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The integral wavelet transform is defined in weighted Sobolev spaces, in which
some properties of the transform as well as its asymptotical behaviour for small
dilation parameter are studied.

1. Preliminaries and notations

It is well known that the integral wavelet transform is a very powerful tool to
study sciences and technology. In [5] wavelet theory has been investigated in
very much functional spaces, even in BMO, VMO (for further details of those
spaces, please refer to [5] and the references therein) even for pseudodifferential
operators, however, the integral wavelet transform in weighted Sobolev spaces
has not been studied yet neither in [5] nor in any other work.

The aim of this paper is to study this unsolved problem.
Let ωµ(x) ∈ L∞(Rn), ωµ(x) > 0, for almost all x ∈ R

n and for each x,

ωµ(x+ y) ≤ C1,µωµ(x), (1.1)

for almost all y ∈ R
n, where µ is a multi-index.

We use the Sobolev space with weighted norm defined as follows:

W
m,p
ω

(
R
n) = {

f ∈ Lp(Rn) | ∂k f ∈ Lp(Rn), |k| ≤m}
(1.2)

equipped with the norm

‖ f ‖m,p,ω =
∑
|µ|≤m

(∫
Rn

ωµ(x)
∣∣∂µ f (x)

∣∣p dx
)1/p

<∞, (1.3)

where µ = (µ1, . . . ,µn), |µ| = µ1 + · · ·+µn, µi ≥ 0.
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Let �(Rn) be the Schwartz space of all differentiable functions ϕ on R
n such

that for all multi-indices α and β

sup
x∈Rn

∣∣xα(Dβϕ(x)
)∣∣ <∞. (1.4)

The Fourier transform � : f �→ f̂ is given by

f̂ (y) = (2π)−n/2
∫

Rn

f (x)e−i(x,y) dx, (1.5)

where (x, y) = x1y1 + · · ·+xnyn, x = (x1, . . . ,xn), y = (y1, . . . , yn) (see [1, 2, 4]).
As traditionally, it is not difficult to prove that �(Rn) is dense in W

m,p
ω (Rn).

Now we recall that a basic wavelet is a nontrivial function ψ ∈ L1(Rn) such that
its integral on R

n is 0 and its Fourier transform ψ̂(ξ) satisfies the condition

(2π)n
∫∞

0

∣∣ψ̂(aξ)
∣∣2

a
da, (1.6)

denoted by Cψ which is a constant for every ξ �= 0 and Cψ �= 0.
With a basic wavelet ψ and a function f ∈ �(Rn), we define the following in-

tegral:

(
Lψ f

)
(b,a) =

1
2n
√
Cψ

1√
|a|n

∫
Rn

ψ̄
(
t−b
a

)
f (t)dt, (1.7)

where b ∈ R
n and a ∈ R\{0} (see [3, 5, 6]).

2. Some properties

Proposition 2.1. If f ∈ �(Rn) then

∥∥(Lψ f )(·,a)
∥∥
m,p,ω ≤ C‖ f ‖m,p,ω, (2.1)

where a ∈ R, a �= 0 and fixed, C is a constant independent of f .

Proof. Obviously we have

(
Lψ f

)
(·,a) =

1
2n
√
Cψ

(
f ∗D−aψ̄

)
(·), (2.2)

where Da : L2(Rn) → L2(Rn) and (Daψ)(a) = |a|−n/2ψ(x/a); a �= 0.
Since f ∈ �(Rn) the differentiation and integration can be interchanged

∂µ
(
Lψ f

)
(·,a) =

1
2n
√
Cψ

(
D−aψ̄ ∗∂µ f )(·). (2.3)
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It is not difficult to see that∥∥(Lψ f )(·,a)
∥∥
m,p,ω

=
∑
|µ|≤m

(∫
Rn

ωµ(·)∣∣∂µ(Lψ f )(·,a)
∣∣p d(·)

)1/p

=
∑
|µ|≤m

1
2n
√
Cψ

(∫
Rn

ωµ(x)
∣∣∣∣
∫

Rn

(
∂µ f

)
(x− y)

(
D−aψ̄

)
(y)dy

∣∣∣∣
p

dx
)1/p

≤ 1
2n
√
Cψ

∑
|µ|≤m

∫
Rn

(∫
Rn

∣∣(∂µ f )(x−y)
∣∣p∣∣(D−aψ̄

)
(y)

∣∣pωµ(x)dx
)1/p

dy

≤ 1
2n
√
Cψ

∑
|µ|≤m

∫
Rn

∣∣D−aψ̄(y)
∣∣(∫

Rn

ωµ(x)
∣∣(∂µ f )(x− y)

∣∣p dx
)1/p

dy.

