associated with the quasi-power parameters, that is, the function
spaces on which Hardy inequalities are valid. This theorem unifies and extends
various results given by Cwikel, Jawerth, Milman, Rochberg, and others, and in-
corporates some results of Kalton to the context of commutator estimates for the
real interpolation methods.

1. Introduction

A current topic in interpolation theory is to estimate the nonlinear commuta-
tors in different situations. In the eighties, Rochberg, Weiss, and Jawerth ini-
tiated the study of the second order and abstract commutator theorems for
scales of the classical complex and real interpolation spaces. The applications in
many important differential and integral expressions were found ever since (see
[6, 7, 10, 17] for details). The higher order commutator theorem was proved
by Rochberg for the complex interpolation [16], and by Milman for the real
interpolation [14]. Recently, these results were extended to the real interpola-
tion with the Calderén weights [1]. In addition, Milman and Rochberg pre-
sented a comparison between the commutator results of the real and complex
interpolation methods, and emphasized the role of internal cancellation in these
results [15].

In the present paper, we formulate the basic higher order commutator theo-
rem for a wide family of the real interpolation methods, the K- and J-methods
due to Brudnyi and Krugljak associated with the quasi-power parameters. This is
motivated, in a large part, by the observation that the Hardy inequalities
for the LP-spaces (1 < p < oo) play an important role in the proof of the
commutator theorem for the classical interpolation methods. Furthermore, the
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240 Commutators in real interpolation

quasilogarithmic operators in our commutator theorem is more general than
the original ones. These operators, which are inspired by Kalton’s work [12, 13],
are determined by a much wide choice of Lipschitz functions. It therefore seems
natural to us to carry over the commutator theorem to the real interpolation
methods associated with the function spaces on which Hardy inequalities are
valid. This unifies and extends various results given by Cwikel, Jawerth, Milman,
Rochberg, and others, and incorporates some results of Kalton to the general
theory of commutator estimates for the real interpolation methods.

This paper is organized as follows: in Section 2, we review the real interpola-
tion methods with quasi-power parameters. In Section 3, we give definitions and
results about quasilogarithmic operators corresponding to the above mentioned
real interpolation methods. In Section 4, the main results about cancellation and
commutators are formulated. Some useful remarks are included in Section 5.

Conventions. The notations C and = between Banach spaces stand for continu-
ous inclusion and isomorphic equivalence, respectively. The notation B(X, Y),
respectively, B(X, Y), stands for the Banach space of all bounded linear opera-
tors from Banach space X to Banach space Y, respectively, from Banach couple
X to Banach couple Y. We simply write B(X) = B(X, X) and B(X) = B(X, X).

2. Real interpolation with quasi-power parameters

We suppose that the reader is familiar with the basic notations and definitions of
interpolation theory, and we refer to [3, 4] for background information. We start
by giving a brief review of the real interpolation methods with the quasi-power
parameters.

Assume that X = (Xo, X)) is a Banach couple with AX = X, N X; and XX =
Xo + Xi. For t >0, recall that the J- and K-functionals on AX and XX, respec-
tively, are given by

J(t,x:X) = |xlloV (tlx]h) ifx€AX, o)
_ _ 2.1
K(t,x;X) = inf{ %ol + ]l |, | X = x0 +x1, x; EXj} if xeZX.

In particular, J (1, x;X) = ||x||sx and K(1,x;X) = ||x||s.¢. For simplicity, we usually
write J(t,x) = J(t,;X) and K (t,x) = K(t,x;X) when it does not lead to ambigu-
ity. We now introduce Brudnyi-Krugljak’s K- and J-methods as follows.

Definition 2.1. Let ® be a Banach function space over (R*, dt/t) such that 1At €
@ and fgo LA(1/t) | f(t)|dt/t < oo for all f € ®. We define

Ko(X) = {xe2X | lxli, = [KE2)lg <o} [4(B31]  (22)

and define Jo(X) as the space of all x € £X, which permits a canonical repre-
sentation x = [;” u(t) dt/t for a strongly measurable function u : R* — AX, with
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the norm
x|y = ir;f”](t,u(t)) ||<1> <o [4,(3.4.3)]. (2.3)

Let (Q, 4) be a completely o-finite measurable space and let w be a weight on
(Q, u). We denote by L°(Q), du) the space of all measurable functions on (Q, y)
with || f]|0 = p(supp f) < oo, and denote by

1/p
LP (wdy) = {f|||f||m<wdﬂ (j Iflpwdy> <oo}, (2.4)

the weighted LP-space for 1 < p < oo, with the usual change for p = co. For the
measurable function ¢ : Rt — R, we write

17 { 'feLP<R+ "f)}. (2.5)

In particular, we write Lg = Lge for the power function ¢y(t) = t?. Now let us
define the Hardy operators P, Q and the Calder6n operator S on L°(R*, d/t) by

t ds
- L f6%,

Qf) () = tf 6%, (26)

ds
s

(SF)(B) = (Pf+Qf)(E) = jm() o=

The Banach function space @ is said to be a quasi-power parameter for the real
interpolation if S € B(P). Observe that S € B(D) if and only if P, Q € B(D). In
this case, we have the equivalence Jo (X) = Ko(X) with the norm estimate

Xl ky ) < IISll(ay 1%l x) (2.7)

for all Banach couples X [4, Corollary 3.5.35]. A function ¢ : R* — R* is said to
be quasi-power if Sg is equivalent to ¢. The function space Lg is a quasi-power
parameter for the real interpolation if ¢ is a quasi-power function. We simply
write]g()_() :]L;(X) and Kg()_() = KLg(X).

The following examples show that several interpolation methods in the liter-
ature can be formulated in terms of Brudnyi-Krugljak’s K- and J-methods with
the quasi-power parameters for the real interpolation.
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Example 2.2 (real methods associated with Calder6n weights [1]). A weight w
on (R*,dt) is said to be a Calderén weight if the Calderén type operator S €
B(LP(wdt)), where

)0 = f (% A %) £(s)ds. (2.8)

For a Banach couple X, we define X,k to be the space of all those x € £X, for
which K(t,x)/t € LP(wdt), with the norm lxllg,, . = IK(t, %)/t]| Lo (wdr)> and de-
fine X,,,,; to be the space of all those x € =X, for which there exists a strongly
measurable function u : Rt — AX satisfying x = fo u(t)dt/t and J(t,u(t))/t €
LP(wdt), with the norm ”x”XP,W,; inf, {[[J(t, u()/t|rr(wan }. If we set @(t) =

t1=V/Pw(t)7V/P, then the space L} is a quasi-power parameter for the real inter-
polation. By substituting @ with L‘; in (2.7), we obtain that

Xpwy =J5(X) =K5 (X) = Xp k. (2.9)

Example 2.3 (E- and E,-methods [4, 10]). Let r >0 and let x € X. We first
consider the E-functional which is given by

E(r,x) = inf{||x0||0 | x=x0 +x1, x; €Xj, |1, < r}. (2.10)
For a quasi-power parameter ® for the real interpolation, we set
¥ = Ko <L°°<dr> L0<ﬂ>>, (2.11)
r r
and define the space Ey(X) consisting of all x € £X such that
5, ) = inf{/l >0 A EAn )|y < 1} < 0. (2.12)

It is known that Ey(X) = Ko(X) by [4, Theorem 4.2.25 and (4.2.38)]. Next, con-
sider the E,-functional, & > 1, which is given by

Ei(r,x) =inf { @

/(a-1)
Ea(r,x):inf{<” 0”o> (IIx;II1>

for a > 1. It is clear that E(r,x) = rE;(r,x). According to [10, Lemma 2.1], for
each x € £X, the right continuous inverse of the function E,(r,x) is K(t,x)/t%.
For p>1and 0< 6 < 1, we choose 11 = 1/(0 - «), g = p(a — 0) and define the
space X, , consisting of all x € X for which

x=xo+x1, xj €Xj, ||x1]], < r}, (2.13)

X =x0+Xx1, Xj EX]-} (2.14)

Illx,, ., = [Eatr. )| < oo. (2.15)
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By the change of variable r = K(f, x)/t* and integrating by parts, we have

Xopr, = KL (X). (2.16)

3. Quasilogarithmic operators

Now consider the relevant definitions and results about quasilogarithmic oper-
ators in the real interpolation, which came originally from [10]. In this section,
however, those operators will be considered in a more general sense. The main
result here is to present the connection between the quasilogarithmic operators
in different versions of the real interpolation methods. In this and the next sec-
tion, we always assume that @ is a quasi-power parameter for the real interpola-
tion.