(2.4)

However, ∫
Rn

ωµ(x)
∣∣(∂µ f )(x− y)

∣∣p dx =
∫

Rn

ωµ(u+ y)
∣∣(∂µ f )(u)

∣∣p du
≤ C1,µ

∫
Rn

ωµ(u)
∣∣(∂µ f )(u)

∣∣p du.
(2.5)

Consequently,

(∫
Rn

ωµ(·)∣∣∂µ(Lψ f )(·,a)
∣∣p d(·)

)1/p

≤
(
C1,µ

)1/p

2n
√
Cψ

∫
Rn

∣∣D−aψ̄(y)
∣∣dy

(∫
Rn

ωµ(x)
∣∣(∂µ f )(x)

∣∣p dx
)1/p

≤ Cµ
(∫

Rn

ωµ(x)
∣∣(∂µ f )(x)

∣∣p dx
)1/p

,

(2.6)

where

Cµ =

(
C1,µ

)1/p

2n
√
Cψ

|a|n/2‖ψ‖1. (2.7)

Therefore,

∥∥(Lψ f )(·,a)
∥∥
m,p,ω ≤ C

∑
|µ|≤m

(∫
Rn

ωµ(x)
∣∣(∂µ f )(x)

∣∣p dx
)1/p

, (2.8)

where

C = max
|µ|≤m

Cµ, (2.9)
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that is,

∥∥(Lψ f )(·,a)
∥∥
m,p,ω ≤ C‖ f ‖m,p,ω. (2.10)

�

By Proposition 2.1, we extend (Lψ f (·,a)) for fixed a to a continuous mapping
from W

m,p
ω (Rn) to itself. It is called the integral wavelet transform in weighted

Sobolev space.

Theorem 2.2. If ψ and ϕ are basic wavelets and f , g belong to Wm,p
ω (Rn), then the

following estimate holds true:
∥∥(Lψ f )(·,a)−(Lϕg)(·,a)

∥∥
m,p,ω

≤ C1|a|n/2



∥∥∥∥∥∥∥
ψ

2n
√
Cψ

− ϕ
2n
√
Cϕ

∥∥∥∥∥∥∥
1

‖ f ‖m,p,ω +
‖ϕ‖1

2n
√
Cϕ

‖ f −g‖m,p,ω


 ,

(2.11)

where C1 is a constant independent of f and g.

Proof. It is sufficient to prove the case f , g ∈ �(Rn).
Obviously

(∫
Rn

ωµ(·)∣∣∂µ[Lψ f −Lϕg](·,a)
∣∣p d(·)

)1/p

=



∫

Rn

ωµ(·)

∣∣∣∣∣∣∣
∂µ f ∗


D−aψ̄

2n
√
Cψ

− D
−aϕ̄

2n
√
Cϕ


(·)

∣∣∣∣∣∣∣

p

d(·)




1/p

=



∫

Rn

ωµ(x)

∣∣∣∣∣∣∣
∫

Rn

(
∂µ f

)
(x− y)


D−aψ̄

2n
√
Cψ

− D
−aϕ̄

2n
√
Cϕ


(y)dy

∣∣∣∣∣∣∣

p

dx




1/p

≤
∫

Rn

∣∣∣∣∣∣∣


D−aψ̄

2n
√
Cψ

− D
−aϕ̄

2n
√
Cϕ


(y)

∣∣∣∣∣∣∣
(∫

Rn

ωµ(x)
∣∣∣∣(∂µ f )(x− y)

∣∣∣∣
p

dx
)1/p

dy

≤ C2,µ

(∫
Rn

ωµ(x)
∣∣(∂µ f )(x)