Let X be a Banach couple, and let ¢ > 1 be a constant which is fixed during the
discussion in this section. For x € X, the decomposition x = x,(t) + x; (t), t > 0,
is (c-)almost optimal for the K-methods if

K(t,x) < ||xo(®)||, +t||lx (D], < cK (2 x). (3.1)

A (c-)almost optimal projection for the K-methods is a (usually nonlinear) oper-
ator Di(t) : X — X, defined by

Di (t)x =Dk (£, X)x = xo(t) (3.2)

for some almost optimal decomposition. It is always possible to choose x;(t)
(j =0,1) to be continuous. Now we consider the Jo methods. Given x € =X, we
say that

D](t)x = D,)q;(t,X)x =u(t) (3.3)

defines a (c-)almost optimal decomposition for the Jo method if u: Rt — AX
satisfies x = [° u(t) dt/t in X and ||/ (t, u(t))|lo < cl|x]lj, for t > 0.
Here and throughout, we assume that y : R — R is a Lipschitz function satis-

fying
[ (1) —y(s)| < pylt—sl, (3.4)

where y, is a constant depending on y. For n = 1,2,..., we introduce the follow-
ing concept.

Definition 3_.1. The quasilogarithmic operators Q{m and Qy , of order n are de-
fined on XX in the following way

al,, (x) = %j wllog)" D (1)x",
nl Jo t (3.5)
X (x) = %L (X000 (8) ~ Dic (1)) ey (log )" + —-y(0)'"x.
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In particular, if y(t) = ¢, then Q{m =Q,; and Qf;,n =-Q,k as given in [15].

Remark 3.2. For the E,-methods, respectively, E-methods, we can also intro-
duce the almost optimal decomposition x = xo(r) +x;(r), r > 0, and the almost
optimal projection Dg, (r)x = xo(r), respectively, Dp(r)x = x¢(r), where

Va 1/(a-1)
Ea(r’x)s (M) V<M> SEa<z)x> (36)
r r Cc

fora>1,and
Ei(r,x) < M <E; <£,x>, [l (D], <7, (3.7)
respectively,
E(r,x) < [|%(")]l, SE(E,x), [l (Rl <. (3.8)

The corresponding quasilogarithmic operator Qf , = Qﬁf‘n, respectively, Qﬁ,n,
can be similarly defined by

1 (* 1 n
Qy,,(x) = WJ‘ (I X(1,00)(r) = Dg,(r))xdy (logr)" + ml//(log||x||25() x, (3.9)
. O .

1 (* 1 n
Qy ,(x) = W,[ (I X(1,00)(r) = Dg(r))x dy(logr)" + mw(log”x”;;g) x.
. 0 .

(3.10)

Before proceeding, recall some basic facts about rearrangement invariant
function spaces, which can be found in [2]. Let (€, #) be a completely o-finite
measurable space as before. For f € L°(€), du), we denote the rank function of f
by

re(@)=u({neQl|f(n)]>|f(w)|}) forwe, (3.11)
the distribution function of f by
Ar(9)=p({weQ]|f(w)|>s}) fors>0 (3.12)
and the measure-preserving rearrangement of | f| by
fr@)=inf{s|As(s) <t} fort>0. (3.13)

Two functions in L°(Q), du) are said to be equimeasurable if they have the same
distribution function. A Banach function space X over (Q, du) is said to be re-
arrangement invariant (r.i. in short) if || f||x = ||g||x for every pair of equimea-
surable functions f and g in L°(Q), du). We refer to [2, Definitions I11.5.10 and
I11.5.12] for the Boyd indices of r.i. spaces.
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LemMa 3.3. Assume that © is a Banach function space over (R, dt/t) such that
the Calderén operator S is bounded on ®. Let

O = {f e LO(RY,dt) | tf*(t) € D) (3.14)

with the norm || flo- = ||t f*(t)||o. Then ®* is an r.i. space over (R, dt) with the
Boyd indices a,  satisfying0 < a <3 < 1.

Proof. First we introduce the Banach function space ® over (R*, dt) by
O={feL'(R",dr)|tf(t) € D} (3.15)

with the norm || f|lg = ||t (£)]|o. Observe that the operator S given by (2.8) is
bounded on @ with [|S]|ga) = Sll#(@). In fact, for f € LO(RY, dt), we have

S INCGDIEE B INCHEEE

ISl [[sf ()]l = ||S||93(<D)||f||cb:

@ (3.16)

and similarly ||Sf|lo < ||§||%@)||f||q>. The space ®* is an r.i. space over (R*, dt)
due to the equalities

1l = || 7" [l = 11l = 1N (3.17)

These observations, together with [2, III. (5.7)], imply that
o = ”(Sf)’k R 15" 116 < USNg@)l1f o = ISllgseay 1 fllor (3.18)
That is, the operator § is also bounded on ®*. Following [2, Theorem III. 5.14],
the Boyd indices « and f3 of ®* satistying 0 < a < < 1. O

The main tools to be used in the course of the proof for the main theorems in
this and the next section are integrating by parts and internal cancellation. The
following lemma is crucial for this reason. We refer to [5, Lemma 3.2] for the
classical case.

LEmMa 3.4. Let © be a quasi-power parameter for the real interpolation, let v be a
Lipschitz function satisfying (3.4), and let u: R* — AX, for which [ u(t)dt/t =0
and ||J(t,u(t))||lo < oo. Then, forn > 1,

! ds .
w(logt)”j u(s)? —0 inXX (3.19)
0

ast— 0 or co.

Proof. We begin with the special case y(t) = t. Let ®* and ® be given asin (3.14)
and (3.15). Then the Boyd indices «, 8 of ®* satisfy 0 < &« < 3 < 1 by Lemma 3.3.



246 Commutators in real interpolation

If we choose py and p; such that 1 < py < 1/ < 1/a < p; < oo, then, by the Boyd
interpolation theorem [2, Theorem II1.5.16], ®* is an interpolation space for
Banach couple (L?0, LP'), where LPi = LPi(R*,dt) (j =0,1). Thus, ®* C Lo + L1,
By [9, Theorem 4.1], there is a constant C > 0,

<f; fr(s)pe ds) o + (fm frsp ds) v < Cllfllzro+re (3.20)

1
forall f € L + LP'. For x € ®, let K(t) = K(t,x). Then (K(t)/t)* = K(t)/t since
K(¢)/t is decreasing on R* by [3, Lemma 3.1.1]. Moreover,

KOl =

H K@) (3.21)

e

Now let u be given by the assumption. For fixed t > 0, let

t o0
ui(s) = () - 11011 (5) xt=fu<s>é=f wo® G2

0

Then J(s,u,(s)) < J(s,u(s)), and J(s,us(s)) < 2K(s,x;) by the fundamental
inequality for the real interpolation [11]. This implies that

! d ! d ! d
el < [ M5 < [ 1w T <2f ke S 6
0 S 0 S 0 S

Now we set K;(s) = K(s,x;) and 0; = 1/p} (j =0,1), and assume that ¢ < 1. Ac-
cording to the Holder inequality, (2.7), (3.20), and (3.21), we obtain

J‘OKt( )ds PK(s) 90 ds

S 0 500

([, )WO (L
tegq ( s()> s>l/po<ct90 Ki(s)

s
Kt( )

(3.24)

LPo+LP1

< Cth = Ct*||K: (9]l

< Ct9°||sn.%<q>> I (s, () || -

Consequently, (logt)" Io s)ds/s— 0 in £X as t — 0 by a simple estimate. On
the other hand, the cancellation assumption yields

X = It u(s)% = —Jm u(s)?. (3.25)

0 t
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For t > 1, a similar estimate leads to

]s, (s)) ds
Il < [ o, & < [LEHDE 5 0

At (o

ISl |7 (s, u(s)) || -

t19|

Thus, the convergence (logt)” jé u(s)ds/s — 0 holds in X as t — co.
Generally, for an arbitrary Lipschitz function y satistying (3.4), we have
[v(logt) —w(0)| < yy|logt|, and

|y(logt)" —y(0)"] = v (0)" 1K (3.27)
Therefore, we obtain
Lo ds .
y(log t)"f u(s)? —0 inXXast—O0oroo (3.28)
0
by a simple estimate for #n = 1 and by induction for n > 1. O