∣∣p dx
)1/p

,

(2.12)

where

C2,µ = |a|n/2
∥∥∥∥∥∥∥

ψ
2n
√
Cψ

− ϕ
2n
√
Cϕ

∥∥∥∥∥∥∥
1

(
C1,µ

)1/p
. (2.13)
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So

∥∥(Lψ f )(·,a)−(Lϕ f )(·,a)
∥∥
m,p,ω ≤ C1|a|n/2

∥∥∥∥∥∥∥
ψ

2n
√
Cψ

− ϕ
2n
√
Cϕ

∥∥∥∥∥∥∥
1

‖ f ‖m,p,ω, (2.14)

where

C1 = max
|µ|≤m

(
C1,µ

)1/p
. (2.15)

Similarly we obtain

∥∥(Lϕ f )(·,a)−(Lϕg)(·,a)
∥∥
m,p,ω ≤ C1|a|n/2 ‖ϕ‖1

2n
√
Cϕ

‖ f −g‖m,p,ω. (2.16)

By the triangle inequality we get
∥∥(Lψ f )(·,a)−(Lϕg)(·,a)

∥∥
m,p,ω

≤ C1|a|n/2



∥∥∥∥∥∥∥
ψ

2n
√
Cψ

− ϕ
2n
√
Cϕ

∥∥∥∥∥∥∥
1

‖ f ‖m,p,ω +
‖ϕ‖1

2n
√
Cϕ

‖ f −g‖m,p,ω


 .

(2.17)

�

3. Symptotical behaviour for small dilation parameter

From Theorem 2.2 the following proposition follows immediately.

Proposition 3.1. If ψ is a basic wavelet and f ∈Wm,p
ω (Rn), then

∥∥(Lψ f )(·,a)
∥∥
m,p,ω =O

(|a|n/2). (3.1)

Now consider the operator

(
Λψ f

)
(b,a) =

(
ψa ∗ f

)
(b) =

1
an

∫
Rn

f (t)ψ
(
b− t
a

)
dt, (3.2)

where ψ ∈ L1(Rn), f ∈ Lp(Rn), 1 ≤ p <∞, and

ψa(x) =
1
an
ψ
(
x

a

)
, a �= 0. (3.3)

In the sequel, the following lemma is needed.

Lemma 3.2. Let f ∈Wm,p
ω (Rn), 1 ≤ p <∞, ψ ∈ L1(Rn)∩Lq(Rn), with
∫

Rn

ψ(t)dt = 1,
1
p

+
1
q
= 1. (3.4)
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Then

(i) (Λψ f )(·,a) → f (·) in Wm,p
ω (Rn) as a→ 0+;

(ii) [∂µ(Λψ f )](·,a) = [Λψ(∂µ f )](·,a) = a−|µ|(Λ∂µψ f )(·,a) if ∂µψ ∈ L1(Rn)
∩Lq(Rn), |µ| < m, a > 0.

Proof. Since (Λψ f )(·,a) = (ψa ∗ f )(·), and for each multi-index α,
∑n

i=1αi ≤ m
such that ∂µ f ∈ Lp(Rn), ψ ∈ Lq(Rn), we obtain[

∂µ
(
ψa ∗ f

)]
(·) = (

ψa ∗∂µ f
)
(·),∥∥(Λψ f

)
(·,a)− f (·)∥∥m,p,ω

=
∑
|µ|≤m

(∫
Rn

ωµ(·)∣∣∂µ[(Λψ f
)
(·,a)− f (·)]∣∣p d(·)

)1/p

=
∑
|µ|≤m

(∫
Rn

ωµ(·)∣∣Λψ
(
∂µ f

)
(·,a)−(∂µ f )(·)∣∣p d(·)

)1/p

.

(3.5)

Taking into account that ∂µ f ∈ Lp(Rn), it is easy to see that∫
Rn

ωµ(·)∣∣Λψ
(
∂µ f

)
(·,a)−(∂µ f )(·)∣∣p d(·)

≤ ∥∥ωµ∥∥∞

∫
Rn

∣∣Λ(∂µ f )(·,a)−(∂µ f )(·)∣∣p d(·) −→ 0 as a −→ 0+.