It is reasonable to extend [6, Theorem 2.8] as follows:

TueOREM 3.5. Let x € £X°, the closure of AX in 2X. Then there is a decomposition
x = [ u(t)dt/t for the Jo methods, which is almost optimal simultaneously for all
choices of quasi-power parameters @ for the real interpolation. Furthermore, there
exists an almost optimal projection of x for the Ko methods such that

Q). (x) = Qf ,(x). (3.29)

Proof. Let x € 2X°. As in the proof of [6, Theorem 2.8], we can find a decompo-
sition

x=J‘OO u(s)é =xo(t)+x(t) fort>0, (3.30)
0 s

where xy(t) = fé u(s)ds/s € Xy and x;(t) = jf° u(s) ds/s € X; such that
[l0 ()] + £l 21 (D)]], < K (£, x). (3.31)

That is, Dk (t)x = x0(t) is an almost optimal projection for the K-method. By
the fundamental inequality for the real interpolation [11] and by the estimate in
(2.7), we have

l7¢t u(O) ||l < 2||K (& x) || g = 2l1xl ko < 201Sllga) 1X]1o - (3.32)
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This implies that Dj(¢)x = u(¢) is an almost optimal decomposition for the Jo
methods for all choices of quasi-power parameters ®.
Further calculation gives that

(x) I (I x1,00)(£) = Dk (8))x dy (logt)" + %W(O)"x

_ m<_f0 Lu(s)f dy(log?)"

+£ﬁ fo u(s)%dtp(logt)“ +1(/(0)”x> (3.33)

- i' <Il w(logt)”u(t)ﬂ + Jm ‘V(logt)n”(t)%>

= —j v(logt)"Dy(t)x— —QK ().

Here we use Lemma 3.4 for integration by parts. ]

Remark 3.6. For the operator Qi,n with a > 1, as in Remark 3.2, we consider ® =
Lg. Let K(t) = K(t,x) and E,(r) = E,(t,x). If we use the change of variable r =
K(t)/t%, then E,(r) = t for each x € X [10, (2.7)], and hence Dk (t)x = Dg, (r)x.
Moreover, 1 At <K(t) <1Vt, and hence

a-1<a- logK(z) <a (3.34)
logt
This gives that
log (K (¢)/t*
-1< % < (3.35)
By using Lemma 3.4 again, we obtain
1//< > I u(s) ——>0 ast — 0 or oo. (3.36)

It turns out

K®\" 1 n
)+ v logllalsg)

1 {oe)
n'f (I X(1,00)(t) = D (¢ )xdl//<

0

oy

by Remark 3.2 and a similar argument as in Theorem 3.5.

(3.37)
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In the following examples, we consider some Banach couples of function
spaces, with weights wy, w; sometimes, over the completely o-finite measurable
space (Q, 4), and determine the corresponding quasilogarithmic operators.

Example 3.7 (On (LP(wodp), LP(widu)) with 1 < p < o). For f € LP(wodu) +
LP(wdu), we set

fO(t) =f'X[w0§th1}) fl(t) =f‘X{w0>th1}- (3-38)
Then f = fo(¢) + fi(t) and Dx(t) f = fo(¢) by [10, Section 4.1]. It implies that

1 ! ®
0,0 = 4 (- [ fidytoger+ [ firdyoge +y(0ry)
: 0 1
f 1
] < - jo Xiwostrw, ) Ay (logt)” (3.39)
+ J‘ Xiwo>tPwy ) d‘l/(logt)n + V/(O)n>
1
By dealing with two different cases, wy < w; and wy > w;, we obtain that

0, (f) = %f-w(%log(%?»n. (3.40)

Eq«

o> by Remark 3.6 and a similar calculation, we obtain

1 K((Wo/W1)U‘D>

1
of (fHy==F-y| =1
W,fl(f) }’l'f y p 0g (WO/Wl)a/P

For the operator Q
(3.41)

Example 3.8 (on (LP°(wodu), LP' (wydu)) with 1< po < p; <oo). For feLP(wydu)
+LP'(w) dy), we set

o = fXupimmoverwsys — AO = Xpomoro-w<.  (342)

Then f = fo(t) + f1(t) and Dg (t) f = fo(t) by [10, Section 4.2]. Let o = p1/(p1 —
Po). A direct computation gives that

1/(p1—po) n
Qe (f) = %f‘W(log <|f|<%> >> . (3.43)

Example 3.9 (On (LPo, LP1), where LPi = LPi(Q, du) with 1 < po < p1 < 00). For
feLlr +LPletrs, Ar, and f* be given as before. It is known that A and f*
are right continuous and nonincreasing with f*(t) = A}l (t) for each t at which
f* is continuous. Moreover, lim; oA f(s) =0 and r¢(w) = As(| f(w)]). Let 1/g =
1/po—1/p1, and let

fo=Fxupspany  f®) = xupsr e (3.44)
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Then f = fo(t) + f1(t) and Dk (t) f = fo(¢) by [10, Section 4.3]. We can now cal-
culate

1 1 ; o . )
Q’én(f)=m<—f0ﬁ(t)dw(logt) +II fi(t)dy(logt)" +y(0) f>
1
= %(‘J‘O Xifisfny (0 dy (logt)” (3.45)
[ xuiren 0 dytiogn + y(0)").
1

By dealing with two different cases,

0= (f@) <L @ =) (f@])>1, (3.46)

we obtain that

1 n
Qf ()= —f-w(logr/")". (3.47)
Remark 3.10. In Examples 3.8 and 3.9, on the couple (L!(du), L*(du)), we have
Q)= f-y(oglfl),  Q.(f)=f-y(logrs). (3.48)

These operators were first studied by Kalton in [12, Section 3], and were used
by him to determine the commutators of trace-class operators [13]. In those
papers, Kalton developed a general commutator theorem for the rearrangement
invariant function spaces with the nontrivial Boyd indices. It is an interesting
problem how to put Kalton’s work in the context of real interpolation [7, Section
VIII].

4. Cancellation and commutator estimates

As a preparation for the commutator theorem, we include now the following
cancellation result. The arguments on this topic have been used to deal with the
classical real interpolation in [15] but are of a much more general nature, so we
take them up once more.

THEOREM 4.1. Let © be a quasi-power parameter for the real interpolation, let ¢
be a Lipschitz function satisfying (3.4), and let y € £X.
@) If
1 (* dt
y=x I y(logt)"u(t) 2, (4.1)
n. 0 t

where

f w(logt)ku(t)%zo fork=0,1,...,n—1, (4.2)
0
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and ||J(t, u(t))|lo < oo, then y € Jo(X) with
1917 x) < Vi lISIG @) 17 (6 u() || -
(i) If
1 (! I ;
y= ——'j Xo(t) dl//(lOgt) + —'f Xl(t) dw(logt) 5
n. 0 n. 1

where x; : R" — AX (j=0,1), for which xo(t) + x,(t) = 0, and

1
fxo(t)dw(logt)k fxl(t)dw(logt =0 fork=1,...,n-1,
0 1

with [xo(t)o + i1 (1)1 o < o0, then y € Ko(X) with
Ilkat) < VolSW |10 ()l + ella ]|

Proof. (i) For n= 1, we have

f y(log?) u(t j y(logt) df 5)_

(oot

in terms of integrating-by-parts and Lemma 3.4. Observe that

I(t,f;u(S)is> f](s,u(S) —+tf I(s,u(s

according to the proof of [15, Theorem 3]. Therefore,

7 (v togn f;u@)%) <yt f&(s)%)

< W(J‘;KS’”(S))% +tfjol(s,u(s))§>.

(4.3)

(4.6)

(4.8)

(4.9)

Since @ is a quasi-power parameter for the real interpolation, we obtain that

i (vtosn [ wo®)||. <ristawlicuo)l,

and hence || y[l7, < pylISllaw@) ] (& u(®))llo-
For n > 1, we have

1 @ d 1 o) t d
= EJ‘O W(logt)”u(t)Tt = ﬁ,[ w(logt)”dj u(s)_s

=-ﬁf(£““)i Ywlloge)” /(o) .