(3.6)

Consequently, (Λψ f )(·,a)→ f (·) in Wm,p
ω (Rn) as a→ 0+, that is, (i) is proved.

To check (ii) take fr ∈ �(Rn), fr → f in W
m,p
ω (Rn). It is obvious that in

W
m−|µ|,p
ω (Rn)

[
∂µ
(
Λψ fr

)]
(·,a) =

[
Λψ

(
∂µ fr

)]
(·,a) = a−|µ|

(
Λ∂µψ fr

)
(·,a). (3.7)

By the continuity of the operators

Λψ : Wm,p
ω

(
R
n) −→W

m,p
ω

(
R
n),

∂µ : Wm,p
ω

(
R
n) −→W

m−|µ|,p
ω

(
R
n), (3.8)

for ψ ∈ Lq(Rn), |µ| < m, letting r →∞ we get (ii). �

Theorem 3.3. Let f ∈Wm,p
ω (Rn), 1 ≤ p <∞, ψ ∈ L1(Rn)∩Lq(Rn) such that∫

Rn

ψ(t)dt = 1. (3.9)

Moreover, assume that ∂µψ is a basic wavelet for each multi-index µ, |µ| ∈
{0,1,2, . . . ,m}, and ∂µψ ∈ Lq(Rn), with 1/p+1/q = 1. Suppose additionally that f
and ψ are real-valued functions and a > 0. Then

lim
a→0+

∥∥∥∥∥
1

a|µ|+n/2
(
L∂µψ f

)
(·,−a)− 1

2n
√
C∂µψ

∂µ f (·)
∥∥∥∥∥
m−|µ|,p,ω

= 0. (3.10)
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Proof. Obviously

(
L∂µψ f

)
(·,−a) =

an/2

2n
√
C∂µψ

[(
∂µψ

)
a ∗ f

]
(·)

=
an/2

2n
√
C∂µψ

(
ψa ∗∂µ f

)
(·) = a|µ|+n/2

2n
√
C∂µψ

[
∂µ
(
ψa ∗ f

)]
(·).

(3.11)

Under the assumptions of the theorem, the differentiation and integration can
be interchanged, and furthermore by the continuity of the operator

∂µ : Wω
m,p(

R
n) −→W

m−|µ|,p
ω

(
R
n), (3.12)

for |µ| < m, we get

∥∥∥∥∥∥∥
1

a|µ|+n/2
(
L∂µψ f

)
(·,−a)− 1

2n
√
C∂µψ

(
∂µ f

)
(·)

∥∥∥∥∥∥∥
m−|µ|,p,ω

≤ 1
2n
√
C∂µψ

∥∥[∂µ(ψa ∗ f )](·)−(∂µ f )(·)∥∥m−|µ|,p,ω

≤ C
2n
√
C∂µψ

∥∥(ψa ∗ f )(·)− f (·)∥∥m,p,ω.

(3.13)

Lemma 3.2 implies now that the last term in (3.13) tends to 0 as a→ 0+. �
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[5] Y. Meyer, Ondelettes et Opérateurs. I [Wavelets and Operators. I], Hermann, Paris,
1990.

[6] A. Rieder, The wavelet transform on Sobolev spaces and its approximation properties,
Numer. Math. 58 (1991), no. 8, 875–894.



142 The integral wavelet transform in weighted Sobolev spaces

Nguyen Minh Chuong: Institute of Mathematics, P.O. Box 631, Bo Ho, 10 000
Hanoi, Vietnam

E-mail address: nmchuong@thevinh.ncst.ac.vn

Ta Ngoc Tri: University of Pedagogy Hanoi II, Me Linh, Vinh Phu, Vietnam

mailto:nmchuong@thevinh.ncst.ac.vn


Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and
Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due December 1, 2008

First Round of Reviews March 1, 2009

Publication Date June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of São Paulo, 05508-970 São Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de
Matemática Aplicada e Computação (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), São Josè dos
Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research,
King’s College, University of Aberdeen, Aberdeen AB24
3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers4pt
	Guest Editors