(4.10)

(4.11)
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Let v(t) = y'(logt)(fy u(s) ds/s). Then

N L dt
}’—‘WL v(t)y(logt) E

0 0

_ 1
T k+1

0

[ witognun =0
0

fork=0,1,...,n—2. By induction, we obtain that y € J¢(X) with

71oc) < vy IS5y 17 (6 V() [l -

By (4.10), [[¥ll76x) < Yy lISIG g IV (& u(E)) |-
(ii) Let v(t) = v'(logt)xo(t). For n = 1, we have

@

1
y=—j xo<t>dw<logr>+j x(6) dy(logt)

0 1
h dt

=—j:°u/’(logt)x0(t)? =—f0 v

by assumption. Observe that
1Kt )l < ISllasa 17 (£ v(0) [l
by (2.7), and

7)o < 7ol (530l < v a0l + ella (] |-

This gives that

17l < ylSllacan | [0 (®) ]y + elln O], |

For n > 1, we have

i _

jm )
0 t

lf xo(t)dy(logt)F =0
kJo
fork=1,...,n—1, and hence

(e Ldt
}/:—mj‘o w(logt) 1V(t)7

1 * w1 (. ds
_ _mfo w(logt) ldfov(s)?

-t ([

Jm w(logt)kv(t)# = —Jm <jtu(s)%>w(logt)kw'(log t)#

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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By induction, and in view of (2.7), (4.15), and (4.16), we obtain that

yllce = 1K)l < vy 1SN0y 1T (5 V(D) [l

<Yyl o | Il + ell |,

which completes the proof. O

Now define the nonlinear commutators in our situation and establish the ba-
sic theorem concerning the higher order commutator estimates.

Definition 4.2. Let T € B(X,Y), let Q, be an operator from =X to XY, and let
[T,Q,] = TQ, — Q,T. The commutator C, = C,(T) of order n from X to XY is
defined in the following way: Co(T) =T, C,(T) = [T, ], and

n—1
Co(T) = [T,Q] = D %Cpg forn>2. (4.21)
k=1
In particular, for O, = ), ,, QX OF or Q% ,, we write C,=C},,, CX , CE

or Cy,,.

THEOREM 4.3. Assume that © is a quasi-power parameter for the real interpola-
tion, and assume that y is a Lipschitz function satisfying (3.4). Then, in each of the
following cases, there exists a constant A depending on n, ®, and y such that

YT, 5y < ANT iy g (5 16l )0 (4.22)
”C x”Km <A”T”K®(X) K(D(Y)”x”K(D (4.23)
”C T)x”Em <A”T”E®(X ),Eo(Y )||x||E®(X): (4.24)

for all x € Jo(X), Ko(X), or Ep(X), respectively. If 0 < 0 < 1 and 1 < p < co, then
there exists a constant A depending on o, v, n, 6, and p such that

Con(Txly, . S ANT g, 0,050, 1% %6, (4.25)

for all x € Xo,p 5,

Proof. We mention first that all estimates are trivial for n = 0 since Cy = T.
For (4.22), we have C(T) = [T, Q] and hence

Ci(T)x= f (T(Dy(t)x) —D](t)(Tx))u/(logt)# (4.26)
0

for all x € Jo(X). Let

uy () = T(Dy(H)x) - Dy (£)(Tx). (4.27)
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Then [;°u(t)dt/t = 0. According to Theorem 4.1(i), we have

I1CHT)*] ) < vulSllaan [V (120 (0) >||®

< Sl (I (& T(Dy (0x) )| + 17 (6 Dy (T2 7) | )
< 2y ISllao) ||T||]®<X>,1®(i/>||x||]®<i()

(4.28)
Furthermore, we have
Cy(T)x I 14 (logt)?u (t ——I y(logt) uz(t) (4.29)
for all x € Jo(X), where
*© dt  (® dt
I uz(t)T =f w(logt)ul(t)T =C(T)x. (4.30)
0 0
This, together with Lemma 3.4, implies that
e , ! d dt
Cy(T)x = f <— 14 (logt)j ul(s)?s - uz(t)>1//(logt)7, (4.31)
0 0
meanwhile
*° t d dt
[ (-vtoen [ w5 -)F
0 " 0 P 5 (4.32)
=j w(logt)ul(t)T—f z(t) =0.
0 0
By Theorem 4.1(i) again, we obtain
, ! ds
o)l 5, < velStacor (|1 (v toge) [ w0557 )
0 @ (4.33)
11 6as D ).
whereas
| (5 vtogn jtu OST)| . <2enlSlawir Il
> o = B o(X)Jo (Y o(X)
s o = VW ISIB@ I e se X lacer o

||](t, uy(1); ?) ||q> < 2epylISlla@) 1 Tl )70 (1) 1% 10 (%)

Therefore, we can prove (4.22) inductively for all n > 2.
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For (4.23), we set xo(t) = Dx(t)x and x;(¢) = x — x,(¢) for all x € Ko (X). Thus

1
Ci(T)x= —J‘ (Txo(t) — (Tx)o(t)) dy(logt)
0

B (4.35)
+Il (Tx1(£) - (Tx) (1)) dy(logt).
Let yo(t) = Txo(t) — (Tx)o(t) and y1(t) = Tx(t) — (Tx);(t). Then
Yo(t) + y1(£) = Tx - Tx = 0. (4.36)
According to Theorem 4.1(ii), we have
1CH D]y ) < el [ Il Ol + el L |,
< St ([ ITx0, e T 0 -

+ ” [I(Tx)o ()|, + t”(Tx)l(t)HIH‘I)

< 2¢pylISllm@) 1T iy (%), Ko (1) 1l () -

The case n > 1 and the estimates in (4.24) and (4.25) can be proved by making
a simple substitution or by induction as we did above. We leave all details to the
reader. O

5. Final remarks

Remark 5.1. According to Theorem 4.3, C, can be considered as a bounded
(nonlinear) operator on %B(X, Y). This uniform boundedness plays an impor-
tant role in future studies.

Remark 5.2. According to Theorem 4.3, operators Q{M and Q{; , are uniquely de-
fined up to bounded errors. Combine this fact with Theorem 3.5, we may simply
write Qy = Q{m = Qluf .- Observe that if y is a bounded function, then

Q, = f w(logt)D](t)x% (5.1)
0

is a bounded operator on Jo(X) = Ko(X) and vice versa.

Remark 5.3. If we replace the natural number 7 by any positive real number # in

Definitions 3.1 and 4.2, then we can obtain the quasilogarithmic operators Q{M

K : J K .
and Q,,,, and the corresponding commutators C,,, and Cy,, of fractional or-

der #. There are no essential difficulties to carry over Theorems 3.5, 4.1, and 4.3
to this more general case. In particular, if one chooses ® = Lf; as in Example 2.2
and y(t) =t, [1, Theorem 8.5] is recovered.
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Remark 5.4. Let (Q,u) be a completely o-finite measurable space, and let X
be an r.i. function space over (Q, u) with the nontrivial Boyd indices « and 3,
that is, 0 < @ < S < 1. One can construct a quasi-power parameter ® for the
real interpolation for which X = Ko (L', L®) = Jo (L', L), where L? = LF(Q, du)
for 1 < p < oo. In fact, by the Luxemberg representation theorem [2, Theorem
11.4.10], there is an r.i. function space X over (R, dt) such that Ifllx =11 f*|l% for
all f € X. Now define the function space ® over (R*,dt/t) by ® = {f | f(#)/t €
X} with the norm lfllo = Ilf(£)/t||;. If we choose py and p; with 1 < py <
1/B < 1/a < p; < oo, then, according to the Boyd interpolation theorem [2, The-
orem II1.5.16], X and its K6the dual (X)' are interpolation spaces for the couple
(LPo, LP1). As a consequence, the Calderén operator S is bounded on ®. In addi-
tion, 1A (1/t) € LP> nLP' C X N (X)'. This implies that 1 At € ® and

Jo @<L, 15

forall f € ®. Therefore, ® is a quasi-power parameter for the real interpolation.
The equivalence X = Kg(L!, L®) can be proved as in [8, Section 1]. With this
construction, we may apply Theorem 4.3 on the r.i. space X with the nontrivial
Boyd indices, and obtain the commutator theorem for operators vaf b which are
given in Remark 3.10, on X. This is the case considered by Kalton [12, Corollary
3.2]. By applying Theorem 4.3 on the noncommutative L?-spaces, the Schatten
classes Cp, one can immediately get other results by Kalton [13, Theorems 4.2
and 4.3]. The methods used by Kalton to prove those results are totally different.

< o (5.2)
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